Loading [MathJax]/jax/output/HTML-CSS/jax.js

搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铯31D5/2+6S1/2(F = 4)长程里德伯分子的光缔合光谱

白素英 韩小萱 郝丽萍 焦月春 赵建明

白素英, 韩小萱, 郝丽萍, 焦月春, 赵建明. 铯31D5/2+6S1/2(F = 4)长程里德伯分子的光缔合光谱. 物理学报, 2023, 72(14): 143201. doi: 10.7498/aps.72.20230520
引用本文: 白素英, 韩小萱, 郝丽萍, 焦月春, 赵建明. 铯31D5/2+6S1/2(F = 4)长程里德伯分子的光缔合光谱. 物理学报, 2023, 72(14): 143201. doi: 10.7498/aps.72.20230520
Bai Su-Ying, Han Xiao-Xuan, Hao Li-Ping, Jiao Yue-Chun, Zhao Jian-Ming. Photoassociation spectra of cesium 31D5/2+6S1/2(F = 4) ultralong-range Rydberg molecules. Acta Phys. Sin., 2023, 72(14): 143201. doi: 10.7498/aps.72.20230520
Citation: Bai Su-Ying, Han Xiao-Xuan, Hao Li-Ping, Jiao Yue-Chun, Zhao Jian-Ming. Photoassociation spectra of cesium 31D5/2+6S1/2(F = 4) ultralong-range Rydberg molecules. Acta Phys. Sin., 2023, 72(14): 143201. doi: 10.7498/aps.72.20230520

铯31D5/2+6S1/2(F = 4)长程里德伯分子的光缔合光谱

白素英, 韩小萱, 郝丽萍, 焦月春, 赵建明

Photoassociation spectra of cesium 31D5/2+6S1/2(F = 4) ultralong-range Rydberg molecules

Bai Su-Ying, Han Xiao-Xuan, Hao Li-Ping, Jiao Yue-Chun, Zhao Jian-Ming
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 长程里德伯分子由一个里德伯原子与一个或多个基态原子组成, 此类分子通过里德伯电子与基态原子间的低能电子散射相互作用束缚形成. 本文采用双光子光缔合的实验方案成功制备了由一个铯里德伯原子与一个铯基态原子形成的31D5/2+6S1/2(F = 4)双原子长程里德伯分子. 实验采集的光缔合光谱在原子共振线负失谐–162.8 MHz和–66.6 MHz处有两个明显的分子信号, 分别是由s-波纯三重态散射和s-波单重态-三重态混合散射形成. 使用Fermi赝势理论对实验结果进行模拟, 计算得到分子的绝热势能曲线, 并由分子哈密顿理论获得了v = 0分子振动基态波函数和束缚能. 理论计算与实验测量值符合得很好, 并由此得到s-波纯三重态和单重态零能散射长度为aTs(0)=19.16a0aSs(0)=1.92a0. 此类分子具有尺寸大、振动能级丰富和永久电偶极矩大等优良性质, 是研究低能碰撞极好的候选介质. 对此类分子的研究将进一步加深和丰富对长程里德伯分子特殊束缚机制和奇异性质的认识.
    In this paper, we conduct the experiment and simulation on 31D5/2+6S1/2(F = 4) Cs2 ultralong-range Rydberg molecules (ULRMs). These molecules are prepared by employing a two-photon photoassociation scheme. Two distinct ultralong-range Rydberg molecular signals are observed at the detuning –162.8 MHz and –66.6 MHz of 31D5/2 atomic resonant line, which are bound by the pure triplet potential and mixed singlet-triplet potential, respectively. We use the model of scattering interaction between the Rydberg electron and ground-state atom to perform the simulation. The molecular potential-energy curves are obtained by solving the Hamiltonian on a grid of intermolecular distances R. The calculations of the binding energy of pure triplet and mixed singlet-triplet v = 0 vibrational states are compared with the experimental measurements. The calculated and measured values of the binding energy are in good agreement. The s-wave pure triplet and singlet zero-energy scattering length are obtained to be aTs(0)=19.16a0 and aSs(0)=1.92a0, respectively. This kind of molecule with large size, abundant vibrational states and large permanent electric dipole moment is an excellent candidate for studying low-energy collision dynamics. The study of these molecules will further deepen and enrich the understanding of the special binding mechanism and exotic properties of the ULRMs.
      通信作者: 赵建明, zhaojm@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12204292, 12104337, 12120101004, 12241408)、山西省基础研究计划(批准号: 202203021212405, 202203021212018)和山西省高等学校科技创新计划(批准号: 2022L268, 2021L438)资助的课题.
      Corresponding author: Zhao Jian-Ming, zhaojm@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204292, 12104337, 12120101004, 12241408), the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 202203021212405, 202203021212018), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant Nos. 2022L268, 2021L438).

    当原子中的电子处于主量子数n很大的高激发态时, 其是一个弱束缚系统, 对周围环境极其敏感, 这类原子被称为里德伯原子. 1934年, Amaldi和Segrè[1]在气室中观察到一系列碱金属里德伯原子, 其依赖于外部气体压力产生的频移和展宽, Fermi[2]采用赝势理论解释了这种现象来源于里德伯原子的价电子与里德伯轨道内的基态原子间的弹性散射相互作用. Fermi赝势理论暗示了里德伯原子与基态原子间存在振荡的相互作用势[3,4], 这种势能可以束缚基态原子形成长程里德伯分子, 这一概念由Greene等[5]首次在理论上提出. 2009年, Bendkowsky等[6]首次在实验上观测到s-波散射的铷原子nS1/2(n = 34—40)态长程里德伯分子, 并对分子寿命及分子在电场作用下分子的Stark谱进行了测量. 之后, 有研究小组对铷原子nP1/2, 3/2[7]nD3/2, 5/2[8,9]态以及铯原子nS1/2[10,11]的长程里德伯分子进行了研究. 对实验数据的分析证实了Fermi赝势理论的有效性, 揭示了三重态p-波散射通道的贡献, 并且能够从数据中确定三重态s-波和p-波的散射长度, 从而证实了理论预测[12]. 由不同主量子数和角量子数的里德伯原子形成的里德伯分子的绝热势能曲线和特性不完全相同, 研究这些分子有助于进一步理解长程里德伯分子的特殊束缚机制和奇异特性.

