搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿超晶格材料界面二维电子气的调控

王继光 李珑玲 邱嘉图 陈许敏 曹东兴

引用本文:
Citation:

钙钛矿超晶格材料界面二维电子气的调控

王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴

Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient

Wang Ji-Guang, Li Long-Ling, Qiu Jia-Tu, Chen Xu-Min, Cao Dong-Xing
PDF
HTML
导出引用
  • 钙钛矿超晶格材料界面的独特电子性质, 在纳米器件、新型超敏传感器器件等方面具有广阔的应用前景, 探索其界面独特的电子性质对理解关联电子系统中多自由度耦合和传感器器件的设计等方面具有重要的意义. 本文通过构建LaAlO3/KNbO3超晶格材料, 施加非均匀应变对其界面的载流子浓度等性质进行调控. 计算结果表明, 施加拉伸和压缩的应变梯度都可以调节界面处二维电子气性质. 其中, 当最大压缩应变梯度系数为12%时, 界面处二维电子气浓度减小了76.4%, 并且界面磁矩消失, 材料的总磁矩减小约88.44%, 向无磁性材料转变; 当最大拉伸型应变梯度系数为12%时, 界面处电子气浓度增大约23.9%, 界面磁矩明显减小, 而且界面临近层出现明显的磁矩. 该理论计算结果表明, 应变梯度是一种新的钙钛矿界面载流子的有效调控手段, 对LaAlO3/KNbO3钙钛矿超晶格材料界面电子性质的研究提升了对此类氧化物界面电子特性的认识, 为探索调控氧化物界面处的高性能自旋极化载流子气开辟了新的途径.
    The superlattices composed of polar/polar perovskites have two-dimensional electron gas (2DEG) at the interface, which has broad applications in nano devices, super sensitive sensor devices, high electron mobility transistor, etc. Tuning the electronic properties of the 2DEG at the interface perovskite superlattice, such as the coupling between strain gradient and the electronic properties of the 2DEG in correlated electronic systems, is of great significance. In this paper, the properties of (LaAlO3)4.5/(KNbO3)8.5 superlattice, which is composed of KNbO3 and LaAlO3, are systematically investigated through first-principles density functional theory calculations. The band structure of (LaAlO3)4.5/(KNbO3)8.5 superlattice exhibits 2DEG at the interface, which is consistent with the result in the literature. The band structure, density of states, magnetic moments and carrier concentration at the interface are fully investigated by using compressive gradient and tensile strain gradient, respectively. The results show that compressive strain gradient can effectively reduce the 2DEG concentration at the interface. When the compressive strain gradient coefficient reaches 12%, the 2DEG concentration decreases by 76.4%, and the interface magnetic moment disappears. The total magnetic moment of the superlattice decreases by 88.44%. When the tensile strain gradient is 12%, the electron gas concentration at the interface is increased by about 23.9%, and the interface magnetic moment is reduced by about 90.7%. At the same time, an obvious magnetic moment appears in the layer near the interface. Hence, the strain gradient can be a new approach to regulating the electron gas concentration at interface of perovskite superlattice. The tensile strain gradient increases the electron gas concentration at the interface, while the compressive strain gradient reduces the electron gas concentration. Therefore, it opens up a new way to exploring the regulation of high-performance spin polarized carrier gas at the oxide interface.
      通信作者: 陈许敏, 41790@hdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874011, 11972051)资助的课题.
      Corresponding author: Chen Xu-Min, 41790@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874011, 11972051).
    [1]

    Tra V T, Chen J W, Huang P C, et al. 2013 Adv. Mater. 25 3357Google Scholar

    [2]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar

    [3]

    Reyren N, Thiel S, Caviglia A D, et al. 2007 Science 317 1196Google Scholar

    [4]

    Caviglia A D, Gariglio S, Reyren N, et al. 2008 Nature 456 624Google Scholar

    [5]

    Bi F, Huang M, Ryu S, Lee H, Bark C W, Eom C B, Irvin P, Levy J 2014 Nat. Commun. 5 5019Google Scholar

    [6]

    李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩 2019 物理学报 68 087302Google Scholar

    Li M, Shi X N, Zhang Z L, Ji Y D, Fan J Y, Yang H 2019 Acta Phys. Sin. 68 087302Google Scholar

    [7]

    Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar

    [8]

    朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 物理学报 68 217701Google Scholar

    Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar

    [9]

    Sharma P, Huang Z, Li M, Li C, Hu S, Lee H, Lee J W, Eom C B, Pennycook S J, Seidel J, Ariando, Gruverman A 2018 Adv. Funct. Mater. 28 1707159Google Scholar

