搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性

庄杰 韩瑞 季振宇 石富坤

引用本文:
Citation:

量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性

庄杰, 韩瑞, 季振宇, 石富坤

Uncertainty in prediction of pulsed field ablation caused by parameter diversity in quantifying conductivity models

Zhuang Jie, Han Rui, Ji Zhen-Yu, Shi Fu-Kun
PDF
HTML
导出引用
  • 脉冲电场消融(pulsed field ablation, PFA)以其非热、消融边界清晰等优势成为肿瘤和组织消融的关注重点. 然而, 组织生物物理特性和脉冲参数的多样性导致PFA效果难以预测. 本研究考虑PFA消融阈值和两个常用电导率模型参数的不确定性, 评估其对消融深度的影响. 从模型复杂度、参数敏感度分布、模型鲁棒性给出了模型选择的指标. 结果表明单因素决定的模型具有更强的鲁棒性. 消融阈值和组织初始电导率依次是影响消融深度评估的两个最敏感参数. 该策略可用于多种数学物理和仿真模型, 以增强模型可信度和简化模型.
    Pulsed field ablation (PFA) is a new type of physical energy source in the fields of tumor and atrial fibrillation ablation, which is based on irreversible electroporation with non-thermal, clear ablation boundaries, selective killing, and rapid advantages. The PFA triggers off the changes in the electrical conductivity of ablation zone, which can be described by a step function and used to predict the ablation zone. However, current research does not compare the advantages and disadvantages of different conductivity models, nor does it consider the effects of model parameter change caused by individual differences and errors on the efficacy of PFA. This work is devoted to comparing two commonly used conductivity models (Heaviside model and Gompertz model), and quantifying the influence of model input uncertainty on model output and PFA ablation zone.In this work, we carry out uncertainty quantification and sensitivity analysis to quantify the influence of model parameter uncertainty on model output, clarify the parameter sensitivity distribution, and provide model selection criteria from the perspectives of model complexity, parameter sensitivity distribution, and model robustness. Combined with finite element simulation, the study quantifies the effects of uncertainty in the most sensitive parameters of the conductivity model and ablation threshold on the PFA ablation zone. The results show that different conductivity models exhibit different robustness under the same proportion of variation in parameters. The Heaviside model, which is determined by a single factor, has strong robustness. The uncertainty output of the Gompertz model is jointly determined by multiple sensitivity parameters, making it susceptible to various conditions. The ablation threshold and pre-treatment tissue conductivity are the two most sensitive parameters affecting the assessment of ablation depth. Changes in the ablation threshold result in a Gaussian distribution of ablation depth. The greater the change in pre-treatment tissue conductivity, the greater the change in ablation depth is, which, however, follows a nonlinear proportional relationship. This approach can improve the accuracy and reliability of PFA ablation prediction, and provide a visual and global way to show the influence of input uncertainties on model output and parameter sensitivity ranking, thus effectively improving the accuracy of model prediction, reducing computational costs, and optimizing the selection of candidate models. This strategy can be applied to a variety of mathematical physics and simulation models to enhance model credibility and simplify the models.
      通信作者: 石富坤, fukunshi@sibet.ac.cn
    • 基金项目: 苏州市基础研究试点项目(批准号: SJC2021025)、山东省自然科学基金(批准号: ZR2022QE168)和科技部重点研发计划(批准号: 2019YFC0119102)资助的课题.
      Corresponding author: Shi Fu-Kun, fukunshi@sibet.ac.cn
    • Funds: Project supported by the Basic Research Pilot Project of Suzhou, China (Grant No. SJC2021025), the Natural Science Foundation of Shandong Province, China, (Grant No. ZR2022QE168), and the National Key R&D Program of China (Grant No. 2019YFC0119102).
    [1]

    Ivorra A, Al-Sakere B, Rubinsky B, Mir L M 2009 Phys. Med. Biol. 54 5949Google Scholar

    [2]

    Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir L M, Miklavcic D 2005 IEEE T. Bio-Med. Eng. 52 816Google Scholar

    [3]

    Garcia P A, Rossmeisl J H, Davalos R V 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Guadalajara, Mexico, 30 Auguest–3 September, 2011 pp739–742

    [4]

    Perera-Bel E, Aycock K N, Salameh Z S, Gómez-Barea M, Davalos R V, Ivorra A, Ballester M A G 2022 IEEE T. Bio-Med. Eng. 70 1902

    [5]

    Neal R E, Garcia P A, Robertson J L, Davalos R V 2012 IEEE T. Bio-Med. Eng. 59 1076Google Scholar

    [6]

    Zhao Y, Bhonsle S, Dong S, Lyu Y, Liu H, Safaai-Jazi A, Davalos R V, Yao C 2018 IEEE T. Bio-Med. Eng. 65 1810Google Scholar

    [7]

    Shi F, Steuer A, Zhuang J, Kolb J F 2019 IEEE T. Bio-Med. Eng. 66 2010Google Scholar

    [8]

    郭雨怡, 石富坤, 王群, 季振宇, 庄杰 2022 物理学报 71 068701Google Scholar

    Guo Y Y, Shi F K, Wang Q, Ji Z Y, Zhuang J 2022 Acta Phys. Sin. 71 068701Google Scholar

    [9]

    Shi F, Kolb J F 2020 Biosens. Bioelectron. 157 112149Google Scholar

    [10]

    Bounik R, Cardes F, Ulusan H, Modena M M, Hierlemann A 2022 BMEF 2022 9857485

    [11]

    Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D 2013 BioMed. Eng. OnLine 12 16Google Scholar

    [12]

    Zhao Y J, Davalos R V 2020 Appl. Phys. Lett. 117 143702Google Scholar

    [13]

    姚陈果, 郑爽, 赵亚军, 刘红梅, 王艺麟, 董守龙 2020 高电压技术 46 1830

    Yao C G, Zhen S, Zhao Y Z, Liu H M, Wang Y L, Dong S L 2020 High Voltage Engineering 46 1830 (in Chinese)

    [14]

    Smith R C 2013 Uncertainty Quantification: Theory, Implementation, and Applications (Vol. 12) (Siam)

    [15]

    Lai X, Wang S, Ma S, Xie J, Zheng Y 2020 Electrochimica Acta 330 135239Google Scholar

    [16]

    Vazquez-Arenas J, Gimenez L E, Fowler M, Han T, Chen S K 2014 Energ. Convers. Manage. 87 472Google Scholar

    [17]

    Edouard C, Petit M, Forgez C, Bernard J, Revel R 2016 JOPS 325 482

    [18]

    Ye X, Liu S, Yin H, He Q, Xue Z, Lu C, Su S 2021 Front. Cardiovasc. Med. 8

    [19]

    张家明 陈志坚 2022 临床心血管病杂志 38 851

    Zhang J M, Chen Z J 2022 J Clin. Cardiol. 38 851

    [20]

    O’Brien T J, Lorenzo M F, Zhao Y, Neal Ii R E, Robertson J L, Goldberg S N, Davalos R V 2019 Int. J. Hyperther. 36 952Google Scholar

    [21]

    Lemieux C 2009 Monte Carlo and Quasi-Monte Carlo Sampling (Springer, New York, NY)

    [22]

    Haemmerich D, Schutt D J, Wright A S, Webster J G, Mahvi D M 2009 Physiol. Meas. 30 459Google Scholar

    [23]

    Sobol′ I M 2001 Math. Comput. Simulat. 55 271Google Scholar

    [24]

    Oliveira J F, Jorge D C P, Veiga R V, Rodrigues M S, Torquato M F, da Silva N B, Fiaccone R L, Cardim L L, Pereira F A C, de Castro C P, Paiva A S S, Amad A A S, Lima E A B F, Souza D S, Pinho S T R, Ramos P I P, Andrade R F S 2021 Nat. Commun. 12 333Google Scholar