    单重态s-波散射长度一般为正值或远小于三重态散射长度[13,14], 因此单重态通道的散射长度未包含在以上的实验数据分析中. 2014年, Anderson等[15]预测, 基态原子的超精细耦合可以有效地混合三重态和单重态散射通道并产生浅束缚势阱, 这是除了纯三重态散射产生的深束缚势阱外的另一个新势阱. 这一新奇理论被Saßmannshausen等[16]的实验所验证, 随后研究者们又在铷和铯的长程里德伯分子中观察到浅势阱所产生的分子信号[17,18].

    本文报道了在超冷铯原子样品中对31D5/2+6S1/2(F = 4)长程里德伯分子的实验观测和分析. 实验采集的光缔合光谱在原子共振线负失谐–162.8 MHz和–66.6 MHz处有两个明显的分子信号, 分别由s-波纯三重态势阱和s-波混合单重态-三重态势阱形成. 采用Fermi赝势理论模型计算了31D5/2+6S1/2(F = 4)长程里德伯分子的绝热势能曲线和分子振动能级, 并与实验测量值进行比较, 两者符合得很好. 与之前研究的铯原子主量子数n = 33D—39D态长程里德伯分子[18]相比, 31D5/2长程里德伯分子束缚键长减小, 形成分子的两个原子的平衡核间距变小, 实验制备时需要更大的原子密度; 同时, 主量子数n越小, 对应的分子束缚势阱越深, 结合能越大.

    长程里德伯分子的结合能低至兆赫兹量级, 为保证里德伯原子和基态原子的热运动能量小于分子结合能, 必须确保实验在低温高密度环境下进行, 同时这样的实验条件又保证了分子形成所需的另一必要条件—适当的核间距. 实验中, 俘获到磁光阱(magneto optical trap, MOT)中的铯基态原子被装载到交叉偶极阱(optical dipole trap, ODT)中, 如图1(c)所示. 使用吸收成像测得偶极阱中的原子密度约为4×1011 cm–3, 温度估算在100 μK量级. 在金属MOT中有3对电极板用于对周围环境杂散电场补偿, 尽可能消除杂散电场对里德伯原子分子的影响, 补偿后的原子周围杂散电场小于50 mV/cm, 产生的原子分子信号频移小于0.5 MHz, 满足本工作实验条件.

    图 1 (a)双光子光缔合激发示意图, 第1个852 nm的光子完成$|\text{6}{\text{S}}_{\text{1/2}},{F}\text{=4}\rangle\to |\text{6}{\text{P}}_{\text{3/2}},{{F}}'\text{=5}\rangle$ 的原子跃迁, 第2个510 nm光子将$|\text{6}{\text{P}}_{\text{3/2}}, {{F}}'\text{=5}\rangle$态的原子激发到$ |\text{31}{\text{D}}_{\text{5/2}}\rangle $态, 使用双通声光调制器(AOM)将852 nm激光频率从$|\text{6}{\text{P}}_{\text{3/2}}, {{F}}'\text{=5}\rangle$能级向蓝失谐方向频移360 MHz, 510 nm激光频率从31D5/2里德伯原子能级共振线向红失谐方向扫描, 当激光能量与分子能级匹配时就形成了长程里德伯分子; (b)时序图, MOT光和ODT光关断后, 打开852 nm和510 nm激发光来制备里德伯原子和长程里德伯分子, 随后施加斜坡电离电场使得里德伯原子和分子自电离产生的离子加速到达MCP进行收集探测; (c)实验制备长程里德伯分子示意图, 852 nm(红色光束)和510 nm(绿色光束)激发光反向传播通过装载于偶极阱(黄色光束)中的铯冷原子团中心, 并将基态原子激发形成里德伯原子和分子\r\nFig. 1. (a) Two-photon potoassociation excitation diagram, the first photon, 852 nm laser, drives the $|\text{6}{\text{S}}_{\text{1/2}}, \text{}{F}=4 \rangle\to  $$  |\text{6}{\text{P}}_{\text{3/2}}, \text{}{{F}}' =5\rangle$ transition, and the second photon, 510 nm laser, drives the $ |\text{6}{\text{P}}_{\text{3/2}}\text{, }{\text{}{F}}'\text{=5}\rangle\to |\text{31}{\text{D}}_{\text{5/2}}\rangle $ transition, the 852 nm laser frequency is blue shifted from $|\text{6}{\text{P}}_{\text{3/2}}, {{F}}'\text{=5}\rangle$ by 360 MHz using a double-pass acousto-optic modulator (AOM), the 510 nm laser frequency is scanned to red detuning from the 31D5/2 Rydberg atomic line, Rydberg molecules are formed when the detuning from the atomic line matches a molecular binding energy; (b) timing sequence, after switching off the MOT and ODT beams, the 852 nm and 510 nm lasers are used to excite ground state cesium atoms to form the Rydberg atoms and molecules, a ramped electric field is finally applied to accelerate the ions that are produced by autoionization to MCP for collection and detection; (c) experimental schematic of ultralong-range Rydberg molecules, the 852 nm (red beam) and 510 nm (green beam) lasers counterpropagate through a cold Cs atom cloud located in a crossed optical dipole trap (yellow beams) and excite ground state atoms to form Rydberg atoms and molecules.
    图 1  (a)双光子光缔合激发示意图, 第1个852 nm的光子完成|6S1/2,F=4|6P3/2,F=5 的原子跃迁, 第2个510 nm光子将|6P3/2,F=5态的原子激发到|31D5/2态, 使用双通声光调制器(AOM)将852 nm激光频率从|6P3/2,F=5能级向蓝失谐方向频移360 MHz, 510 nm激光频率从31D5/2里德伯原子能级共振线向红失谐方向扫描, 当激光能量与分子能级匹配时就形成了长程里德伯分子; (b)时序图, MOT光和ODT光关断后, 打开852 nm和510 nm激发光来制备里德伯原子和长程里德伯分子, 随后施加斜坡电离电场使得里德伯原子和分子自电离产生的离子加速到达MCP进行收集探测; (c)实验制备长程里德伯分子示意图, 852 nm(红色光束)和510 nm(绿色光束)激发光反向传播通过装载于偶极阱(黄色光束)中的铯冷原子团中心, 并将基态原子激发形成里德伯原子和分子
    Fig. 1.  (a) Two-photon potoassociation excitation diagram, the first photon, 852 nm laser, drives the |6S1/2,F=4|6P3/2,F=5 transition, and the second photon, 510 nm laser, drives the |6P3/2F=5|31D5/2 transition, the 852 nm laser frequency is blue shifted from |6P3/2,F=5 by 360 MHz using a double-pass acousto-optic modulator (AOM), the 510 nm laser frequency is scanned to red detuning from the 31D5/2 Rydberg atomic line, Rydberg molecules are formed when the detuning from the atomic line matches a molecular binding energy; (b) timing sequence, after switching off the MOT and ODT beams, the 852 nm and 510 nm lasers are used to excite ground state cesium atoms to form the Rydberg atoms and molecules, a ramped electric field is finally applied to accelerate the ions that are produced by autoionization to MCP for collection and detection; (c) experimental schematic of ultralong-range Rydberg molecules, the 852 nm (red beam) and 510 nm (green beam) lasers counterpropagate through a cold Cs atom cloud located in a crossed optical dipole trap (yellow beams) and excite ground state atoms to form Rydberg atoms and molecules.