    [10]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M, White T J 2013 J. Mater. Chem. A 1 5628Google Scholar

    [11]

    Phillips L J, Rashed A M, Treharne R E, et al. 2016 Sol. Energy Mater. Sol. Cells 147 327Google Scholar

    [12]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [13]

    Zhao Y, Nardes A M, Zhu K 2014 J. Phys. Chem. Lett. 5 490Google Scholar

    [14]

    Ponseca C S, Savenije T J, Abdellah M, et al. 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [15]

    Brinkman A, Huijben M, Van Zalk M, et al. 2007 Nat. Mater. 6 493Google Scholar

    [16]

    Kalisky B, Bert J A, Bell C, Xie Y, Sato H K, Hosoda M, Hikita Y, Hwang H Y, Moler K A 2012 Nano Lett. 12 4055Google Scholar

    [17]

    Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B, Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802Google Scholar

    [18]

    Guduru V K, del Aguila A G, Wenderich S, et al. 2013 Appl. Phys. Lett. 102 051604Google Scholar

    [19]

    Lei Y, Li Y, Chen Y Z, Xie Y W, Chen Y S, Wang S H, Wang J, Shen B G, Pryds N, Hwang H Y, Sun J R 2014 Nat. Commun. 5 5554Google Scholar

    [20]

    Au K, Li D F, Chan N Y, Dai J Y 2012 Adv. Mater. 24 2598Google Scholar

    [21]

    Bark C W, Felker D A, Wang Y, et al. 2011 Proc. Natl. Acad. Sci. U.S.A. 108 4720Google Scholar

    [22]

    Salluzzo M, Gariglio S, Stornaiuolo D, et al. 2013 Phys. Rev. Lett. 111 087204Google Scholar

    [23]

    Schoofs F, Carpenter M A, Vickers M E, et al. 2013 J. Phys. Condes. Matter 25 175005Google Scholar

    [24]

    Huang Z, Liu Z Q, Yang M, et al. 2014 Phys. Rev. B 90 125156Google Scholar

    [25]

    Du Y, Wang C, Li J, Zhang X, Wang F, Zhu Y, Yin N, Mei L 2015 Comput. Mater. Sci. 99 57Google Scholar

    [26]

    Meevasana W, King P D C, He R H, Mo S K, Hashimoto M, Tamai A, Songsiriritthigul P, Baumberger F, Shen Z X 2011 Nat. Mater. 10 114Google Scholar

    [27]

    Fang L, Chen C, Yang Y, Wu Y, Hu T, Zhao G, Zhu Q, Ren W 2019 Phys. Chem. Chem. Phys. 21 8046Google Scholar

    [28]

    Zhang Z, Jiang W, Liu K, Liu M, Meng J, Wu L, Shao T, Ling J, Yao C, Xiong C, Dou R, Nie J 2020 Ann. Phys. Berlin 532 2000155Google Scholar

    [29]

    Cooper V R 2012 Phys. Rev. B 85 235109Google Scholar

    [30]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106Google Scholar

    [31]

    Shu L, Wei X, Jin L, Li Y, Wang H, Yao X 2013 Appl. Phys. Lett. 102 152904Google Scholar

    [32]

    Nystrom M J, Wessels B W, Chen J, Marks T J 1996 Appl. Phys. Lett. 68 761Google Scholar

  • 图 1  (a) (LaAlO3)4.5/(KNbO3)8.5晶胞模型; (b)压缩非均匀应变原子偏移示意图; (c)拉伸非均匀应变原子偏移示意图, 箭头大小表示偏离平衡位置的程度

    Fig. 1.  (a) The (LAO)4.5/(KNO)8.5 superlattice model; (b) schematic diagram of atomic shift in compressed non-uniform strain; (c) schematic diagram of atomic migration under non-uniform tensile strain. Arrow size indicates the degree of deviation from the balance position.

    图 2  LAO/KNO的界面附近各层的投影态密度及界面附近的电荷差分密度图

    Fig. 2.  The layer resolved DOS LAO/KNO with the Fermi level is set to zero, and the charge difference density diagram near the interface.

    图 3  不同最大压缩应变梯度系数下NbO2/LaO界面层及其附近的态密度 (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%

    Fig. 3.  Density of state of NbO2/LaO interface layer and its adjacent layer under different maximum compressive strain gradients coefficient: (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%.

    图 4  不同最大压缩应变梯度系数下LAO/KNO的能带图及界面Nb元素dxy的轨道投影能带 (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%

    Fig. 4.  The band structures of LAO/KNO and projected band structures of interface with orbit of Nb element dxy under different maximum compressive strain gradient coefficient: (a) $\varepsilon_{\max} $ = 0%; (b) $ \varepsilon_{\max}$ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%.

