搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双链超导量子电路中的拓扑非平庸节点

关欣 陈刚

引用本文:
Citation:

双链超导量子电路中的拓扑非平庸节点

关欣, 陈刚

Topological nonmediocre nodes on two-leg superconducting quantum circuits

Guan Xin, Chen Gang
PDF
HTML
导出引用
  • 拓扑无能隙系统作为不同量子相的连接, 目前已经成为备受关注的前沿科学. 超导量子电路作为一个重要的全固态量子器件是宏观调控量子效应的优秀平台. 本文在超导量子电路中构建了双链的Su-Schrieffer-Heeger (SSH)模型并发现了拓扑非平庸的节点. 首先设计了电容耦合的双链transmon比特, 之后用两个交流微波驱动每一个transmon比特, 从而实现比特间耦合强度的独立调控, 最后通过选择比特间合适的耦合参数实现交错的双链SSH模型. 接下来探索了交错双链SSH模型的拓扑性质, 首先计算了k空间中双链SSH模型的本征能量, 并发现了两种类型的相边界. 之后在参数空间中画出了拓扑相图, 发现了两类拓扑绝缘相, 其拓扑数分别为1和–1, 对应有两类边界态. 拓扑相图也进一步给出了两类相边界的分布以及它们两侧拓扑数的值. 最后分析了两类相边界的拓扑性质, 发现其中一类拓扑相边界对应的能带有两个拓扑非平庸的节点. 本文的工作为探索链条型物理系统、拓扑物态以及节点型拓扑半金属提供了新的途径.
    Topological gapless systems, as the connection of the different topological quantum phases, have received much attention. Topological nonmediocre nodes are typically observed in two- or three-dimensional gapless systems. In this paper, we demonstrate that the topological nonmediocre nodes are existent in a model that lies between one dimension and two dimensions. Superconducting circuits, as essential all-solid state quantum devices, have offered a promising platform for studying the macro-controlling quantum effects. Recently, experimental achievements have enabled the realization of tunable coupling strengths between transmon qubits and the implementation of a one-dimensional Su-Schrieffer-Heeger (SSH) model [Li X et al. 2018 Phys. Rev. Appl. 10 054009]. According to this work, herein we present a two-leg SSH model implemented in superconducting circuits and demonstrate the existence of topological nonmediocre nodes. Firstly, two-leg superconducting circuit with transmon qubits which are coupled with their nearest-neighbor sites by capacitors is designed. To construct the two-leg SSH model, we introduce two alternating-current magnetic fluxes to drive each transmon qubit. We discover two types of phase boundaries in the SSH model and obtain the corresponding energy spectra and phase diagram. We identify two distinct topological insulating phases characterized by winding number ±1, and the corresponding edge states exhibit distinct characteristics. Moreover, we discuss the topological properties of the two phase boundaries. By representing the Bloch states as a vector field in k space, we demonstrate the existence of two kinks of nonmediocre nodes with first-type phase boundaries. These two nonmediocrenodes possess distinct topological charges of 1 and –1, respectively. On the other hand, the nonmediocre nodes with the second-type phase boundaries are topologically trivial. These results open the way for exploring novel topological states, ladder physical systems, and nodal point topological semimetals.
      通信作者: 关欣, guanxin810712@163.com
    • 基金项目: 山西省自然科学基金青年项目(批准号: 202103021223010)资助的课题
      Corresponding author: Guan Xin, guanxin810712@163.com
    • Funds: Project supported by the Young Scientists Fund of the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021223010)
    [1]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [2]

    Duncan F, Haldane M 2017 Rev. Mod. Phys. 89 040502Google Scholar

    [3]

    Burkov A A 2016 Nat. Mater. 15 1145Google Scholar

    [4]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [5]

    Shi W J, Wieder B J, Meyerheim H L, Sun Y, Zhang Y, Li Y W, Shen L, Qi Y P, Yang L X, Jena J, Werner P, Koepernik K, Parkin S, Chen Y L, Felser C, Bernevig B A, Wang Z J 2021 Nat. Phys. 17 381Google Scholar

    [6]

    Wei Q, Zhang X W, Deng W Y, Lu J Y, Huang X Q, Yan M, Chen G, Liu Zh Y, Jia S T 2021 Nat. Mater. 20 812Google Scholar

