搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双端输出近单模准连续全光纤激光器

丁欣怡 王力 曾令筏 吴函烁 王小林 宁禹 习锋杰

引用本文:
Citation:

双端输出近单模准连续全光纤激光器

丁欣怡, 王力, 曾令筏, 吴函烁, 王小林, 宁禹, 习锋杰

Double-ended output near-single-mode quasi-continuous wave monolithic fiber laser

Ding Xin-Yi, Wang Li, Zeng Ling-Fa, Wu Han-Shuo, Wang Xiao-Lin, Ning Yu, Xi Feng-Jie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 准连续光纤激光器在工业领域有着广阔的应用前景, 双端输出结构为工业低成本高功率光纤激光器提供了新思路, 提出并研究了双端输出准连续光纤激光器. 基于稳态速率方程, 建立了双端准连续光纤激光振荡器的理论模型, 对该类型激光器的输出功率、时序及非线性效应进行了仿真研究. 结果表明: 延长泵浦上升时间可以有效抑制弛豫振荡, 在脉冲持续时间内获得稳定的输出; 双端输出准连续激光器相比单端输出结构, 非线性效应累积更小. 实验采用纤芯/包层直径为20/400 μm的掺镱光纤, 首次实现了峰值功率3 kW的双端准连续近单模激光输出, 两端峰值功率分别为1218和2220 W, 对应光束质量因子M 2分别为1.34和1.27, 光光转换效率约为60%, 脉宽为100 μs, 重频为1 kHz. 验证了双端输出准连续光纤激光器实现高功率、高光束质量输出的可行性, 为小体积、低成本、高功率和高亮度的准连续光纤激光器提供了支撑.
    Quasi-continuous fiber lasers have a broad application prospect in the industrial field. However, in the current research on quasi-continuous wave (QCW) fiber lasers only the single-ended output structure is used. A double-ended output fiber laser oscillator needs only one resonator to realize two laser outputs. Compared with single-ended output laser, it has a low cost, small volume and high work efficiency. It is expected to achieve higher power laser output through double-ended output beam combining. Therefore, the double-ended output QCW fiber laser is proposed and studied in this paper. The steady-state rate equation establishes a theoretical model of a QCW fiber laser oscillator with two ends, considering the stimulated Raman scattering (SRS) and amplified spontaneous emission (ASE). The output power, time domain and nonlinear effects of this type of laser are simulated. The results show that the overshoot effect caused by relaxation oscillation will produce a large amount of thermal deposition and ultra-high peak power in the fiber. It will reduce the nonlinear threshold and limit the increase of power of the QCW fiber laser. Prolonging the rise time of the pump can effectively suppress the relaxation oscillation and obtain a stable pulse output during the pulse duration. In addition, compared with the single-ended QCW laser, the double-ended output structure changes the energy distribution in the fiber and reduces the accumulation of nonlinear effects in the gain fiber, thus inhibiting SRS. Then, the ytterbium-doped fiber with a core/cladding diameter of 20/400 μm is used to achieve the first double-ended QCW laser output with a peak power of 3 kW. The peak power values at both ends are 1218 and 2220 W, respectively. The values of corresponding beam quality factor M2 are 1.34 and 1.27. The optical-to-optical conversion efficiency is about 60%. The pulse width is 100 μs, and the repetition frequency is 1 kHz. This research verifies the feasibility of high power and high beam quality output by double-ended output QCW fiber laser, which provides support for small volume, low cost, high power and high brightness QCW fiber laser. Further breakthroughs in the research and application of high-power fiber lasers are expected to be made by continually optimizing experiments, increasing pump power, and improving the laser’s output power and conversion efficiency.
      通信作者: 王小林, chinaphotonics@163.com
    • 基金项目: 湖南省杰出青年基金(批准号: 2023JJ10057)资助的课题.
      Corresponding author: Wang Xiao-Lin, chinaphotonics@163.com
    • Funds: Project supported by the Fund for Distinguished Young Scholars of Hunan Province, China (Grant No. 2023JJ10057).
    [1]