    图 5  不同最大拉伸应变梯度系数下NbO2/LaO界面层及其附近的态密度 (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ =3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ =12%

    Fig. 5.  Density of state of NbO2/LaO interface layer and its adjacent layer under different maximum tensile strain gradient coefficient: (a) $\varepsilon_{\max} $ = 0%; (b) $\varepsilon_{\max} $ = 3%; (c) $\varepsilon_{\max} $ = 5%; (d) $\varepsilon_{\max} $ = 8%; (e) $\varepsilon_{\max} $ = 10%; (f) $\varepsilon_{\max} $ = 12%.

    图 6  不同最大拉伸应变梯度系数下LAO/KNO的能带图及界面Nb元素的dxy轨道的投影能带 (a) $\varepsilon_{\max} $ = 3%; (b) $\varepsilon_{\max} $ = 5%; (c) $\varepsilon_{\max} $ = 8%; (d) $\varepsilon_{\max} $ = 10%

    Fig. 6.  The band structures of LAO/KNO and projected band structures of interface with orbit of Nb element dxy under different maximum tensile strain gradient coefficient: (a) $\varepsilon_{\max} $ = 3 %; (b) $\varepsilon_{\max} $ = 5%; (c) $\varepsilon_{\max} $ = 8%; (d) $\varepsilon_{\max} $ = 10%.

    图 7  施加拉伸和压缩应变梯度时不同界面的磁矩和体系总磁矩

    Fig. 7.  The change of interface magnetic moment with the strength of strain gradient when the compressive and tensile strain gradients are applied.

    图 8  施加压缩(深色区域)和拉伸应变梯度时, 界面二维电子气密度随应变梯度强度的变化

    Fig. 8.  The 2 DEG density of the interface changes with the strength of the strain gradient when the compressive (shadow region) and tensile strain gradients are applied.

  • [1]

    Tra V T, Chen J W, Huang P C, et al. 2013 Adv. Mater. 25 3357Google Scholar

    [2]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar

    [3]

    Reyren N, Thiel S, Caviglia A D, et al. 2007 Science 317 1196Google Scholar

    [4]

    Caviglia A D, Gariglio S, Reyren N, et al. 2008 Nature 456 624Google Scholar

    [5]

    Bi F, Huang M, Ryu S, Lee H, Bark C W, Eom C B, Irvin P, Levy J 2014 Nat. Commun. 5 5019Google Scholar

    [6]

    李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩 2019 物理学报 68 087302Google Scholar

    Li M, Shi X N, Zhang Z L, Ji Y D, Fan J Y, Yang H 2019 Acta Phys. Sin. 68 087302Google Scholar

    [7]

    Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar

    [8]

    朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 物理学报 68 217701Google Scholar

    Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar

    [9]

    Sharma P, Huang Z, Li M, Li C, Hu S, Lee H, Lee J W, Eom C B, Pennycook S J, Seidel J, Ariando, Gruverman A 2018 Adv. Funct. Mater. 28 1707159Google Scholar

    [10]

    Baikie T, Fang Y, Kadro J M, Schreyer M, Wei F, Mhaisalkar S G, Graetzel M, White T J 2013 J. Mater. Chem. A 1 5628Google Scholar

    [11]

    Phillips L J, Rashed A M, Treharne R E, et al. 2016 Sol. Energy Mater. Sol. Cells 147 327Google Scholar

    [12]

    Stranks S D, Eperon G E, Grancini G, et al. 2013 Science 342 341Google Scholar

    [13]

    Zhao Y, Nardes A M, Zhu K 2014 J. Phys. Chem. Lett. 5 490Google Scholar

    [14]

    Ponseca C S, Savenije T J, Abdellah M, et al. 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [15]

    Brinkman A, Huijben M, Van Zalk M, et al. 2007 Nat. Mater. 6 493Google Scholar

    [16]

    Kalisky B, Bert J A, Bell C, Xie Y, Sato H K, Hosoda M, Hikita Y, Hwang H Y, Moler K A 2012 Nano Lett. 12 4055Google Scholar

    [17]

    Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B, Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802Google Scholar

    [18]

    Guduru V K, del Aguila A G, Wenderich S, et al. 2013 Appl. Phys. Lett. 102 051604Google Scholar

    [19]

    Lei Y, Li Y, Chen Y Z, Xie Y W, Chen Y S, Wang S H, Wang J, Shen B G, Pryds N, Hwang H Y, Sun J R 2014 Nat. Commun. 5 5554Google Scholar