    [7]

    Weng H, Wu Q, Dai X, Fang Z, Wang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [8]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [9]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [10]

    Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M, Ding H 2015 Phys. Rev. Lett. 115 217601Google Scholar

    [11]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [12]

    Wu S, Yan B, Sun Y 2015 Phys. Rev. B 92 115428Google Scholar

    [13]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [14]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar

    [15]

    Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [16]

    Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S 2017 Nat. Commun. 8 257Google Scholar

    [17]

    Li C, Lin S, Zhang G, Song Z 2017 Phys. Rev. B 96 125418Google Scholar

    [18]

    Tan X Sh, Zhang D W, Liu Q, Xue G M, Yu H F, Zhu Y Q, Yan H, Zhu Sh L, Yu Y 2018 Phys. Rev. Lett. 120 130503Google Scholar

    [19]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [20]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [21]

    Blok M S, Ramasesh V V, Schuster T, O’Brien K, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I 2021 Phys. Rev. X 11 021010Google Scholar

    [22]

    Goss N, Morvan A, Marinelli B, Mitchell B K, Nguyen L B, Naik R K, Chen L, Jünger C, Kreikebaum J M, Santiago D I, Wallman J J, Siddiqi I 2022 Nat. Commun. 13 7481Google Scholar

    [23]

    Brecht T, Pfaff W, Wang C, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2016 npj Quantum Inf. 2 16002Google Scholar

    [24]

    Barends R, Shabani A, Lamata L, Kelly J, Mezzacapo A, Heras U L, Babbush R, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Lucero E, Megrant A, Mutus J Y, Neeley M, Neill C, O’Malley P J J, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Solano E, Neven H, Martinis J M 2016 Nature 534 222Google Scholar

    [25]

    Jurcevic P, Abhari A J, Bishop L S, Lauer I, Bogorin D F, Brink M, Capelluto L, Günlük O, Itoko T, Kanazawa N, Kandala A, Keefe G A, Krsulich K, Landers W, Lewandowski E P, McClure D T, Nannicini G, Narasgond A, Nayfeh H M, Pritchett E, Rothwell M B, Srinivasan S, Sundaresan N, Wang C, Wei K X, Wood C J, Yau J B, Zhang E J, Dial O E, Chow J M, Gambetta J M 2021 Quantum Sci. Technol. 6 025020Google Scholar

    [26]

    Chenlu W, Li X, Xu H, Li Z, Wang J, Yang Z, Mi Z, Liang X, Su T, Yang C, Wang G, Wang W, Li Y, Chen M, Li C, Linghu K, Han J, Zhang Y, Feng Y, Song Y, Ma T, Zhang J, Wang R, Zhao P, Liu W, Xue G, Jin Y, Yu H 2022 npj Quantum Inf. 8 3Google Scholar

    [27]

    Xu K, Sun Z H, Liu W, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H, Wang H 2020 Sci. Adv. 6 eaba4935Google Scholar

    [28]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [29]

    Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potočnik A, Mezzacapo A, Heras U L, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027Google Scholar

    [30]

    Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M 2017 Nature 549 242Google Scholar

    [31]

    Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, Jia S T, Sun L Y 2019 Phys. Rev. Lett. 123 080501Google Scholar

    [32]

    Tan X S, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D Y, Yang X P, Song S Q, Han Z K, Li Z Y, Dong Y Q, Yu H F, Yan H, Zhu S L, Yu Y 2019 Phys. Rev. Lett. 123 159902Google Scholar

    [33]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J 2019 Nature 566 51Google Scholar

    [34]

    Wang Z, Ge Z Y, Xiang Z, Song X, Huang R Z, Song P, Guo X Y, Su L, Xu K, Zheng D, Fan H 2022 Phys. Rev. Res. 4 L022060Google Scholar

    [35]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [36]

    Gu X, Kockum A F, Miranowicz A, Liu Y, Nori F 2017 Phys. Rep. 718 1Google Scholar

    [37]

    喻祥敏, 谭新生, 于海峰, 于扬 2018 物理学报 67 220302Google Scholar

    Yu X M, Tan X S, Yu H F, Yu Y 2018 Acta Phys. Sin. 67 220302Google Scholar

    [38]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N 2018 Acta Phys. Sin. 67 228501Google Scholar

