搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双三角形相位光栅X射线干涉仪的条纹可见度

陈子涵 宋梦齐 陈恒 王志立

引用本文:
Citation:

双三角形相位光栅X射线干涉仪的条纹可见度

陈子涵, 宋梦齐, 陈恒, 王志立

Fringe visibility in X-ray interferometer using dual triangular phase gratings

Chen Zi-Han, Song Meng-Qi, Chen Heng, Wang Zhi-Li
PDF
HTML
导出引用
  • X射线光栅干涉仪成像需要高条纹可见度以获得高信噪比图像. 最近的报道证实, X射线双矩形相位光栅干涉仪实验测量的条纹可见度较低. 为此, 提出了基于双三角形相位光栅X射线干涉仪的条纹可见度研究. 利用X射线双相位光栅干涉仪的强度变化规律, 对比研究了单色照明和不同多色照明下, 双三角形相位光栅X射线干涉仪与双矩形相位光栅干涉仪的条纹可见度随光栅间距的变化规律. 结果表明: 无论是单色照明还是多色照明, 双三角形相位光栅X射线干涉仪的条纹可见度的峰值随相移量的增加而增大. 当相移量为5π/2时, 双三角形相位光栅X射线干涉仪的条纹可见度在单色照明下比双矩形相位光栅干涉仪的条纹可见度提高约21%, 在多色照明下提高至少23%. 而在多色照明下, 随着X射线平均能量偏离光栅设计能量的增加或光源焦点尺寸的增加, 双相位光栅干涉仪条纹可见度的峰值均会单调下降. 这些结果可作为X射线双相位光栅干涉仪的参数设计和性能优化的理论指导.
    In recent years, the X-ray interferometer using dual phase gratings has been extensively studied. The large periodic fringes produced by the X-ray interferometer using dual phase gratings can be directly detected by ordinary detectors. At the same time, the X-ray interferometer using dual phase gratings can reduce the radiation dose of the sample without using absorption gratings. Meanwhile, a high fringe visibility is always preferred to achieve a high signal-to-noise ratio for X-ray grating interferometry. However, recent studies have reported that experimental fringe visibility in X-ray interferometer using dual rectangular phase gratings is relatively low. Therefore, it is necessary to further increase the fringe visibility in X-ray interferometry using dual phase gratings. This work focuses on the analysis of fringe visibility in X-ray interferometer using dual triangular phase gratings. Based on the fringe intensity distribution formula of X-ray dual phase grating interferometer, the fringe visibility of the dual triangular phase grating interferometer is investigated as a function of the grating spacing under monochromatic and polychromatic illumination, respectively. For comparison, the fringe visibility of the dual rectangular phase grating interferometer is also studied under the same condition. The results show that the maximum fringe visibility of the dual triangular phase grating interferometer increases with the phase shift increasing regardless of monochromatic or polychromatic illumination. Under monochromatic illumination, the maximum fringe visibility of dual 5π/2 triangular phase gratings is about 21% higher than that of dual rectangular phase gratings. Under polychromatic illumination, the fringe visibility of dual 5π/2 triangular phase gratings is at least 23% higher than that of dual rectangular phase gratings. Under polychromatic illumination, the greater the deviation of X-ray average energy from the grating design energy, the greater the decrease of maximum fringe visibility of the dual phase grating interferometer is. In addition, with the increase of the focal size of X-ray source, the maximum fringe visibility of the dual phase grating interferometer decreases, under polychromatic illumination. We hope that those results can be used as guidelines for designing and optimizing X-ray interferometer using dual triangular phase gratings.
      通信作者: 王志立, dywangzl@hfut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11475170, U1532113, 11905041)、中央高校基本科研业务费(批准号: JZ2022HGTB0244)和安徽省自然科学基金(批准号: 2208085MA18)资助的课题.
      Corresponding author: Wang Zhi-Li, dywangzl@hfut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475170, U1532113, 11905041), the Fundamental Research Fund for the Central Universities, China (Grant No. JZ2022HGTB0244), and the Natural Science Foundation of Anhui Province, China (Grant No. 2208085MA18).
    [1]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar

    [2]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grünzweig C, David C 2008 Nat. Mater. 7 134Google Scholar

