搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维声子晶体板共振声场的微粒操控

王燕萍 蔡飞燕 李飞 张汝钧 李永川 王金萍 张欣 郑海荣

引用本文:
Citation:

基于二维声子晶体板共振声场的微粒操控

王燕萍, 蔡飞燕, 李飞, 张汝钧, 李永川, 王金萍, 张欣, 郑海荣

Acoustic manipulation of microparticles using a two-dimensional phononic crystal plate

Wang Yan-Ping, Cai Fei-Yan, Li Fei, Zhang Ru-Jun, Li Yong-Chuan, Wang Jin-Ping, Zhang Xin, Zheng Hai-Rong
PDF
HTML
导出引用
  • 声波可以非接触、无损伤地操控微粒, 其在细胞操纵、材料组装等领域具有广阔的应用前景. 然而, 如何高通量、灵活且快速操控微粒仍然面临挑战. 在本工作中, 利用二维声子晶体板的周期局域梯度场实现了大规模微粒的并行操控. 其主要机制是由于黄铜平板刻蚀周期分布的正方体凸起构成的二维声子晶体板可激发板子固有的Lamb波零阶反对称模式; 其周期局域梯度场在平行于声子晶体板表面为驻波声场、在垂直于声子晶体板表面为局域梯度声场; 该周期分布的局域声场可以对微粒产生平行于表面的声停驻力、垂直于表面的声吸引力. 我们进一步构建了操控实验装置, 利用压电陶瓷片激励二维声子晶体板, 在实验中观察到了玻璃微球的捕获和排列现象, 实现了大规模微粒的二维排列操控. 该工作为高通量、快速、灵活操控微粒和细胞等提供了物理基础和技术支持.
    Acoustic waves can manipulate particles without contact or damage, and has received increasing attention due to their potential applications in various fields, such as cell sorting, organoid construction, and material assembly. In general, high-throughput manipulation of microparticles relies on a large number of active transducers and phase-shifting circuits to create standing wave patterns, thus significantly inducing system complexity. Recently, we realized the parallel manipulation of microparticles by using an acoustic field modulated by a one-dimensional phononic crystal plate. The concept is based on the fact that phononic crystal plate can resonantly excite the zero-order asymmetric (A0) Lamb wave, inducing highly localized periodic radiation force on the particles. In this paper, we further show that by using a two-dimensional phononic crystal plate (TDPCP), parallel manipulation of massive particles can be achieved only with a single transducer. The A0 Lamb wave can be excited by a TDPCP, forming a two-dimensional periodic localized field, and then particles can suffer negative vertical force and stable zero horizontal force, inducing two-dimensional periodic trapping on the surface of the plate. Combining a PZT source with a TDPCP consisting of a brass plate patterned with periodical brass stubs, we observe the capture and arrangement of glass microspheres, achieving two-dimensional arrangement manipulation of particles on the TDPCP. This system represents a significant advancement in developing high-throughput, rapid, and flexible devices for particles and cell manipulation.
      通信作者: 蔡飞燕, fy.cai@siat.ac.cn ; 张欣, phxzhang@gdut.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12004409, 11974372, 12004408, 12274095)和深圳市科技计划 (批准号: RCJC20221008092808013, JCYJ20200109105823170, JCYJ20200109110006136)资助的课题.
      Corresponding author: Cai Fei-Yan, fy.cai@siat.ac.cn ; Zhang Xin, phxzhang@gdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004409, 11974372, 12004408, 12274095) and the Shenzhen Science and Technology Program, China (Grant Nos. RCJC20221008092808013, JCYJ20200109105823170, JCYJ20200109110006136).
    [1]

    Meng L, Cai F, Li F, Zhou W, Niu L, Zheng H 2019 J. Phys. D: Appl. Phys. 52 273001Google Scholar

    [2]

    Olson R J, Shalapyonok A, Kalb D J, Graves S W, Sosik H M 2017 Limnol. Oceanogr. Methods 15 867Google Scholar

    [3]

    Meng L, Cai F, Jiang P, Deng Z, Li F, Niu L, Chen Y, Wu J, Zheng H 2014 Appl. Phys. Lett. 104 073701Google Scholar

    [4]

    Meng L, Cai F, Chen J, Niu L, Li Y, Wu J, Zheng H 2012 Appl. Phys. Lett. 100 173701Google Scholar

    [5]

    Ding X, Lin S C S, Kiraly B, Yue H, Li S, Chiang I K, Shi J, Benkovic S J, Huang T J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 11105Google Scholar

    [6]