    实验中使用双光子光缔合的实验方案制备长程里德伯分子. 第1步852 nm(Toptical DLpro)和第2步510 nm(由Toptical DLpro 1020 nm 激光倍频得到)激发光对向传播通过冷原子团中心, 激光腰斑分别为ω852=80 μmω510=40 μm. 852 nm激光通过偏振谱稳频技术将频率锁定到|6S1/2,F=4|6P3/2,F=5跃迁, 并使用双通声光调制器(AOM)使频率从|6P3/2F=5能级向蓝失谐方向频移360 MHz. 利用PDH稳频技术将1020 nm种子光通过光纤相位调制器(EOM)锁定到超稳腔(Fabry-Pérot cavity)上, 实现510 nm激光|6P3/2F=5|31D5/2的原子跃迁频率的锁定, 锁定后的激光线宽小于500 kHz. 通过扫描施加到EOM上的射频信号完成第2步510 nm激发光向31D5/2里德伯原子共振线红失谐方向的频率扫描, 当激光能量与分子能级匹配时就形成长程里德伯分子, 具体能级如图1(a)所示.

    为了观测铯原子31D5/2里德伯态光缔合光谱, 在MOT光和ODT光关断后, 打开852 nm和510 nm两束激发光并与基态原子作用4 μs, 随后打开斜坡脉冲电离电场使得里德伯原子和分子自电离产生的离子加速到达微通道板(MCP)进行收集探测, 时序如图1(b)所示, 实验中使用的两束激发光功率分别为P852 = 100 μW和P510 = 18 mW. 两个自由的基态原子被光缔合激光制备到分子束缚态, 其中一个原子被激发到里德伯态, 另一个原子仍处于基态, 这两个原子形成长程里德伯分子需满足以下两个条件: 1)两个原子的核间距与分子束缚键长匹配; 2)光缔合激光频率距里德伯原子共振线的失谐量与分子束缚能匹配. 可以直接在光缔合光谱中得到长程里德伯分子信号, 通过测量分子信号与里德伯原子共振线间的失谐量获得分子束缚能.

    图2所示为由31D5/2里德伯原子与6S1/2(F = 4)基态原子结合形成的长程里德伯分子光缔合光谱. 图2中的分子光谱由以31D5/2里德伯原子共振线为零点的6组独立测量数据平均后得到, 误差来自6组独立数据的标准误差. 黑色圆点和误差是平均后得到的实验数据, 红色实线是对实验数据平滑后的结果. 在原子共振线负失谐–162.8 MHz和–66.6 MHz处具有两个明显的分子信号, 如图中箭头标注所示. 失谐–162.8 MHz处的分子信号由s-波纯三重态散射束缚形成. 考虑基态原子的超精细结构会产生混合单重态-三重态势阱, 这将导致混合分子信号的出现, 如图2中–66.6 MHz 失谐处的小峰所示. s-波纯三重态散射形成的分子束缚势阱比s-波混合单重态-三重态散射形成的势阱更深, 束缚能更大, 分子结合的更牢固, 因此三重态分子信号较混合态分子信号更大, 图2中可以明显的看到这一点.

    图 2 实验测量的31D5/2+6S1/2(F = 4)长程里德伯分子光缔合光谱. 0 MHz处是31D5/2里德伯原子共振线, 失谐–162.8 MHz和–66.6 MHz处的两个小峰分别来自纯三重态势阱和混合单重态-三重态势阱形成的长程里德伯分子信号. 黑色圆点是实验测量值, 由6组独立实验数据平均后得到, 误差是6组独立测量的标准误差, 红色实线是对数据平滑后的结果\r\nFig. 2. The photoassosiation spectra of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules. The position of 0-detuning resonant excitation is 31D5/2 atoms signal. The two small peaks at detuning, –162.8 MHz and –66.6 MHz, are the long-range Rydberg molecules signals, and they are induced due to the pure triplet potential and mixed singlet and triplet potential. The black symbols show the experimental measurement of six groups of indepenent data, and the error bars are the standard errors of six independent measurements. The red solid line displays smoothed average.
    图 2  实验测量的31D5/2+6S1/2(F = 4)长程里德伯分子光缔合光谱. 0 MHz处是31D5/2里德伯原子共振线, 失谐–162.8 MHz和–66.6 MHz处的两个小峰分别来自纯三重态势阱和混合单重态-三重态势阱形成的长程里德伯分子信号. 黑色圆点是实验测量值, 由6组独立实验数据平均后得到, 误差是6组独立测量的标准误差, 红色实线是对数据平滑后的结果
    Fig. 2.  The photoassosiation spectra of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules. The position of 0-detuning resonant excitation is 31D5/2 atoms signal. The two small peaks at detuning, –162.8 MHz and –66.6 MHz, are the long-range Rydberg molecules signals, and they are induced due to the pure triplet potential and mixed singlet and triplet potential. The black symbols show the experimental measurement of six groups of indepenent data, and the error bars are the standard errors of six independent measurements. The red solid line displays smoothed average.