    [39]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Lin Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [40]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Ming G, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [41]

    Didier N, Sete E A, Silva M P D, Rigetti C 2018 Phys. Rev. A 97 022330Google Scholar

    [42]

    Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q, Sun L Y 2018 Phys. Rev. Appl. 10 054009Google Scholar

    [43]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [44]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [45]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [46]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

  • 图 1  双链SSH模型 (a) 两条transmon比特链分别标记为AB. 每个transmon比特都与其最近邻比特两两耦合. 这里所有的耦合器均为电容. $ Q_{\nu j} $表示的是第ν条链上的第j个比特. $ C_{\nu j} $$E_{\nu j}^{{\rm{J}}}$分别是第ν条链上, 第j个比特的有效电容和约瑟夫森能. $ C_{\nu ij} $是耦合第ν条链上, 第i和第j个比特的电容. $ C_{ABj} $表示A, B两条链上第j个比特之间耦合的电容. $ \phi _{\nu j} $是第ν条链上, 第j个比特的约瑟夫森结的相位. 本文中transmon比特的约瑟夫森结由超导量子干涉仪(SQUID)形成, $E_{\nu j}^{{\rm{J}}0}$是SQUID中每个约瑟夫森结的能量. 每个比特都受到两个外加磁通$ \varPhi_{\nu j}^{(1)}(t) $$ \varPhi_{\nu j}^{(2)}(t) $的调制. (b) 双链SSH模型示意图, 图中红色和蓝色的实心球表示SSH模型中一个原胞的两种比特

    Fig. 1.  Two-leg SSH model: (a) Two-leg (labeled respectively by A and B) superconducting circuits with transmon qubits. The qubits are coupled with their nearest-neighbor sites. All couplers are capacitors. $ C_{\nu j} $ and $E_{\nu j}^{{\rm{J}}}$ are the effective capacitance and the Josephson energy of the qubit at the jth site on the $ \nu {\rm{th}} $ leg. $ C_{\nu ij} $ and $ C_{ABj} $ are the capacitors to couple the qubits at the jth site on the $ \nu {\rm{th}}$ leg with its nearest-neighbor sites along each leg and between the legs, respectively. $ \phi _{\nu j} $ is the phase of the Josephson junction of the qubit at the jth site on the $ \nu {\rm{th}} $ leg. The Josephson junction of the transmon qubit is a superconducting quantum interference device(SQUID). $E_{\nu j}^{{\rm{J}}0}$ is the Josephson energy of SQUID. Each qubit is modulate by two external magnetic fluxes $\varPhi_{\nu j}^{(1)}(t)$ and $\varPhi_{\nu j}^{(2)}(t)$

    图 2  双链SSH模型的能谱图 (a) $ t_{1}=t_{2}=1.5 $; (b) $ t_{1}=-1.5 $$ t_{2}=0.5 $; (c) $ t_{1}=t_{2}=-0.5 $

    Fig. 2.  Energy bands of SSH model: (a) $ t_{1}=t_{2}=1.5 $; (b) $ t_{1}=-1.5 $ and $ t_{2}=0.5 $; (c) $ t_{1}=t_{2}=-0.5 $

    图 3  双链SSH模型在参数空间$t_{1}\text-t_{2}$中的拓扑相图. 深绿色的区域是拓扑数$ N=-1 $的区域, 浅咖色的区域是拓扑数$N=1$的区域, 浅绿色的区域是拓扑数$ N=0 $的区域; 红色的线标记的是第一类相边界, 黑色的线标记的是第二类相边界

    Fig. 3.  Topological phase diagram in the $t_{1}\text-t_{2}$ plane. The bottle green, light coffee color and pale green areas indicate the areas with $ N=-1 $, $ N=1 $ and $ N=0 $ respectively. N denotes the winding number. The red and black lines indicate the first and second phase boundaries respectively

    图 4  开边界能带和边界态 ($ a_{1} $ )$ t_{1}=1.5 $$ t_{2}=0.5 $; ($ a_{2} $) $ t_{1}=0.5 $$ t_{2}=1.5 $; ($ a_{3} $) $ t_{1}=0.5 $$ t_{2}=0.3 $. ($ b_{1} $)—($ b_{3} $)是($ a_{1} $)—($ a_{3} $)中第20个能带的波函数