    Meng L, Cai F, Zhang Z, Niu L, Jin Q, Yan F, Wu J, Wang Z, Zheng H 2011 Biomicrofluidics 5 044104Google Scholar

    [7]

    Marzo A, Drinkwater B W 2019 Proc. Natl. Acad. Sci. U.S.A. 116 84Google Scholar

    [8]

    Tian Z, Yang S, Huang P H, Wang Z, Zhang P, Gu Y, Bachman H, Chen C, Wu M, Xie Y 2019 Sci. Adv. 5 6062Google Scholar

    [9]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [10]

    Xia X, Cai F, Li F, Meng L, Ma T, Zhou H, Ke M, Qiu C, Liu Z, Zheng H 2018 Adv. Mater. 4 1800542

    [11]

    Li Y, Assouar M B 2015 Sci. Rep. 5 17612Google Scholar

    [12]

    Li Y, Shen C, Xie Y, Li J, Wang W, Cummer S A, Jing Y 2017 Phys. Rev. Lett. 119 035501Google Scholar

    [13]

    Xia X, Li Y, Cai F, Zhou H, Ma T, Zheng H 2020 Appl. Phys. Lett. 117 021904Google Scholar

    [14]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [15]

    Huang J, Ren X, Zhou Q, Zhou J, Xu Z 2023 Ultrasonics 128 106865Google Scholar

    [16]

    Memoli G, Caleap M, Asakawa M, Sahoo D R, Drinkwater B W, Subramanian S 2017 Nat. Commun. 8 14608Google Scholar

    [17]

    Wang T, Ke M, Xu S, Feng J, Qiu C, Liu Z 2015 Appl. Phys. Lett. 106 163504Google Scholar

    [18]

    Korozlu N, Bicer A, Sayarcan D, Adem Kaya O, Cicek A 2022 Ultrasonics 124 106777Google Scholar

    [19]

    Wang Y, Luo L, Ke M, Liu Z 2022 Phys. Rev. Appl. 17 014026Google Scholar

    [20]

    黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar

    Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar

    [21]

    齐绍富, 蔡飞燕, 田振, 黄先玉, 周娟, 王金萍, 李文成, 郑海荣, 邓科 2023 物理学报 72 024301Google Scholar

    Qi S F, Cai F Y, Tian Z, Huang X Y, Zhou J, Wang J P, Li W C, Zheng H R, Deng K 2023 Acta Phys. Sin. 72 024301Google Scholar

    [22]

    Li F, Cai F, Liu Z, Meng L, Qian M, Wang C, Cheng Q, Qian M, Liu X, Wu J, Li J, Zheng H 2014 Phys. Rev. Appl. 1 051001Google Scholar

    [23]

    Li F, Cai F, Zhang L, Liu Z, Li F, Meng L, Wu J, Li J, Zhang X, Zheng H 2020 Phys. Rev. Appl. 13 044077Google Scholar

    [24]

    Li F, Yan F, Chen Z, Lei J, Yu J, Chen M, Zhou W, Meng L, Niu L, Wu J, Li J, Cai F, Zheng H 2018 Appl. Phys. Lett. 113 083701Google Scholar

    [25]

    Sweden S. https://cn.comsol.com/ [2023-1-18]

    [26]

    He Z, Jia H, Qiu C, Peng S, Mei X, Cai F, Peng P, Ke M, Liu Z 2010 Phys. Rev. Lett. 105 074301Google Scholar

    [27]

    Sarvazyan A P, Rudenko O V, Nyborg W L 2010 Ultrasound Med. Biol. 36 1379Google Scholar

    [28]

    King L V 1934 Proc. R. Soc. London, Ser. A 147 212Google Scholar

  • 图 1  二维声子晶体板声学特性 (a) 二维声子晶体板单胞示意图; (b) 二维声子晶体板实验样品图; (c) 正入射时, 二维声子晶体板和厚度为0.38 mm的均匀黄铜板透射曲线; (d) 二维声子晶体板色散曲线(红色和蓝色圆圈), 被折叠在第一布里渊区的均匀板色散曲线(红色和蓝色实线)及水的色散曲线(黑色圆圈); (e) 在Γ点且频率为0.21 MHz处, 离均匀板表面距离为0.05 mm, 4阶简并模式的本征声场分布; (f) 在Γ点且频率为0.24 MHz附近, 离声子晶体板表面距离为0.05 mm, 4个模式的本征声场分布

    Fig. 1.  Acoustic characteristics of two-dimensional phononic crystal plate (TDPCP): (a) Schematic diagram of two-dimensional phononic crystal plate cell; (b) photograph of the TDPCP sample; (c) transmission spectrum at normal incidence versus frequency for the TDPCP and uniform brass plate with the height of 0.38 mm; (d) dispersion curves (red circles and blue circles) for the TDPCP immersed in water, accompanied with the water line (dark circles). For comparison, the simply folded dispersion curves for the uniform plate are plotted as lines with the same color; (e) the eigen pressure fields of four-order degenerate mode above the uniform brass plate with distance 0.05 mm at Γ with frequency of 0.21 MHz; (f) the eigen pressure field above the TDPCP with distance 0.05 mm at Γ with frequency around 0.24 MHz.