    [3]

    Kai S, Lorenz B, Konstantin W, Michael C, Julia H, Pfeiffer F 2016 Nat. Commun. 7 10863Google Scholar

    [4]

    Yan A, Wu X, Liu H 2016 Opt. Express 24 15927Google Scholar

    [5]

    Wang Z L, Shi X M, Ren K, Chen H, Ren Y Q, Gao K, Wu Z 2020 J. Synchrotron Radiat. 27 494Google Scholar

    [6]

    Vila-Comamala J, Romano L, Jefimovs K, Dejea H, Bonnin A, Cook A C, Planinc I, Cikes M, Wang Z, Stampanoni M 2021 Opt. Express 29 2049Google Scholar

    [7]

    Shi Z, Jefimovs K, Romano L, Vila-Comamala J, Stampanoni M 2021 Opt. Lett. 46 3693Google Scholar

    [8]

    Xu J Q, Wang Z T, Stefano V G, Michał R, Simon S, Stampanoni M 2022 Opt. Express 30 13847Google Scholar

    [9]

    Seifert M, Ludwig V, Kaeppler S, Horn F, Meyer P, Pelzer G, Rieger J, Sand D, Michel T, Mohr J, Riess C, Anton G 2019 Sci. Rep. 9 4199Google Scholar

    [10]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 物理学报 66 054202Google Scholar

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202Google Scholar

    [11]

    Wang Z L, Chen Z H, Gu Y, Chen H, Ge X 2023 Chin. Phys. B 32 038704Google Scholar

    [12]

    Wang Z L, Zhou R C, Zhao L M, Ren K, Xu W, Liu B, Chen H 2021 Chin. Phys. B 30 028702Google Scholar

    [13]

    杨君, 吴浩, 罗琨皓, 郭金川, 宗方轲 2021 物理学报 70 104101Google Scholar

    Yang J, Wu H, Luo K H, Guo J C, Zong F K 2021 Acta Phys. Sin. 70 104101Google Scholar

    [14]

    Katharina H, Felix G, Thomas M, Konstantin W, Andre Y, Astrid Velroyen, Margarita B, Sigrid A, Maximilian F, Oliver E, Pfeiffer F, Yildirim A Ö 2018 Sci. Rep. 8 2096Google Scholar

    [15]

    Lorenzo M, Tamara S, Charlotte K, Marco E, Peter R, Glafkos H, Sam H, Bennie S, Alberto A, Oliver J 2021 Sci. Rep. 11 3663Google Scholar

    [16]

    Kagias M, Wang Z, Birkbak M E, Lauridsen E, Abis M, Lovric G, Jefimovs K, Stampanoni M 2019 Nat. Commun. 10 5130Google Scholar

    [17]

    Kim J, Kagias M, Marone F, Stampanoni M 2020 Appl. Phys. Lett. 116 134102Google Scholar

    [18]

    Momose A, Takano H, Wu Y, Hashimoto K, Samoto T, Hoshino M, Seki Y, Shinohara T 2020 Quantum Beam Sci. 4 9Google Scholar

    [19]

    Yan A, Wu X, Liu H 2018 Opt. Express 26 23142Google Scholar

    [20]

    Yan A, Wu X, Liu H 2020 J. X-Ray Sci. Technol. 28 1055Google Scholar

    [21]

    Ge Y S, Chen J W, Yang J C, Zhu P P, Zhang H T, Zhang A Z, Liang D 2021 Opt. Lett. 46 2791Google Scholar

    [22]

    Organista C, Kagias M, Tang R, Shi Z, Jefimovs K, Boone M, Stampanoni M 2023 Opt. Continuum 2 232Google Scholar

    [23]

    Tang R, Organista C, Goethals W, Stolp W, Stampanoni M, Aelterman J, Boone M N 2023 Opt. Express 31 1677Google Scholar

    [24]

    Kagias M, Wang Z, Jefimovs K, Stampanoni M 2017 Appl. Phys. Lett. 110 014105Google Scholar

    [25]

    Miao H, Panna A, Gomella A A, Bennett E E, Znati S, Chen L, Wen H 2016 Nat. Phys. 12 830Google Scholar