    [25]

    Kaminska I, Kotulska M, Stecka A, Saczko J, Drag-Zalesinska M, Wysocka T, Choromanska A, Skolucka N, Nowicki R, Marczak J, Kulbacka J 2012 Gen. Physiol. Biophys. 31 19Google Scholar

    [26]

    Reddy V Y, Koruth J, Jais P, Petru J, Timko F, Skalsky I, Hebeler R, Labrousse L, Barandon L, Kralovec S, Funosako M, Mannuva B B, Sediva L, Neuzil P 2018 JACC: Clin. Electrophy. 4 987Google Scholar

    [27]

    Belalcazar A 2021 Heart Rhythm 2 560Google Scholar

    [28]

    Kos B, Zupanic A, Kotnik T, Snoj M, Sersa G, Miklavcic D 2010 J. Membrane Biol. 236 147Google Scholar

    [29]

    Shi F, Zhuang J, Kolb J F 2019 J. Phys. D 52 495401Google Scholar

    [30]

    Perera-Bel E, Mercadal B, Garcia-Sanchez T, Ballester M A G, Ivorra A 2021 IEEE T. Bio-Med. Eng. 68 1318

  • 图 1  1/6三维PVI脉冲电场消融模型

    Fig. 1.  One-sixth three-dimensional PVI pulsed electric field ablation model.

    图 2  H模型和G模型的电导率输出的平均值、标准差和90%预测空间

    Fig. 2.  Mean value, standard deviation, and 90% prediction space of conductivity output of H and G models.

    图 3  H模型 和 G 模型的各参数一阶Sobol敏感度指数和平均Sobol指数

    Fig. 3.  First order Sobol sensitivity index and average Sobol index of each parameter of the H and G models.

    图 4  三维PVI消融模型的电场分布

    Fig. 4.  Electric field distribution of three-dimensional PVI ablation model.

    图 5  改变σ0, 不确定度分别为10% ((a), (c))和20% ((b), (d))时, 消融深度的统计结果

    Fig. 5.  The statistical results of the ablation depth by changing σ0 with uncertainty of 10% ((a), (c)) and 20%((b), (d)).

    图 6  消融阈值的均匀分布导致消融深度呈高斯分布

    Fig. 6.  The uniform distribution of the ablation threshold results in a Gaussian distribution of the ablation depth.

    图 7  用于多模型评估的UQ和SA示意图

    Fig. 7.  Schematic diagram for UQ and SA for multi-model evaluation.

    表 1  不同模型的参数

    Table 1.  Parameters for different models

    参数模型
    Heaviside Gompertz
    σ0/(S·m–1) 0.23 0.23
    α 0.02 0.02
    T0/℃ 37 37
    T/℃ 40 40
    E0/(V·cm–1) 850
    E1/(V·cm–1 1550
    W 0.90
    σm/(S·m–1) 0.44
    Ei/(V·cm–1 870
    Em/(V·cm–1) 1038
    D 18
    下载: 导出CSV
  • [1]

    Ivorra A, Al-Sakere B, Rubinsky B, Mir L M 2009 Phys. Med. Biol. 54 5949Google Scholar

    [2]

    Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir L M, Miklavcic D 2005 IEEE T. Bio-Med. Eng. 52 816Google Scholar

    [3]

    Garcia P A, Rossmeisl J H, Davalos R V 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Guadalajara, Mexico, 30 Auguest–3 September, 2011 pp739–742

    [4]

    Perera-Bel E, Aycock K N, Salameh Z S, Gómez-Barea M, Davalos R V, Ivorra A, Ballester M A G 2022 IEEE T. Bio-Med. Eng. 70 1902

    [5]

    Neal R E, Garcia P A, Robertson J L, Davalos R V 2012 IEEE T. Bio-Med. Eng. 59 1076Google Scholar