    图 2  数值计算声压场与实验测量位移场 (a) 在共振频率0.24 MHz处声子晶体板单胞周围的声场分布(数值模拟); (b) 在共振频率处声子晶体板面的位移场分布(LDV实验测量)

    Fig. 2.  Calculated pressure field and measured displacement field at resonant frequency: (a) Calculated pressure field of unit cell around the TDPCP at resonance frequency; (b) measured displacement field at the surface of the TDPCP at resonant frequency by LDV.

    图 3  共振频率处玻璃微球在二维声子晶体板表面受到的Gor’kov势(归一化)和声辐射力分布, 其中背景颜色表示Gor'kov势大小, 箭头长度和方向分别表示声辐射力的大小和方向

    Fig. 3.  Distribution of normalized Gor’kov potential and acoustic radiation force exerted on glass microspheres at the surface of TDPCP at resonance frequency, the color represents the magnitude of Gor’kov potential, the length and direction of the arrow represent the magnitude and direction of the acoustic radiation force, respectively.

    图 4  微粒操控实验系统示意图及实验效果图 (a) 微粒操控实验系统示意图; (b) 超声开启前, 玻璃微球随机分布在声子晶体板表面; (c) 超声开启后, 玻璃微球二维周期捕获在声子晶体板表面

    Fig. 4.  Schematic diagram of the experimental system and experimental effect of particles manipulation: (a) Schematic diagram of the experimental system; (b) initially, glass spheres are randomly distributed on the surface of the TDPCP; (c) when ultrasonic wave is on, glass spheres are trapped and periodically arranged on the surface of the TDPCP.

  • [1]

    Meng L, Cai F, Li F, Zhou W, Niu L, Zheng H 2019 J. Phys. D: Appl. Phys. 52 273001Google Scholar

    [2]

    Olson R J, Shalapyonok A, Kalb D J, Graves S W, Sosik H M 2017 Limnol. Oceanogr. Methods 15 867Google Scholar

    [3]

    Meng L, Cai F, Jiang P, Deng Z, Li F, Niu L, Chen Y, Wu J, Zheng H 2014 Appl. Phys. Lett. 104 073701Google Scholar

    [4]

    Meng L, Cai F, Chen J, Niu L, Li Y, Wu J, Zheng H 2012 Appl. Phys. Lett. 100 173701Google Scholar

    [5]

    Ding X, Lin S C S, Kiraly B, Yue H, Li S, Chiang I K, Shi J, Benkovic S J, Huang T J 2012 Proc. Natl. Acad. Sci. U.S.A. 109 11105Google Scholar

    [6]

    Meng L, Cai F, Zhang Z, Niu L, Jin Q, Yan F, Wu J, Wang Z, Zheng H 2011 Biomicrofluidics 5 044104Google Scholar

    [7]

    Marzo A, Drinkwater B W 2019 Proc. Natl. Acad. Sci. U.S.A. 116 84Google Scholar

    [8]

    Tian Z, Yang S, Huang P H, Wang Z, Zhang P, Gu Y, Bachman H, Chen C, Wu M, Xie Y 2019 Sci. Adv. 5 6062Google Scholar

    [9]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [10]

    Xia X, Cai F, Li F, Meng L, Ma T, Zhou H, Ke M, Qiu C, Liu Z, Zheng H 2018 Adv. Mater. 4 1800542

    [11]

    Li Y, Assouar M B 2015 Sci. Rep. 5 17612Google Scholar

    [12]

    Li Y, Shen C, Xie Y, Li J, Wang W, Cummer S A, Jing Y 2017 Phys. Rev. Lett. 119 035501Google Scholar

    [13]

    Xia X, Li Y, Cai F, Zhou H, Ma T, Zheng H 2020 Appl. Phys. Lett. 117 021904Google Scholar

    [14]

    Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar

    [15]