    [26]

    Thomas W, Peter B, Florian B, Jürgen D, Wilhelm H 2011 Med. Phys. 38 4133Google Scholar

    [27]

    Lei Y H, Liu X, Huang J H, Du Y, Guo J C, Zhao Z G, Li J 2018 J. Phys. D:Appl. Phys. 51 385302Google Scholar

    [28]

    Ge Y S, Chen J W, Zhu P P, Yang J, Deng S W, Shi W, Zhang K, Guo J C, Zhang H T, Zheng H R, Liang D 2020 Opt. Express 28 9786Google Scholar

    [29]

    Yaroshenko A, Bech M, Potdevin G, Malecki A, Biernath T, Wolf J, Tapfer A, Schüttler M, Meiser J, Kunka D, Amberger M, Mohr J, Pfeiffer F 2014 Opt. Express 22 547Google Scholar

    [30]

    Viermetz M, Gustschin N, Schmid C, Haeusele J, Noel P B, Proksa R, Loscher S, Koehler T, Pfeiffer F 2023 IEEE Trans. Med. Imaging. 42 220Google Scholar

    [31]

    Munro P, Ignatyev K, Speller R D, Olivo A 2010 Opt. Express 18 19681Google Scholar

    [32]

    Viermetz M, Gustschin N, Schmid C, Jakob H, Maximilian T, Pascal M, Frank B, Tobias L, Roland P, Thomas K, Franz P 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2118799119Google Scholar

    [33]

    Günther B, Hehn L, Jud C, Alexander H, Martin D, Pfeiffer F 2019 Nat. Commun. 10 2494Google Scholar

    [34]

    Shashev Y, Andreas K, Lange A, Müller, Bernd R, Giovanni B 2016 Mater. Test. 58 970Google Scholar

  • 图 1  双三角形相位光栅X射线干涉仪示意图

    Fig. 1.  Schematic diagram of X-ray interferometer using dual triangular phase gratings.

    图 2  条纹可见度随光栅间距和光栅相移量的变化 (a) 单色照明, 光源焦点尺寸9.5 μm; (b) 单色照明, 光源焦点尺寸40 μm; (c) 多色照明, 光源焦点尺寸9.5 μm; (d) 多色照明, 光源焦点尺寸40 μm

    Fig. 2.  Fringe visibility as a function of grating spacing and grating phase shift: (a) Monochromatic illumination with a source size of 9.5 μm; (b) monochromatic illumination with a source size of 40 μm; (c) polychromatic illumination with a source size of 9.5 μm; (d) polychromatic illumination with a source size of 40 μm.

    图 3  单色照明下条纹可见度随光栅间距的变化

    Fig. 3.  Fringe visibility as a function of grating spacing under monochromatic illumination.

    图 4  多色照明下条纹可见度随光栅间距的变化

    Fig. 4.  Fringe visibility as a function of grating spacing under polychromatic illumination.

    图 5  条纹可见度随光栅间距的变化, 其中光源焦点尺寸为7 μm (a) 峰值电压为55 kV; (b) 峰值电压为75 kV; (c) 峰值电压为95 kV

    Fig. 5.  Fringe visibility as a function of grating spacing with a source size of 7 μm: (a) Peak voltage of 55 kV; (b) peak voltage of 75 kV; (c) peak voltage of 95 kV.

    图 6  条纹可见度随光栅间距的变化, 其中峰值电压为55 kV (a) 光源焦点尺寸为7 μm; (b) 光源焦点尺寸为25 μm; (c) 光源焦点尺寸为40 μm

    Fig. 6.  Fringe visibility as a function of grating spacing with peak voltage of 55 kV: (a) Source size of 7 μm; (b) source size of 25 μm; (c) source size of 40 μm.

    表 1  单色照明下, 条纹可见度峰值、对应的光栅间距和条纹可见度曲线的FWHM

    Table 1.  Visibility peak, corresponding grating spacing and FWHM of visibility curve under monochromatic illumination.