    本文讨论的是由一个里德伯原子和一个基态原子通过里德伯电子与基态原子间的低能散射相互作用形成的长程里德伯分子, 此类分子通常使用费米赝势(Fermi pseudopotential)理论[2,19]来描述. 理论模型的详细阐述参见文献[20, 21], 此处仅进行如下简述: 在费米模型中, 基态原子被视为微扰, 微扰强度由与能量相关的散射长度al(k)描述. 散射长度al(k)与散射相移ηl(k)有关, 具体表示为: al(k)2l+1=tan[ηl(k)k2l+1], 其中, k是电子动量, l是散射波阶数(s, p, ···). 以铯里德伯原子实为参考坐标系, 里德伯电子与基态原子间的散射相互作用表示为[19]

    ˆV(r;R)=2πas(k)δ3(rRˆz)+6π[ap(k)]3δ3(rRˆz), (1)

    方程(1)中的rRˆz分别是里德伯电子和基态原子相对于里德伯离子核的位置.

    分子系统总哈密顿量表示为[15]

    ˆH(r;R)=ˆH0+i=S,TˆV(r;R)ˆP(i)+AHFSˆS2ˆI2, (2)

    其中, ˆH0是里德伯原子哈密顿量. 对于本文中由碱金属铯原子形成的长程里德伯分子来说, 散射相互作用涉及两个自旋为1/2的粒子, 即里德伯电子和基态原子. 里德伯电子自旋S1和基态原子自旋S2耦合形成自旋单态S(S1+S2 = 0)和自旋三重态T(S1+S2 = 1). 方程(2)中的第2项是对自旋单重态(S)和自旋三重态(T)的散射通道求和, ˆP(i)是投影算符, ˆP(T)=ˆS1ˆS2+3/4ˆP(S)=1ˆP(T). 方程(2)的最后一项描述了基态原子的电子自旋ˆS2与核自旋ˆI2耦合的超精细相互作用F, AHFS为超精细结构常数.

    将方程(2)进行对角化[5,6]可以获得分子绝热势能曲线, 如图3中黑色虚线(混合态势阱)和黑色实线(三重态势阱)所示. 分子的振动态可以通过分子哈密顿理论[22-24]计算获得, 对于双原子的长程里德伯分子来说, 通过相应的绝热势能曲线可以准确获得分子振动态和振动波函数. 图3是理论计算的31D5/2+6S1/2(F = 4)长程里德伯分子绝热势能曲线, 黑色虚线是由单重态-三重态超精细混合(Mixed)产生的浅势阱, 黑色实线是纯三重态散射形成的深势阱. 本实验观察到的分子信号是由势能曲线最外层势阱束缚形成, 因此将最外层势能曲线部分放大进行研究, 图3插图即为橙色虚线方框部分放大的结果, 绿色和粉色填充线分别是浅势阱和深势阱v = 0的分子振动波函数. 由于分子的转动能级与自然线宽相比小很多, 因此在计算中忽略了分子的转动运动.

    图 3 理论计算的31D5/2+6S1/2(F = 4)长程里德伯分子绝热势能曲线, 黑色虚线是由单重态-三重态超精细混合产生的浅势阱, 黑色实线是纯三重态散射形成的深势阱. 插图是橙色虚线方框部分放大后的结果, 绿色和粉色填充线分别是浅势阱和深势阱v = 0的分子振动波函数\r\nFig. 3. The calculations of potential energy curves of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules. The shallow potential (dashed black) comes from hyperfine-mixed singlet-triplet scattering, and the deep potential (solid black) is due to the pure triplet scattering. The inset is an enlargement of orange region. The vibrational wave functions in the outermost wells are indicated in color filled curves for v = 0 of shallow (green) and deep (pink) potential.
    图 3  理论计算的31D5/2+6S1/2(F = 4)长程里德伯分子绝热势能曲线, 黑色虚线是由单重态-三重态超精细混合产生的浅势阱, 黑色实线是纯三重态散射形成的深势阱. 插图是橙色虚线方框部分放大后的结果, 绿色和粉色填充线分别是浅势阱和深势阱v = 0的分子振动波函数
    Fig. 3.  The calculations of potential energy curves of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules. The shallow potential (dashed black) comes from hyperfine-mixed singlet-triplet scattering, and the deep potential (solid black) is due to the pure triplet scattering. The inset is an enlargement of orange region. The vibrational wave functions in the outermost wells are indicated in color filled curves for v = 0 of shallow (green) and deep (pink) potential.

    零能散射长度是计算长程里德伯分子势能曲线非常重要的参数. 不同的零能散射长度会导致分子势能曲线以及分子振动能级的不同. 计算中我们同时考虑了s-波和p-波散射对分子势能曲线的影响. 势能曲线的最外层势阱主要由s-波散射产生, p-波散射会使分子内层势阱加深但对最外层势阱几乎没有影响[25] . 因此对于本实验研究的由最外层势阱束缚形成的长程里德伯分子来说, 只需调节s-波单重态和三重态零能散射长度函数aSs(0)aTs(0)来对实验测量的分子束缚势阱深度进行模拟即可, p-波散射长度仍使用Khuskivadze等[26]提供的非相对论函数, 没有进行进一步调整. 通过在距散射中心0.1a0处对电子散射波函数进行少量相移来实现s-波散射长度函数的调整. 图4是铯电子-原子(6S)低能散射相移图, 红色实线和黑色虚线是调整后的s-波单重态1s和三重态3s散射相移, 蓝色点划线和橙色双点划线是p-波单重态1p和三重态3p散射相移(仍使用Khuskivadze等[26]提供的非相对论函数).

    图 4 铯电子-原子(6S)低能散射相移, 1s和3s是调整后的s-波单重态和三重态散射相移, p-波散射相移仍使用Khuskivadze等[26]提供的非相对论函数\r\nFig. 4. Phase shifts for low-energy electron scattering from Cs. The 1s and 3s are adjusted s-wave singlet and triplet scattering phase shift, respectively. For p-wave phase shifts we still used nonrelativistic functions provided by Khuskivadze et al.[26].
    图 4  铯电子-原子(6S)低能散射相移, 1s和3s是调整后的s-波单重态和三重态散射相移, p-波散射相移仍使用Khuskivadze等[26]提供的非相对论函数
    Fig. 4.  Phase shifts for low-energy electron scattering from Cs. The 1s and 3s are adjusted s-wave singlet and triplet scattering phase shift, respectively. For p-wave phase shifts we still used nonrelativistic functions provided by Khuskivadze et al.[26].