    Huang J, Ren X, Zhou Q, Zhou J, Xu Z 2023 Ultrasonics 128 106865Google Scholar

    [16]

    Memoli G, Caleap M, Asakawa M, Sahoo D R, Drinkwater B W, Subramanian S 2017 Nat. Commun. 8 14608Google Scholar

    [17]

    Wang T, Ke M, Xu S, Feng J, Qiu C, Liu Z 2015 Appl. Phys. Lett. 106 163504Google Scholar

    [18]

    Korozlu N, Bicer A, Sayarcan D, Adem Kaya O, Cicek A 2022 Ultrasonics 124 106777Google Scholar

    [19]

    Wang Y, Luo L, Ke M, Liu Z 2022 Phys. Rev. Appl. 17 014026Google Scholar

    [20]

    黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar

    Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar

    [21]

    齐绍富, 蔡飞燕, 田振, 黄先玉, 周娟, 王金萍, 李文成, 郑海荣, 邓科 2023 物理学报 72 024301Google Scholar

    Qi S F, Cai F Y, Tian Z, Huang X Y, Zhou J, Wang J P, Li W C, Zheng H R, Deng K 2023 Acta Phys. Sin. 72 024301Google Scholar

    [22]

    Li F, Cai F, Liu Z, Meng L, Qian M, Wang C, Cheng Q, Qian M, Liu X, Wu J, Li J, Zheng H 2014 Phys. Rev. Appl. 1 051001Google Scholar

    [23]

    Li F, Cai F, Zhang L, Liu Z, Li F, Meng L, Wu J, Li J, Zhang X, Zheng H 2020 Phys. Rev. Appl. 13 044077Google Scholar

    [24]

    Li F, Yan F, Chen Z, Lei J, Yu J, Chen M, Zhou W, Meng L, Niu L, Wu J, Li J, Cai F, Zheng H 2018 Appl. Phys. Lett. 113 083701Google Scholar

    [25]

    Sweden S. https://cn.comsol.com/ [2023-1-18]

    [26]

    He Z, Jia H, Qiu C, Peng S, Mei X, Cai F, Peng P, Ke M, Liu Z 2010 Phys. Rev. Lett. 105 074301Google Scholar

    [27]

    Sarvazyan A P, Rudenko O V, Nyborg W L 2010 Ultrasound Med. Biol. 36 1379Google Scholar

    [28]

    King L V 1934 Proc. R. Soc. London, Ser. A 147 212Google Scholar

  • [1] 刘腾, 乔玉配, 宫门阳, 刘晓宙. 有界黏性流体中自由球形粒子的声辐射力. 物理学报, 2025, 74(1): 014301. doi: 10.7498/aps.74.20241354
    [2] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [3] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力. 物理学报, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [4] 齐绍富, 蔡飞燕, 田振, 黄先玉, 周娟, 王金萍, 李文成, 郑海荣, 邓科. 基于一维声栅共振场的大规模微粒并行排列 的实验研究. 物理学报, 2023, 72(2): 024301. doi: 10.7498/aps.72.20221793
    [5] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, 2022, 71(11): 114301. doi: 10.7498/aps.71.20211932
    [6] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似. 物理学报, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [7] 朱纪霖, 高东宝, 曾新吾. 基于相位变换声镊的单个微粒平面移动操控. 物理学报, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [8] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [9] 贾鼎, 葛勇, 袁寿其, 孙宏祥. 基于蜂窝晶格声子晶体的双频带声拓扑绝缘体. 物理学报, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [10] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [11] 黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平. 空气中一维声栅对微粒的声操控. 物理学报, 2017, 66(4): 044301. doi: 10.7498/aps.66.044301
    [12] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究. 物理学报, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [13] 梁彬, 袁樱, 程建春. 声单向操控研究进展. 物理学报, 2015, 64(9): 094305. doi: 10.7498/aps.64.094305
    [14] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究. 物理学报, 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [15] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [16] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 二维声子晶体平板成像中的通道特征. 物理学报, 2010, 59(1): 381-386. doi: 10.7498/aps.59.381
    [17] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [18] 蔡 力, 韩小云. 二维声子晶体带结构的多散射分析及解耦模式. 物理学报, 2006, 55(11): 5866-5871. doi: 10.7498/aps.55.5866
    [19] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
    [20] 赵 芳, 苑立波. 二维复式格子声子晶体带隙结构特性. 物理学报, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
计量
  • 文章访问数:  3294
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-22
  • 修回日期:  2023-04-17
  • 上网日期:  2023-05-18
  • 刊出日期:  2023-07-20

/

返回文章
返回