    [6]

    Zhao Y, Bhonsle S, Dong S, Lyu Y, Liu H, Safaai-Jazi A, Davalos R V, Yao C 2018 IEEE T. Bio-Med. Eng. 65 1810Google Scholar

    [7]

    Shi F, Steuer A, Zhuang J, Kolb J F 2019 IEEE T. Bio-Med. Eng. 66 2010Google Scholar

    [8]

    郭雨怡, 石富坤, 王群, 季振宇, 庄杰 2022 物理学报 71 068701Google Scholar

    Guo Y Y, Shi F K, Wang Q, Ji Z Y, Zhuang J 2022 Acta Phys. Sin. 71 068701Google Scholar

    [9]

    Shi F, Kolb J F 2020 Biosens. Bioelectron. 157 112149Google Scholar

    [10]

    Bounik R, Cardes F, Ulusan H, Modena M M, Hierlemann A 2022 BMEF 2022 9857485

    [11]

    Corovic S, Lackovic I, Sustaric P, Sustar T, Rodic T, Miklavcic D 2013 BioMed. Eng. OnLine 12 16Google Scholar

    [12]

    Zhao Y J, Davalos R V 2020 Appl. Phys. Lett. 117 143702Google Scholar

    [13]

    姚陈果, 郑爽, 赵亚军, 刘红梅, 王艺麟, 董守龙 2020 高电压技术 46 1830

    Yao C G, Zhen S, Zhao Y Z, Liu H M, Wang Y L, Dong S L 2020 High Voltage Engineering 46 1830 (in Chinese)

    [14]

    Smith R C 2013 Uncertainty Quantification: Theory, Implementation, and Applications (Vol. 12) (Siam)

    [15]

    Lai X, Wang S, Ma S, Xie J, Zheng Y 2020 Electrochimica Acta 330 135239Google Scholar

    [16]

    Vazquez-Arenas J, Gimenez L E, Fowler M, Han T, Chen S K 2014 Energ. Convers. Manage. 87 472Google Scholar

    [17]

    Edouard C, Petit M, Forgez C, Bernard J, Revel R 2016 JOPS 325 482

    [18]

    Ye X, Liu S, Yin H, He Q, Xue Z, Lu C, Su S 2021 Front. Cardiovasc. Med. 8

    [19]

    张家明 陈志坚 2022 临床心血管病杂志 38 851

    Zhang J M, Chen Z J 2022 J Clin. Cardiol. 38 851

    [20]

    O’Brien T J, Lorenzo M F, Zhao Y, Neal Ii R E, Robertson J L, Goldberg S N, Davalos R V 2019 Int. J. Hyperther. 36 952Google Scholar

    [21]

    Lemieux C 2009 Monte Carlo and Quasi-Monte Carlo Sampling (Springer, New York, NY)

    [22]

    Haemmerich D, Schutt D J, Wright A S, Webster J G, Mahvi D M 2009 Physiol. Meas. 30 459Google Scholar

    [23]

    Sobol′ I M 2001 Math. Comput. Simulat. 55 271Google Scholar

    [24]

    Oliveira J F, Jorge D C P, Veiga R V, Rodrigues M S, Torquato M F, da Silva N B, Fiaccone R L, Cardim L L, Pereira F A C, de Castro C P, Paiva A S S, Amad A A S, Lima E A B F, Souza D S, Pinho S T R, Ramos P I P, Andrade R F S 2021 Nat. Commun. 12 333Google Scholar

    [25]

    Kaminska I, Kotulska M, Stecka A, Saczko J, Drag-Zalesinska M, Wysocka T, Choromanska A, Skolucka N, Nowicki R, Marczak J, Kulbacka J 2012 Gen. Physiol. Biophys. 31 19Google Scholar

    [26]