    Fig. 4.  Energy bands with open boundary condition with ($ a_{1} $) $ t_{1}=1.5 $ and $ t_{2}=0.5 $; ($ a_{2} $) $ t_{1}=0.5 $ and $ t_{2}=1.5 $; ($ a_{3} $) $ t_{1}= $$ 0.5 $ and $ t_{2}=0.3 $. The wave functions corresponding with the 20th energy bands of ($ a_{1} $), ($ a_{2} $), and ($ a_{3} $) are plotted in ($ b_{1} $), ($ b_{2} $), and ($ b_{3} $), respectively

    图 5  不同参数下$ {\boldsymbol{\varepsilon}} $在布洛赫球的$x\text{-}y$平面上的轨迹 (a)拓扑数$ N=1 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=1.5 $$ t_{2}=0.5 $; (b)拓扑数$ N=-1 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=0.5 $$ t_{2}=1.5 $; (c)拓扑数$ N=0 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=1 $$ t_{2}=-0.7 $; (d)参数满足第一类相边界$ t_{1}=t_{2} $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=t_{2}=1 $; (e)参数满足第二类相边界$ t_{1}+t_{2}=1 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=0.8 $$ t_{2}=0.2 $; (f)参数满足第二类相边界$ t_{1}+t_{2}=-1 $$ {\boldsymbol{\varepsilon}} $的轨迹, 参数设定为$ t_{1}=-1.3 $$ t_{2}=0.3 $. 图中红点表示原点, 箭头表示轨迹的运动方向

    Fig. 5.  The curve of the vector $ {\boldsymbol{\varepsilon}} $ in $x\text{-}y$ plane of the Bloch sphere with (a) $ t_{1}=1.5 $ and $ t_{2}=0.5 $; (b) $ t_{1}=0.5 $ and $ t_{2}=1.5 $; (c) $ t_{1}=1 $ and $ t_{2}=-0.7 $; (d) $ t_{1}=t_{2}=1 $; (e) $ t_{1}=0.8 $ and $ t_{2}=0.2 $; (f) $ t_{1}=-1.3 $ and $ t_{2}=0.3 $. The red points and arrows indicate the origin points and direction of the curve respectively

    图 6  参数设定为$ t_{1}=t_{2}=1 $(第一类相边界上)时矢量$ {\boldsymbol{F}}(k) $随波矢k的变化. 图中箭头表示自旋的方向, $ k_{\rm{c}} $为能级简并点处的波矢

    Fig. 6.  The variation of the vector $ {\boldsymbol{F}}(k) $ as k changes with $ t_{1}=t_{2}=1 $. The arrows and $ k_c $ indicate the direction of the spin and degenerate energy point respectively

  • [1]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [2]

    Duncan F, Haldane M 2017 Rev. Mod. Phys. 89 040502Google Scholar

    [3]

    Burkov A A 2016 Nat. Mater. 15 1145Google Scholar

    [4]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [5]

    Shi W J, Wieder B J, Meyerheim H L, Sun Y, Zhang Y, Li Y W, Shen L, Qi Y P, Yang L X, Jena J, Werner P, Koepernik K, Parkin S, Chen Y L, Felser C, Bernevig B A, Wang Z J 2021 Nat. Phys. 17 381Google Scholar

    [6]

    Wei Q, Zhang X W, Deng W Y, Lu J Y, Huang X Q, Yan M, Chen G, Liu Zh Y, Jia S T 2021 Nat. Mater. 20 812Google Scholar

    [7]

    Weng H, Wu Q, Dai X, Fang Z, Wang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [8]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [9]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [10]

    Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M, Ding H 2015 Phys. Rev. Lett. 115 217601Google Scholar

    [11]

    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T, Ding H 2015 Phys. Rev. X 5 031013Google Scholar

    [12]

    Wu S, Yan B, Sun Y 2015 Phys. Rev. B 92 115428Google Scholar

    [13]

    Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [14]