    参数双三角形相位光栅双矩形相位光栅
    π/2π3π/25π/2 π/2π
    $ {V_{\text{p}}} $0.250.480.640.680.740.340.61
    s/mm9.86.6.4.83.73.010.83.7
    W/mm12.19.15.84.93.412.03.8
    下载: 导出CSV

    表 2  多色照明下, 条纹可见度峰值、对应的光栅间距和条纹可见度曲线的FWHM

    Table 2.  Visibility peak, corresponding grating spacing, and FWHM of visibility curve under polychromatic illumination.

    参数双三角形相位光栅双矩形相位光栅
    π/2π3π/25π/2 π/2π
    $ {V_{\text{p}}} $0.250.410.560.580.630.300.51
    s/mm9.16.54.53.62.810.93.5
    W/mm12.310.46.85.54.215.04.0
    下载: 导出CSV

    表 3  光源焦点尺寸为7 μm, 峰值电压分别为55, 75和95 kV时, 条纹可见度峰值、对应的光栅间距和条纹可见度曲线的FWHM

    Table 3.  Visibility peak, corresponding grating spacing and FWHM of visibility curve with source size of 7 μm and peak voltage of 55, 75, and 95 kV, respectively.

    光源峰值电压/kV参数双三角形相位光栅双矩形相位光栅
    π/2π3π/25π/2 π/2π
    55$ {V_{\text{p}}} $0.200.320.370.410.420.220.28
    s/mm67.937.335.626.719.525.737.3
    W/mm117.396.381.569.367.644.852.9
    75$ {V_{\text{p}}} $0.140.270.310.340.370.160.25
    s/mm71.040.138.929.427.526.737.4
    W/mm116.7105.796.685.879.951.853.6
    95$ {V_{\text{p}}} $0.110.200.260.290.320.130.22
    s/mm76.541.445.443.632.126.738.8
    W/mm116.7111.3104.198.392.155.354.1
    下载: 导出CSV

    表 4  峰值电压分别为55 kV, 光源焦点尺寸为7, 25和40 μm时, 条纹可见度峰值、对应的光栅间距和条纹可见度曲线的FWHM

    Table 4.  Visibility peak, corresponding grating spacing and FWHM of visibility curve with peak voltage of 55 kV and source size of 7, 25, and 40 μm, respectively.

    光源焦点尺/µm参数双三角形相位光栅双矩形相位光栅
    π/2π3π/25π/2 π/2π
    7$ {V_{\text{p}}} $0.200.320.370.410.420.220.28
    s/mm67.937.335.626.719.525.737.3
    W/mm117.396.381.569.367.644.852.9
    25$ {V_{\text{p}}} $0.140.250.310.340.380.170.17
    s/mm48.635.028.324.921.621.528.3
    W/mm75.866.261.357.554.534.343.3
    40$ {V_{\text{p}}} $0.100.190.260.310.340.120.11
    s/mm36.229.224.121.119.317.921.1
    W/mm52.549.146.344.142.327.925.4
    下载: 导出CSV
  • [1]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar

    [2]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grünzweig C, David C 2008 Nat. Mater. 7 134Google Scholar

    [3]

    Kai S, Lorenz B, Konstantin W, Michael C, Julia H, Pfeiffer F 2016 Nat. Commun. 7 10863Google Scholar

    [4]

    Yan A, Wu X, Liu H 2016 Opt. Express 24 15927Google Scholar

    [5]

    Wang Z L, Shi X M, Ren K, Chen H, Ren Y Q, Gao K, Wu Z 2020 J. Synchrotron Radiat. 27 494Google Scholar

    [6]

    Vila-Comamala J, Romano L, Jefimovs K, Dejea H, Bonnin A, Cook A C, Planinc I, Cikes M, Wang Z, Stampanoni M 2021 Opt. Express 29 2049Google Scholar

    [7]

    Shi Z, Jefimovs K, Romano L, Vila-Comamala J, Stampanoni M 2021 Opt. Lett. 46 3693Google Scholar

    [8]

    Xu J Q, Wang Z T, Stefano V G, Michał R, Simon S, Stampanoni M 2022 Opt. Express 30 13847Google Scholar

    [9]

    Seifert M, Ludwig V, Kaeppler S, Horn F, Meyer P, Pelzer G, Rieger J, Sand D, Michel T, Mohr J, Riess C, Anton G 2019 Sci. Rep. 9 4199Google Scholar