    [20]

    Au K, Li D F, Chan N Y, Dai J Y 2012 Adv. Mater. 24 2598Google Scholar

    [21]

    Bark C W, Felker D A, Wang Y, et al. 2011 Proc. Natl. Acad. Sci. U.S.A. 108 4720Google Scholar

    [22]

    Salluzzo M, Gariglio S, Stornaiuolo D, et al. 2013 Phys. Rev. Lett. 111 087204Google Scholar

    [23]

    Schoofs F, Carpenter M A, Vickers M E, et al. 2013 J. Phys. Condes. Matter 25 175005Google Scholar

    [24]

    Huang Z, Liu Z Q, Yang M, et al. 2014 Phys. Rev. B 90 125156Google Scholar

    [25]

    Du Y, Wang C, Li J, Zhang X, Wang F, Zhu Y, Yin N, Mei L 2015 Comput. Mater. Sci. 99 57Google Scholar

    [26]

    Meevasana W, King P D C, He R H, Mo S K, Hashimoto M, Tamai A, Songsiriritthigul P, Baumberger F, Shen Z X 2011 Nat. Mater. 10 114Google Scholar

    [27]

    Fang L, Chen C, Yang Y, Wu Y, Hu T, Zhao G, Zhu Q, Ren W 2019 Phys. Chem. Chem. Phys. 21 8046Google Scholar

    [28]

    Zhang Z, Jiang W, Liu K, Liu M, Meng J, Wu L, Shao T, Ling J, Yao C, Xiong C, Dou R, Nie J 2020 Ann. Phys. Berlin 532 2000155Google Scholar

    [29]

    Cooper V R 2012 Phys. Rev. B 85 235109Google Scholar

    [30]

    Pentcheva R, Pickett W E 2008 Phys. Rev. B 78 205106Google Scholar

    [31]

    Shu L, Wei X, Jin L, Li Y, Wang H, Yao X 2013 Appl. Phys. Lett. 102 152904Google Scholar

    [32]

    Nystrom M J, Wessels B W, Chen J, Marks T J 1996 Appl. Phys. Lett. 68 761Google Scholar

  • [1] 曹文彧, 张雅婷, 魏彦锋, 朱丽娟, 徐可, 颜家圣, 周书星, 胡晓东. 超晶格插入层对InGaN/GaN多量子阱的应变调制作用. 物理学报, 2024, 73(7): 077201. doi: 10.7498/aps.73.20231677
    [2] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究. 物理学报, 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [3] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [4] 饶雪, 王如志, 曹觉先, 严辉. 掺杂GaN/AlN超晶格第一性原理计算研究. 物理学报, 2015, 64(10): 107303. doi: 10.7498/aps.64.107303
    [5] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [6] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [7] 罗晓华. Schrödinger方程的一般解与超晶格多量子阱的电子跃迁. 物理学报, 2014, 63(1): 017302. doi: 10.7498/aps.63.017302
    [8] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [9] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性. 物理学报, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [10] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [12] 张金风, 王平亚, 薛军帅, 周勇波, 张进成, 郝跃. 高电子迁移率晶格匹配InAlN/GaN材料研究. 物理学报, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [13] 王平亚, 张金风, 薛军帅, 周勇波, 张进成, 郝跃. 晶格匹配InAlN/GaN和InAlN/AlN/GaN材料二维电子气输运特性研究. 物理学报, 2011, 60(11): 117304. doi: 10.7498/aps.60.117304
    [14] 蒋雷, 王培吉, 张昌文, 冯现徉, 逯瑶, 张国莲. 超晶格SnO2掺Cr的电子结构和光学性质的研究. 物理学报, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [15] 孙伟峰, 李美成, 赵连城. 窄带隙超晶格中载流子俄歇寿命和碰撞电离率的第一性原理研究. 物理学报, 2010, 59(8): 5661-5666. doi: 10.7498/aps.59.5661
    [16] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [17] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究. 物理学报, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [18] 王新军, 王玲玲, 黄维清, 唐黎明, 陈克求. 磁场下含结构缺陷多组分超晶格中的局域电子态和电子输运. 物理学报, 2006, 55(7): 3649-3655. doi: 10.7498/aps.55.3649
    [19] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [20] 程兴奎, 周均铭, 黄绮. 超晶格结构中电子的波动性. 物理学报, 2001, 50(3): 536-539. doi: 10.7498/aps.50.536
计量
  • 文章访问数:  3509
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-05-22
  • 上网日期:  2023-07-06
  • 刊出日期:  2023-09-05

/

返回文章
返回