    Deng K, Wan G, Deng P, Zhang K, Ding S, Wang E, Yan M, Huang H, Zhang H, Xu Z, Denlinger J, Fedorov A, Yang H, Duan W, Yao H, Wu Y, Fan S, Zhang H, Chen X, Zhou S 2016 Nat. Phys. 12 1105Google Scholar

    [15]

    Huang L, McCormick T M, Ochi M, Zhao Z, Suzuki M, Arita R, Wu Y, Mou D, Cao H, Yan J, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [16]

    Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S 2017 Nat. Commun. 8 257Google Scholar

    [17]

    Li C, Lin S, Zhang G, Song Z 2017 Phys. Rev. B 96 125418Google Scholar

    [18]

    Tan X Sh, Zhang D W, Liu Q, Xue G M, Yu H F, Zhu Y Q, Yan H, Zhu Sh L, Yu Y 2018 Phys. Rev. Lett. 120 130503Google Scholar

    [19]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [20]

    Wendin G 2017 Rep. Prog. Phys. 80 106001Google Scholar

    [21]

    Blok M S, Ramasesh V V, Schuster T, O’Brien K, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y, Siddiqi I 2021 Phys. Rev. X 11 021010Google Scholar

    [22]

    Goss N, Morvan A, Marinelli B, Mitchell B K, Nguyen L B, Naik R K, Chen L, Jünger C, Kreikebaum J M, Santiago D I, Wallman J J, Siddiqi I 2022 Nat. Commun. 13 7481Google Scholar

    [23]

    Brecht T, Pfaff W, Wang C, Chu Y, Frunzio L, Devoret M H, Schoelkopf R J 2016 npj Quantum Inf. 2 16002Google Scholar

    [24]

    Barends R, Shabani A, Lamata L, Kelly J, Mezzacapo A, Heras U L, Babbush R, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Lucero E, Megrant A, Mutus J Y, Neeley M, Neill C, O’Malley P J J, Quintana C, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Solano E, Neven H, Martinis J M 2016 Nature 534 222Google Scholar

    [25]

    Jurcevic P, Abhari A J, Bishop L S, Lauer I, Bogorin D F, Brink M, Capelluto L, Günlük O, Itoko T, Kanazawa N, Kandala A, Keefe G A, Krsulich K, Landers W, Lewandowski E P, McClure D T, Nannicini G, Narasgond A, Nayfeh H M, Pritchett E, Rothwell M B, Srinivasan S, Sundaresan N, Wang C, Wei K X, Wood C J, Yau J B, Zhang E J, Dial O E, Chow J M, Gambetta J M 2021 Quantum Sci. Technol. 6 025020Google Scholar

    [26]

    Chenlu W, Li X, Xu H, Li Z, Wang J, Yang Z, Mi Z, Liang X, Su T, Yang C, Wang G, Wang W, Li Y, Chen M, Li C, Linghu K, Han J, Zhang Y, Feng Y, Song Y, Ma T, Zhang J, Wang R, Zhao P, Liu W, Xue G, Jin Y, Yu H 2022 npj Quantum Inf. 8 3Google Scholar

    [27]

    Xu K, Sun Z H, Liu W, Zhang Y R, Li H K, Dong H, Ren W H, Zhang P F, Nori F, Zheng D N, Fan H, Wang H 2020 Sci. Adv. 6 eaba4935Google Scholar

    [28]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [29]

    Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potočnik A, Mezzacapo A, Heras U L, Lamata L, Solano E, Filipp S, Wallraff A 2015 Phys. Rev. X 5 021027Google Scholar

    [30]

    Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, Gambetta J M 2017 Nature 549 242Google Scholar

    [31]

    Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y P, Xue Z Y, Yin Z Q, Jia S T, Sun L Y 2019 Phys. Rev. Lett. 123 080501Google Scholar

    [32]

    Tan X S, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D Y, Yang X P, Song S Q, Han Z K, Li Z Y, Dong Y Q, Yu H F, Yan H, Zhu S L, Yu Y 2019 Phys. Rev. Lett. 123 159902Google Scholar

    [33]

    Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J 2019 Nature 566 51Google Scholar

    [34]

    Wang Z, Ge Z Y, Xiang Z, Song X, Huang R Z, Song P, Guo X Y, Su L, Xu K, Zheng D, Fan H 2022 Phys. Rev. Res. 4 L022060Google Scholar