    Reddy V Y, Koruth J, Jais P, Petru J, Timko F, Skalsky I, Hebeler R, Labrousse L, Barandon L, Kralovec S, Funosako M, Mannuva B B, Sediva L, Neuzil P 2018 JACC: Clin. Electrophy. 4 987Google Scholar

    [27]

    Belalcazar A 2021 Heart Rhythm 2 560Google Scholar

    [28]

    Kos B, Zupanic A, Kotnik T, Snoj M, Sersa G, Miklavcic D 2010 J. Membrane Biol. 236 147Google Scholar

    [29]

    Shi F, Zhuang J, Kolb J F 2019 J. Phys. D 52 495401Google Scholar

    [30]

    Perera-Bel E, Mercadal B, Garcia-Sanchez T, Ballester M A G, Ivorra A 2021 IEEE T. Bio-Med. Eng. 68 1318

  • [1] 郭雨怡, 石富坤, 王群, 季振宇, 庄杰. 高压纳秒脉冲电场的细胞器生物电效应综述. 物理学报, 2022, 71(6): 068701. doi: 10.7498/aps.71.20211850
    [2] 高当丽, 李蓝星, 冯小娟, 种波, 辛红, 赵瑾, 张翔宇. Yb浓度对功率依赖的上转换荧光色彩的敏感度调控. 物理学报, 2018, 67(22): 223201. doi: 10.7498/aps.67.20181167
    [3] 梁霄, 王瑞利. 爆轰流体力学模型敏感度分析与模型确认. 物理学报, 2017, 66(11): 116401. doi: 10.7498/aps.66.116401
    [4] 宋建军, 包文涛, 张静, 唐昭焕, 谭开洲, 崔伟, 胡辉勇, 张鹤鸣. (100)Si基应变p型金属氧化物半导体[110]晶向电导率有效质量双椭球模型. 物理学报, 2016, 65(1): 018501. doi: 10.7498/aps.65.018501
    [5] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [6] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律. 物理学报, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [7] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [8] 高韶华, 王玉霞, 王宏伟, 袁帅. KAg4I5-AgI复合体系的电导率研究. 物理学报, 2011, 60(8): 086601. doi: 10.7498/aps.60.086601
    [9] 罗 涛, 朱 伟, 石勤伟, 王晓平. 准粒子谱函数对单层石墨片最小电导率的影响. 物理学报, 2008, 57(6): 3775-3779. doi: 10.7498/aps.57.3775
    [10] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [11] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [12] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [13] 邱圣德, 胡承正, 王爱军, 周 详. 十次对称准晶的光电导率. 物理学报, 2006, 55(2): 743-747. doi: 10.7498/aps.55.743
    [14] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演. 物理学报, 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [15] 郭洪霞, 麦振洪. 电导率对电流变效应的影响. 物理学报, 1996, 45(1): 65-72. doi: 10.7498/aps.45.65
    [16] 蒋祺, 龚昌德. 无序层状系统电导率的自洽研究. 物理学报, 1989, 38(4): 593-599. doi: 10.7498/aps.38.593
    [17] 蒋祺, 龚昌德. 无序层状系统的电导率. 物理学报, 1988, 37(6): 941-949. doi: 10.7498/aps.37.941
    [18] 陈立泉, 柳俊, 王超英, 何元康, 陈竹生, 刘永平. 影响聚合物离子导体电导率的一些因素. 物理学报, 1987, 36(1): 60-66. doi: 10.7498/aps.36.60
    [19] 张昭庆. 液态金属及非晶态中的电导率——相干势近似. 物理学报, 1982, 31(3): 294-310. doi: 10.7498/aps.31.294
    [20] 严诚. 厚度、中温热处理和电场对a-Si:H的电导率激活能及其转折点的影响. 物理学报, 1982, 31(12): 62-74. doi: 10.7498/aps.31.62
计量
  • 文章访问数:  3564
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-15
  • 修回日期:  2023-04-03
  • 上网日期:  2023-05-16
  • 刊出日期:  2023-07-20

/

返回文章
返回