    在非相对论近似中, 使用有限范围模型势(finite-range model potentials)[26]来计算里德伯电子与基态原子间的低能散射相互作用. 在电子动量k处于0.0003—0.3 (原子单位a.u.)范围内, 对s-波单重态和三重态散射波函数进行数值积分, 并在距离基态原子1000a0处进行评估, 来确定单重态aSs(k)和三重态aTs(k)散射长度函数. 得到散射长度函数后, 将其代入分子系统哈密顿量(方程(2))中进行求解, 可以获得长程里德伯分子的绝热势能曲线, 进而由分子哈密顿理论得出分子振动态波函数及束缚能.

    计算表明, s-波单重态零能散射长度aSs(0)对纯三重态势阱没有影响, 但混合态势阱与单重态和三重态零能散射长度aSs(0)aTs(0)都有关系. 因此在对实验测量的分子束缚能进行理论模拟时, 首先调节s-波三重态零能散射长度aTs(0)来计算三重态深势阱的分子势能曲线和分子振动基态v = 0束缚能, 当理论计算的分子束缚能与实验测量值相一致时, 可得到s-波三重态零能散射长度aTs(0)=19.16a0. 进而固定aTs(0), 调节aSs(0), 计算的混合态分子束缚能与实验测量值吻合时得到aSs(0)=1.92a0. 研究报道的铯长程里德伯分子s-波三重态和单重态零能散射长度取值范围为17a022.7a0[13,14,16,27,28]1.33a03.5a0[13,14,16], 得到的s-波零能散射长度值位于它们之间.

    图5(a)所示为以s-波零能散射长度aTs(0)=19.16a0aSs(0)=1.92a0计算的31D5/2+6S1/2(F = 4)长程里德伯分子势能曲线, 粉色和绿色填充线分别是三重态和混合态分子振动波函数, 对应的分子束缚能分别为–162.4 MHz和–67.7 MHz. 为了方便对比, 图5(b)中展示了分子的光缔合光谱, 三重态和混合态分子信号分别用粉色和绿色三角形标记, 蓝色线是对分子信号的高斯拟合, 拟合得到分子束缚能为 (–162.8 ± 0.4) MHz和 (–66.6 ± 0.6) MHz, 这与理论计算值吻合得很好, 误差在1.6%以内. 同时, 表1对31D5/2+6S1/2(F = 4)长程里德伯分子振动基态v = 0的理论计算与实验测量值进行了比较.

    图 5 31D5/2+6S1/2(F = 4)长程里德伯分子理论计算与实验测量的比较 (a)理论计算的31D5/2+6S1/2(F = 4)长程里德伯分子绝热势能曲线和最外层势阱的分子振动基态波函数, 绿色和粉色填充线分别是单重态-三重态超精细混合浅势阱(虚线)和纯三重态散射深势阱(实线)v = 0的振动波函数; (b)实验测量的31D5/2+6S1/2(F = 4)长程里德伯分子光谱, 绿色和粉色三角标注的两个小峰分别来自混合单重态-三重态势阱和纯三重态势阱形成的长程里德伯分子信号, 图中的蓝色曲线是对分子信号进行高斯拟合后的结果\r\nFig. 5. Comparison between calculated potential energy curves and experimental measurement of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules: (a) The calculations of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules potential energy curves and the vibrational wave functions in the outermost wells, the green and pink color filled curves are v = 0 vibrational wave functions of hyperfine-mixed singlet-triplet potential and pure triplet potential, respectively; (b) the measurments of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules, the two peaks marked with green and pink triangles are mixed and triplet molecules signals, respectively, the blue solid lines are Gaussian fittings to the molecular peaks.
    图 5  31D5/2+6S1/2(F = 4)长程里德伯分子理论计算与实验测量的比较 (a)理论计算的31D5/2+6S1/2(F = 4)长程里德伯分子绝热势能曲线和最外层势阱的分子振动基态波函数, 绿色和粉色填充线分别是单重态-三重态超精细混合浅势阱(虚线)和纯三重态散射深势阱(实线)v = 0的振动波函数; (b)实验测量的31D5/2+6S1/2(F = 4)长程里德伯分子光谱, 绿色和粉色三角标注的两个小峰分别来自混合单重态-三重态势阱和纯三重态势阱形成的长程里德伯分子信号, 图中的蓝色曲线是对分子信号进行高斯拟合后的结果
    Fig. 5.  Comparison between calculated potential energy curves and experimental measurement of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules: (a) The calculations of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules potential energy curves and the vibrational wave functions in the outermost wells, the green and pink color filled curves are v = 0 vibrational wave functions of hyperfine-mixed singlet-triplet potential and pure triplet potential, respectively; (b) the measurments of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules, the two peaks marked with green and pink triangles are mixed and triplet molecules signals, respectively, the blue solid lines are Gaussian fittings to the molecular peaks.
    表 1  理论计算与实验测量的混合态和三重态分子v = 0振动基态束缚能的比较, 计算中使用s-波零能散射长度aSs(0)=1.92a0aTs(0)=19.16a0
    Table 1.  Comparison of theoretical calculation and experimental measurement of the ground state binding energy of mixed state and triplet state molecule with v = 0 vibration, the s-wave zero energy scattering length of aSs(0)=1.92a0 and aTs(0)=19.16a0 is used in the calculation.
    Mixed/MHzTriplet/MHz
    Theo.–67.7–162.4
    Exp.–66.6 ± 0.6–162.8 ± 0.4
    下载: 导出CSV 
    | 显示表格

    在超冷铯原子系统中成功制备了31D5/2+6S1/2 (F = 4)长程里德伯分子, 并在光缔合光谱共振位置负失谐–162.8 MHz和–66.6 MHz处观测到两个明显的分子信号, 它们分别由s-波纯三重态散射相互作用和超精细混合单重态-三重态散射相互作用形成. 使用里德伯电子与基态原子间的低能散射相互作用理论模型(Fermi赝势理论)对实验结果进行模拟, 计算得到了分子的绝热势能曲线, 并由分子哈密顿理论获得了分子基态v = 0振动波函数和束缚能, 理论计算与实验测量值进行比较, 得到s-波零能散射长度为aTs(0)=19.16a0aSs(0)=1.92a0, 得到的s-波零能散射长度值在理论预测的范围之内. 在未来的工作中, 将继续对长程里德伯分子的寿命以及永久电偶极矩等光谱参数进行研究. 同时, 在现有冷原子系统基础上可以进一步提高铯冷原子样品密度来观测由p-波主导的内层势阱束缚产生的分子信号.