    [35]

    Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar

    [36]

    Gu X, Kockum A F, Miranowicz A, Liu Y, Nori F 2017 Phys. Rep. 718 1Google Scholar

    [37]

    喻祥敏, 谭新生, 于海峰, 于扬 2018 物理学报 67 220302Google Scholar

    Yu X M, Tan X S, Yu H F, Yu Y 2018 Acta Phys. Sin. 67 220302Google Scholar

    [38]

    赵士平, 刘玉玺, 郑东宁 2018 物理学报 67 228501Google Scholar

    Zhao S P, Liu Y X, Zheng D N 2018 Acta Phys. Sin. 67 228501Google Scholar

    [39]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y R, Li S W, Wang C, Liang F T, Lin J, Lin Y, Guo C, Sun L H, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [40]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Ming G, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123 050502Google Scholar

    [41]

    Didier N, Sete E A, Silva M P D, Rigetti C 2018 Phys. Rev. A 97 022330Google Scholar

    [42]

    Li X, Ma Y, Han J, Chen T, Xu Y, Cai W, Wang H, Song Y P, Xue Z Y, Yin Z Q, Sun L Y 2018 Phys. Rev. Appl. 10 054009Google Scholar

    [43]

    Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar

    [44]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [45]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [46]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

  • [1] 杨艳丽, 段志磊, 薛海斌. 非厄米Su-Schrieffer-Heeger链边缘态和趋肤效应依赖的电子输运特性. 物理学报, 2023, 72(24): 247301. doi: 10.7498/aps.72.20231286
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [4] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应. 物理学报, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [5] 关欣, 陈刚, 潘婧, 游秀芬, 桂志国. 人造霍尔管中的基态手性流. 物理学报, 2022, 71(16): 160303. doi: 10.7498/aps.71.20220293
    [6] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [7] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [8] 张蓝云, 薛海斌, 陈彬, 陈建宾, 邢丽丽. 量子点-Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, 2020, 69(7): 077301. doi: 10.7498/aps.69.20191871
    [9] 刘艳红, 吴量, 闫智辉, 贾晓军, 彭堃墀. 多个量子节点确定性纠缠的建立. 物理学报, 2019, 68(3): 034202. doi: 10.7498/aps.68.20181614
    [10] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [11] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [12] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [13] 章孝顺, 章定国, 陈思佳, 洪嘉振. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究. 物理学报, 2016, 65(9): 094501. doi: 10.7498/aps.65.094501
    [14] 聂敏, 刘广腾, 杨光, 裴昌幸. 基于最少中继节点约束的量子VoIP路由优化策略. 物理学报, 2016, 65(12): 120302. doi: 10.7498/aps.65.120302
    [15] 杨雄, 黄德才, 张子柯. 推荐重要节点部署防御策略的优化模型. 物理学报, 2015, 64(5): 050502. doi: 10.7498/aps.64.050502
    [16] 胡兆龙, 刘建国, 任卓明. 基于节点度信息的自愿免疫模型研究. 物理学报, 2013, 62(21): 218901. doi: 10.7498/aps.62.218901
    [17] 张燚, 孙卫国, 付佳, 樊群超, 冯灏, 李会东. 用节点变分的代数方法研究双原子体系的完全振动能谱和离解能. 物理学报, 2012, 61(13): 133301. doi: 10.7498/aps.61.133301
    [18] 熊菲, 刘云, 司夏萌, 丁飞. 基于Web 2.0的边与节点同时增长网络模型. 物理学报, 2010, 59(10): 6889-6895. doi: 10.7498/aps.59.6889
    [19] 王俊平, 郝跃. 65—90 nm技术节点的WCA模型和提取算法. 物理学报, 2009, 58(6): 4267-4273. doi: 10.7498/aps.58.4267
    [20] 李 季, 汪秉宏, 蒋品群, 周 涛, 王文旭. 节点数加速增长的复杂网络生长模型. 物理学报, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
计量
  • 文章访问数:  3438
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-07
  • 修回日期:  2023-05-13
  • 上网日期:  2023-05-22
  • 刊出日期:  2023-07-20

/

返回文章
返回