    [10]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 物理学报 66 054202Google Scholar

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202Google Scholar

    [11]

    Wang Z L, Chen Z H, Gu Y, Chen H, Ge X 2023 Chin. Phys. B 32 038704Google Scholar

    [12]

    Wang Z L, Zhou R C, Zhao L M, Ren K, Xu W, Liu B, Chen H 2021 Chin. Phys. B 30 028702Google Scholar

    [13]

    杨君, 吴浩, 罗琨皓, 郭金川, 宗方轲 2021 物理学报 70 104101Google Scholar

    Yang J, Wu H, Luo K H, Guo J C, Zong F K 2021 Acta Phys. Sin. 70 104101Google Scholar

    [14]

    Katharina H, Felix G, Thomas M, Konstantin W, Andre Y, Astrid Velroyen, Margarita B, Sigrid A, Maximilian F, Oliver E, Pfeiffer F, Yildirim A Ö 2018 Sci. Rep. 8 2096Google Scholar

    [15]

    Lorenzo M, Tamara S, Charlotte K, Marco E, Peter R, Glafkos H, Sam H, Bennie S, Alberto A, Oliver J 2021 Sci. Rep. 11 3663Google Scholar

    [16]

    Kagias M, Wang Z, Birkbak M E, Lauridsen E, Abis M, Lovric G, Jefimovs K, Stampanoni M 2019 Nat. Commun. 10 5130Google Scholar

    [17]

    Kim J, Kagias M, Marone F, Stampanoni M 2020 Appl. Phys. Lett. 116 134102Google Scholar

    [18]

    Momose A, Takano H, Wu Y, Hashimoto K, Samoto T, Hoshino M, Seki Y, Shinohara T 2020 Quantum Beam Sci. 4 9Google Scholar

    [19]

    Yan A, Wu X, Liu H 2018 Opt. Express 26 23142Google Scholar

    [20]

    Yan A, Wu X, Liu H 2020 J. X-Ray Sci. Technol. 28 1055Google Scholar

    [21]

    Ge Y S, Chen J W, Yang J C, Zhu P P, Zhang H T, Zhang A Z, Liang D 2021 Opt. Lett. 46 2791Google Scholar

    [22]

    Organista C, Kagias M, Tang R, Shi Z, Jefimovs K, Boone M, Stampanoni M 2023 Opt. Continuum 2 232Google Scholar

    [23]

    Tang R, Organista C, Goethals W, Stolp W, Stampanoni M, Aelterman J, Boone M N 2023 Opt. Express 31 1677Google Scholar

    [24]

    Kagias M, Wang Z, Jefimovs K, Stampanoni M 2017 Appl. Phys. Lett. 110 014105Google Scholar

    [25]

    Miao H, Panna A, Gomella A A, Bennett E E, Znati S, Chen L, Wen H 2016 Nat. Phys. 12 830Google Scholar

    [26]

    Thomas W, Peter B, Florian B, Jürgen D, Wilhelm H 2011 Med. Phys. 38 4133Google Scholar

    [27]

    Lei Y H, Liu X, Huang J H, Du Y, Guo J C, Zhao Z G, Li J 2018 J. Phys. D:Appl. Phys. 51 385302Google Scholar

    [28]

    Ge Y S, Chen J W, Zhu P P, Yang J, Deng S W, Shi W, Zhang K, Guo J C, Zhang H T, Zheng H R, Liang D 2020 Opt. Express 28 9786Google Scholar

    [29]

    Yaroshenko A, Bech M, Potdevin G, Malecki A, Biernath T, Wolf J, Tapfer A, Schüttler M, Meiser J, Kunka D, Amberger M, Mohr J, Pfeiffer F 2014 Opt. Express 22 547Google Scholar

    [30]

    Viermetz M, Gustschin N, Schmid C, Haeusele J, Noel P B, Proksa R, Loscher S, Koehler T, Pfeiffer F 2023 IEEE Trans. Med. Imaging. 42 220Google Scholar

    [31]

    Munro P, Ignatyev K, Speller R D, Olivo A 2010 Opt. Express 18 19681Google Scholar