    [1]

    Amaldi E, Segrè E 1934 Il Nuovo Cimento 11 145Google Scholar

    [2]

    Fermi E 1934 Il Nuovo Cimento 11 157Google Scholar

    [3]

    Valiron P, Roche A L, Masnou-Seeuws F, Dolan M E 1984 J. Phys. B: At. Mol. Phys. 17 2803Google Scholar

    [4]

    de Prunelé E 1987 Phys. Rev. A 35 496Google Scholar

    [5]

    Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458Google Scholar

    [6]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005Google Scholar

    [7]

    Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L, Stwalley W C 2013 Phys. Rev. Lett. 111 053001Google Scholar

    [8]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201Google Scholar

    [9]

    Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008Google Scholar

    [10]

    Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R, Shaffer J P 2012 Phys. Rev. Lett. 109 173202Google Scholar

    [11]

    Booth D, Rittenhouse S T, Yang J, Sadeghpour H R, Shaffer J P 2015 Science 348 99Google Scholar

    [12]

    Bendkowsky V, Butscher B, Nipper J, Balewski J B, Shaffer J P, Löw R, Pfau T 2010 Phys. Rev. Lett. 105 163201Google Scholar

    [13]

    Fabrikant I I 1986 J. Phys. B: At. Mol. Phys. 19 1527Google Scholar

    [14]

    Bahrim C, Thumm U, Fabrikant I I 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L195Google Scholar

    [15]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. A 90 062518Google Scholar

    [16]

    Saßmannshausen H, Merkt F, Deiglmayr J 2015 Phys. Rev. Lett. 114 133201Google Scholar

    [17]

    Maclennan J L, Chen Y J, Raithel G 2019 Phys. Rev. A 99 033407Google Scholar

    [18]

    Bai S, Han X, Bai J, Jiao Y, Zhao J, Jia S, Raithel G 2020 Phys. Rev. Res. 2 033525Google Scholar

    [19]

    Omont A 1977 J. Phys. 38 1343Google Scholar

    [20]

    Bai S Y, Bai J X, Han X X, Jiao Y C, Zhao J M, Jia S T 2020 Chin. Phys. Lett. 37 123201Google Scholar

    [21]

    焦月春, 白景旭, 宋蓉, 韩小萱, 赵建明 2023 物理学报 72 033202Google Scholar

    Jiao Y C, Bai J X, Song R, Han X X, Zhao J M 2023 Acta Phys. Sin. 72 033202Google Scholar

    [22]

    Yang Y, Kühn O 2008 Mol. Phys. 106 2445Google Scholar

    [23]

    Yang Y, Meuwly M 2010 J. Chem. Phys. 133 064503Google Scholar

    [24]

    Yang Y, Liu X, Meuwly M, Xiao L, Jia S 2012 J. Phys. Chem. A 116 11134Google Scholar

    [25]

    Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L199Google Scholar

    [26]

    Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709Google Scholar

    [27]

    Bahrim C, Thumm U 2000 Phys. Rev. A 61 022722Google Scholar

    [28]

    Markson S, Rittenhouse S T, Schmidt R, Shaffer J P, Sadeghpour H R 2016 Chemphyschem 17 3683Google Scholar

  • 图 1  (a)双光子光缔合激发示意图, 第1个852 nm的光子完成|6S1/2,F=4|6P3/2,F=5 的原子跃迁, 第2个510 nm光子将|6P3/2,F=5态的原子激发到|31D5/2态, 使用双通声光调制器(AOM)将852 nm激光频率从|6P3/2,F=5能级向蓝失谐方向频移360 MHz, 510 nm激光频率从31D5/2里德伯原子能级共振线向红失谐方向扫描, 当激光能量与分子能级匹配时就形成了长程里德伯分子; (b)时序图, MOT光和ODT光关断后, 打开852 nm和510 nm激发光来制备里德伯原子和长程里德伯分子, 随后施加斜坡电离电场使得里德伯原子和分子自电离产生的离子加速到达MCP进行收集探测; (c)实验制备长程里德伯分子示意图, 852 nm(红色光束)和510 nm(绿色光束)激发光反向传播通过装载于偶极阱(黄色光束)中的铯冷原子团中心, 并将基态原子激发形成里德伯原子和分子

    Fig. 1.  (a) Two-photon potoassociation excitation diagram, the first photon, 852 nm laser, drives the |6S1/2,F=4|6P3/2,F=5 transition, and the second photon, 510 nm laser, drives the |6P3/2F=5|31D5/2 transition, the 852 nm laser frequency is blue shifted from |6P3/2,F=5 by 360 MHz using a double-pass acousto-optic modulator (AOM), the 510 nm laser frequency is scanned to red detuning from the 31D5/2 Rydberg atomic line, Rydberg molecules are formed when the detuning from the atomic line matches a molecular binding energy; (b) timing sequence, after switching off the MOT and ODT beams, the 852 nm and 510 nm lasers are used to excite ground state cesium atoms to form the Rydberg atoms and molecules, a ramped electric field is finally applied to accelerate the ions that are produced by autoionization to MCP for collection and detection; (c) experimental schematic of ultralong-range Rydberg molecules, the 852 nm (red beam) and 510 nm (green beam) lasers counterpropagate through a cold Cs atom cloud located in a crossed optical dipole trap (yellow beams) and excite ground state atoms to form Rydberg atoms and molecules.

    图 2  实验测量的31D5/2+6S1/2(F = 4)长程里德伯分子光缔合光谱. 0 MHz处是31D5/2里德伯原子共振线, 失谐–162.8 MHz和–66.6 MHz处的两个小峰分别来自纯三重态势阱和混合单重态-三重态势阱形成的长程里德伯分子信号. 黑色圆点是实验测量值, 由6组独立实验数据平均后得到, 误差是6组独立测量的标准误差, 红色实线是对数据平滑后的结果

    Fig. 2.  The photoassosiation spectra of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules. The position of 0-detuning resonant excitation is 31D5/2 atoms signal. The two small peaks at detuning, –162.8 MHz and –66.6 MHz, are the long-range Rydberg molecules signals, and they are induced due to the pure triplet potential and mixed singlet and triplet potential. The black symbols show the experimental measurement of six groups of indepenent data, and the error bars are the standard errors of six independent measurements. The red solid line displays smoothed average.

    图 3  理论计算的31D5/2+6S1/2(F = 4)长程里德伯分子绝热势能曲线, 黑色虚线是由单重态-三重态超精细混合产生的浅势阱, 黑色实线是纯三重态散射形成的深势阱. 插图是橙色虚线方框部分放大后的结果, 绿色和粉色填充线分别是浅势阱和深势阱v = 0的分子振动波函数

    Fig. 3.  The calculations of potential energy curves of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules. The shallow potential (dashed black) comes from hyperfine-mixed singlet-triplet scattering, and the deep potential (solid black) is due to the pure triplet scattering. The inset is an enlargement of orange region. The vibrational wave functions in the outermost wells are indicated in color filled curves for v = 0 of shallow (green) and deep (pink) potential.

    图 4  铯电子-原子(6S)低能散射相移, 1s和3s是调整后的s-波单重态和三重态散射相移, p-波散射相移仍使用Khuskivadze等[26]提供的非相对论函数

    Fig. 4.  Phase shifts for low-energy electron scattering from Cs. The 1s and 3s are adjusted s-wave singlet and triplet scattering phase shift, respectively. For p-wave phase shifts we still used nonrelativistic functions provided by Khuskivadze et al.[26].

    图 5  31D5/2+6S1/2(F = 4)长程里德伯分子理论计算与实验测量的比较 (a)理论计算的31D5/2+6S1/2(F = 4)长程里德伯分子绝热势能曲线和最外层势阱的分子振动基态波函数, 绿色和粉色填充线分别是单重态-三重态超精细混合浅势阱(虚线)和纯三重态散射深势阱(实线)v = 0的振动波函数; (b)实验测量的31D5/2+6S1/2(F = 4)长程里德伯分子光谱, 绿色和粉色三角标注的两个小峰分别来自混合单重态-三重态势阱和纯三重态势阱形成的长程里德伯分子信号, 图中的蓝色曲线是对分子信号进行高斯拟合后的结果

    Fig. 5.  Comparison between calculated potential energy curves and experimental measurement of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules: (a) The calculations of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules potential energy curves and the vibrational wave functions in the outermost wells, the green and pink color filled curves are v = 0 vibrational wave functions of hyperfine-mixed singlet-triplet potential and pure triplet potential, respectively; (b) the measurments of 31D5/2+6S1/2(F = 4) long-range Rydberg molecules, the two peaks marked with green and pink triangles are mixed and triplet molecules signals, respectively, the blue solid lines are Gaussian fittings to the molecular peaks.

    表 1  理论计算与实验测量的混合态和三重态分子v = 0振动基态束缚能的比较, 计算中使用s-波零能散射长度aSs(0)=1.92a0aTs(0)=19.16a0

    Table 1.  Comparison of theoretical calculation and experimental measurement of the ground state binding energy of mixed state and triplet state molecule with v = 0 vibration, the s-wave zero energy scattering length of aSs(0)=1.92a0 and aTs(0)=19.16a0 is used in the calculation.

    Mixed/MHzTriplet/MHz
    Theo.–67.7–162.4
    Exp.–66.6 ± 0.6–162.8 ± 0.4
    下载: 导出CSV
  • [1]

    Amaldi E, Segrè E 1934 Il Nuovo Cimento 11 145Google Scholar

    [2]

    Fermi E 1934 Il Nuovo Cimento 11 157Google Scholar

    [3]

    Valiron P, Roche A L, Masnou-Seeuws F, Dolan M E 1984 J. Phys. B: At. Mol. Phys. 17 2803Google Scholar

    [4]

    de Prunelé E 1987 Phys. Rev. A 35 496Google Scholar

    [5]

    Greene C H, Dickinson A S, Sadeghpour H R 2000 Phys. Rev. Lett. 85 2458Google Scholar

    [6]

    Bendkowsky V, Butscher B, Nipper J, Shaffer J P, Löw R, Pfau T 2009 Nature 458 1005Google Scholar

    [7]

    Bellos M A, Carollo R, Banerjee J, Eyler E E, Gould P L, Stwalley W C 2013 Phys. Rev. Lett. 111 053001Google Scholar

    [8]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. Lett. 112 163201Google Scholar

    [9]

    Krupp A T, Gaj A, Balewski J B, Ilzhöfer P, Hofferberth S, Löw R, Pfau T, Kurz M, Schmelcher P 2014 Phys. Rev. Lett. 112 143008Google Scholar

    [10]

    Tallant J, Rittenhouse S T, Booth D, Sadeghpour H R, Shaffer J P 2012 Phys. Rev. Lett. 109 173202Google Scholar

    [11]

    Booth D, Rittenhouse S T, Yang J, Sadeghpour H R, Shaffer J P 2015 Science 348 99Google Scholar

    [12]

    Bendkowsky V, Butscher B, Nipper J, Balewski J B, Shaffer J P, Löw R, Pfau T 2010 Phys. Rev. Lett. 105 163201Google Scholar

    [13]

    Fabrikant I I 1986 J. Phys. B: At. Mol. Phys. 19 1527Google Scholar

    [14]

    Bahrim C, Thumm U, Fabrikant I I 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L195Google Scholar

    [15]

    Anderson D A, Miller S A, Raithel G 2014 Phys. Rev. A 90 062518Google Scholar

    [16]

    Saßmannshausen H, Merkt F, Deiglmayr J 2015 Phys. Rev. Lett. 114 133201Google Scholar