    [32]

    Viermetz M, Gustschin N, Schmid C, Jakob H, Maximilian T, Pascal M, Frank B, Tobias L, Roland P, Thomas K, Franz P 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2118799119Google Scholar

    [33]

    Günther B, Hehn L, Jud C, Alexander H, Martin D, Pfeiffer F 2019 Nat. Commun. 10 2494Google Scholar

    [34]

    Shashev Y, Andreas K, Lange A, Müller, Bernd R, Giovanni B 2016 Mater. Test. 58 970Google Scholar

  • [1] 廖可梁, 何其利, 宋杨, 李荣刚, 宋茂华, 李盼云, 赵海峰, 刘鹏, 朱佩平. 基于实验室光源的透射X射线纳米分辨显微镜研制. 物理学报, 2024, 73(17): 178701. doi: 10.7498/aps.73.20240727
    [2] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪. 物理学报, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] 鞠晓璐, 李可, 余福成, 许明伟, 邓彪, 李宾, 肖体乔. 电解池电化学反应过程的运动衬度X射线成像. 物理学报, 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [4] 孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟, 刘学斌. 多普勒差分干涉仪干涉图信噪比对相位不确定度研究. 物理学报, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [5] 戚俊成, 刘宾, 陈荣昌, 夏正德, 肖体乔. X射线光场成像技术研究. 物理学报, 2019, 68(2): 024202. doi: 10.7498/aps.68.20181555
    [6] 李诗宇, 田剑锋, 杨晨, 左冠华, 张玉驰, 张天才. 探测器对量子增强马赫-曾德尔干涉仪相位测量灵敏度的影响. 物理学报, 2018, 67(23): 234202. doi: 10.7498/aps.67.20181193
    [7] 荣锋, 谢艳娜, 邰雪凤, 耿磊. 双能X射线光栅相衬成像的研究. 物理学报, 2017, 66(1): 018701. doi: 10.7498/aps.66.018701
    [8] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [9] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [10] 杜杨, 刘鑫, 雷耀虎, 黄建衡, 赵志刚, 林丹樱, 郭金川, 李冀, 牛憨笨. X射线光栅微分相衬成像视场分析. 物理学报, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [11] 谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽. Mach-Zehnder干涉仪条纹成像多普勒激光雷达风速反演及视场展宽技术. 物理学报, 2014, 63(22): 224205. doi: 10.7498/aps.63.224205
    [12] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [13] 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线光栅微分干涉相衬成像两步相移算法的理论与实验研究. 物理学报, 2013, 62(6): 068702. doi: 10.7498/aps.62.068702
    [14] 陈晓虎, 王晓方, 张巍巍, 汪文慧. 相位型波带板应用于大尺度X射线源成像的分析与模拟. 物理学报, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [15] 代海山, 张淳民, 穆廷魁. 宽场、消色差、温度补偿风成像干涉仪中次级条纹研究. 物理学报, 2012, 61(22): 224201. doi: 10.7498/aps.61.224201
    [16] 杨强, 刘鑫, 郭金川, 雷耀虎, 黄建衡, 牛憨笨. 无吸收光栅的X射线相位衬度成像实验研究. 物理学报, 2012, 61(16): 160702. doi: 10.7498/aps.61.160702
    [17] 李晶, 宁提纲, 裴丽, 周倩, 胡旭东, 祁春慧, 高嵩, 杨龙. 三角形谱啁啾光纤光栅的制备及其在光纤无线单边带调制系统中的应用. 物理学报, 2011, 60(5): 054203. doi: 10.7498/aps.60.054203
    [18] 王晓方, 王晶宇. 菲涅耳波带板应用于聚变靶的高分辨X射线成像分析. 物理学报, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [19] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [20] 舒学文, 黄德修, 邓桂华, 施 伟, 江 山. 基于单个光纤光栅的Sagnac干涉仪的理论与实验研究. 物理学报, 2000, 49(9): 1731-1735. doi: 10.7498/aps.49.1731
计量
  • 文章访问数:  2842
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-04-27
  • 上网日期:  2023-05-13
  • 刊出日期:  2023-07-20

/

返回文章
返回