    [17]

    Maclennan J L, Chen Y J, Raithel G 2019 Phys. Rev. A 99 033407Google Scholar

    [18]

    Bai S, Han X, Bai J, Jiao Y, Zhao J, Jia S, Raithel G 2020 Phys. Rev. Res. 2 033525Google Scholar

    [19]

    Omont A 1977 J. Phys. 38 1343Google Scholar

    [20]

    Bai S Y, Bai J X, Han X X, Jiao Y C, Zhao J M, Jia S T 2020 Chin. Phys. Lett. 37 123201Google Scholar

    [21]

    焦月春, 白景旭, 宋蓉, 韩小萱, 赵建明 2023 物理学报 72 033202Google Scholar

    Jiao Y C, Bai J X, Song R, Han X X, Zhao J M 2023 Acta Phys. Sin. 72 033202Google Scholar

    [22]

    Yang Y, Kühn O 2008 Mol. Phys. 106 2445Google Scholar

    [23]

    Yang Y, Meuwly M 2010 J. Chem. Phys. 133 064503Google Scholar

    [24]

    Yang Y, Liu X, Meuwly M, Xiao L, Jia S 2012 J. Phys. Chem. A 116 11134Google Scholar

    [25]

    Hamilton E L, Greene C H, Sadeghpour H R 2002 J. Phys. B: At. Mol. Opt. Phys. 35 L199Google Scholar

    [26]

    Khuskivadze A A, Chibisov M I, Fabrikant I I 2002 Phys. Rev. A 66 042709Google Scholar

    [27]

    Bahrim C, Thumm U 2000 Phys. Rev. A 61 022722Google Scholar

    [28]

    Markson S, Rittenhouse S T, Schmidt R, Shaffer J P, Sadeghpour H R 2016 Chemphyschem 17 3683Google Scholar

  • [1] 焦月春, 白景旭, 宋蓉, 韩小萱, 赵建明. 超冷(36D5/2+6S1/2)里德伯分子的制备及其电偶极矩的测量. 物理学报, 2023, 72(3): 033202. doi: 10.7498/aps.72.20221865
    [2] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS电子基态及激发态势能曲线和振动能级的理论研究. 物理学报, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [3] 沈星晨, 刘洋, 陈淇, 吕航, 徐海峰. 超快强激光场中原子分子的里德伯态激发. 物理学报, 2022, 71(23): 233202. doi: 10.7498/aps.71.20221258
    [4] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS 电子基态及激发态的势能曲线和振动能级的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211441
    [5] 白素英, 白景旭, 韩小萱, 焦月春, 赵建明. 超冷长程Rydberg-基态分子. 物理学报, 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [6] 白景旭, 韩小萱, 白素英, 焦月春, 赵建明, 贾锁堂. 超冷铯(60D5/2)2 Rydberg分子的双色光缔合光谱. 物理学报, 2018, 67(23): 233201. doi: 10.7498/aps.67.20181743
    [7] 韩小萱, 赵建明, 李昌勇, 贾锁堂. 长程铯里德堡分子的势能曲线. 物理学报, 2015, 64(13): 133202. doi: 10.7498/aps.64.133202
    [8] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [9] 王文宝, 于坤, 张晓美, 刘玉芳. 从头计算研究BP分子的势能曲线和光谱性质. 物理学报, 2014, 63(7): 073302. doi: 10.7498/aps.63.073302
    [10] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [11] 李勇军, 冯灏, 孙卫国, 曾阳阳, 王小炼, 李会东, 樊群超. 基于严格交换势的低能电子与H2分子碰撞振动激发散射截面的研究. 物理学报, 2011, 60(4): 043401. doi: 10.7498/aps.60.043401
    [12] 王小炼, 冯灏, 孙卫国, 樊群超, 王斌, 曾阳阳. 运用球高斯分布极化势研究低能电子与H2 分子碰撞的振动激发动量迁移散射截面. 物理学报, 2011, 60(2): 023401. doi: 10.7498/aps.60.023401
    [13] 王小炼, 冯灏, 孙卫国, 樊群超, 曾阳阳, 王斌. 低能电子与H2分子碰撞振动激发动量迁移散射截面的研究. 物理学报, 2010, 59(2): 937-942. doi: 10.7498/aps.59.937
    [14] 王斌, 冯灏, 孙卫国, 曾阳阳, 戴伟. 低能电子与氢分子碰撞的振动激发积分散射截面的研究. 物理学报, 2009, 58(10): 6932-6937. doi: 10.7498/aps.58.6932
    [15] 戴 伟, 冯 灏, 孙卫国, 唐永建, 申 立, 于江周. 用振动密耦合方法研究低能电子与N2分子碰撞的振动激发微分散射截面. 物理学报, 2008, 57(1): 143-148. doi: 10.7498/aps.57.143
    [16] 任黎明, 陈宝钦, 谭震宇. Monte Carlo方法研究低能电子束曝光沉积能分布规律. 物理学报, 2002, 51(3): 512-518. doi: 10.7498/aps.51.512
    [17] 孙飚, 李家明. 分子里德伯态的电子能级结构——一些小分子及分子离子的里德伯能级结构. 物理学报, 1993, 42(1): 25-31. doi: 10.7498/aps.42.25
    [18] 陈向军, 樊晓伟, 徐克尊, 杨炳忻, 邢士林, 王永刚, 张芳. 250—1400eV能区N2分子的电子散射全截面测量. 物理学报, 1992, 41(6): 885-889. doi: 10.7498/aps.41.885
    [19] 杨焕旺, 刘磊, 李家明. 以Ne原子为联合原子的系列分子里德伯能级结构. 物理学报, 1992, 41(1): 10-17. doi: 10.7498/aps.41.10
    [20] 孙飚, 李家明. 以Si为联合原子的分子系列双原子分子的里德伯能级结构. 物理学报, 1992, 41(6): 873-880. doi: 10.7498/aps.41.873
计量
  • 文章访问数:  3744
  • PDF下载量:  87
出版历程
  • 收稿日期:  2023-04-04
  • 修回日期:  2023-05-10
  • 上网日期:  2023-05-22
  • 刊出日期:  2023-07-20

/

返回文章
返回