    黄婷, 杜伟哲, 苏坤, 张建超, 李敬洋, 祁俊峰, 雷永平, 武强, 肖荣诗 2022 中国激光 49 28Google Scholar

    Huang T, Du W Z, Su K, Zhang J C, Li J Y, Qi J F, Lei Y P, Wu Q, Xiao R S 2022 Chin. J. Lasers 49 28Google Scholar

    [2]

    Marimuthu S, Smith B 2021 Int. J. Adv. Manuf. Technol. 113 177Google Scholar

    [3]

    Chen Z Z, Xu Y T, Guo Y D, Wang B S, Xu J, Xu J L, Gao H W, Yuan L, Yuan H T, Lin Y Y, Xiao Y S, Bo Y, Peng Q J, Lei W Q, Cui D F, Xu Z Y 2015 Appl. Opt. 54 5011Google Scholar

    [4]

    Bian Q, Bo Y, Zuo J W, Yuan L, Chen H B, Peng Q J, Xu Z Y 2020 Opt. Express 28 13895Google Scholar

    [5]

    Hong Z J, Wan Y C, Xi X M, Zhang H W, Wang X L, Xu X J 2022 Appl. Opt. 61 1826Google Scholar

    [6]

    Wang L, Zhang H W, Wang P, Yang B L, Wang X L, Ning Y, Xu X J 2022 Opt. Laser Technol. 154 108338Google Scholar

    [7]

    Wang L, Zhang H W, Wang P, Yang B L, Wang X L, Ning Y, Xu X J 2022 IEEE Photonics J. 14 1Google Scholar

    [8]

    王力, 张汉伟, 王鹏, 王小林, 宁禹, 韩凯, 许晓军 2023 中国激光 50 152Google Scholar

    Wang L, Zhang H W, Wang P, Wang X L, Ning Y, Han K, Xu X J 2023 Chin. J. Lasers 50 152Google Scholar

    [9]

    Zheng J K, Bo Y, Xie S Y, Zuo J W, Wang P Y, Guo Y D, Liu B L, Peng Q J, Cui D F, Lei W Q, Xu Z Y 2013 Chin. Phys. Lett. 30 074202Google Scholar

    [10]

    IPG https://www.ipgphotonics.com/en/229/FileAttachment/YLM-QCW+and+YLR-QCW+Single-mode+Datasheet.pdf [2023-03-30]

    [11]

    IPG https://www.ipgphotonics.com/cn/101/FileAttachment/YLM-QCW+Series+Datasheet.pdf [2023-03-30]

    [12]

    IPG https://www.ipgphotonics.com/ru/86/FileAttachment/YLS-2000_20000-QCW+Datasheet.pdf [2023-03-30]

    [13]

    IPG https://www.ipgphotonics.com/ru/126/FileAttachment/YLS-2300_23000-QCW+Datasheet.pdf [2023-03-30]

    [14]

    武汉锐科 https://www.raycuslaser.com/upload/old_file/201808/5b6168071a474.pdf [2023-03-30]

    [15]

    武汉锐科 https://www.raycuslaser.com/upload/20210507/1f52nmd6in812mko.pdf [2023-03-30]

    [16]

    武汉锐科 https://www.jyothishya.com/view/2636.html [2023-03-30]

    [17]

    创鑫激光 http://www.maxphotonics.com/vancheerfile/files/2020/4/20200416155923674.pdf [2023-03-30]

    [18]

    创鑫激光 http://www.maxphotonics.com/vancheerfile/files/2020/4/20200416155938936.pdf [2023-03-30]

    [19]

    Zhong P L, Wang L, Yang B L, Zhang H W, Xi X M, Wang P, Wang X L 2022 Opt. Lett. 47 2806Google Scholar

    [20]

    Liu J Q, Zeng L F, Wang P, Yang B L, Xi X M, Shi C, Zhang H W, Wang X L, Xi F J 2023 IEEE Photonics J. 15 1500209Google Scholar

    [21]

    王小林, 叶云, 奚小明, 史尘, 张汉伟, 韩凯, 王泽锋, 许晓军, 周朴, 司磊, 陈金宝 2018 中国专利 201821644646.3

    Wang X L, Ye Y, Xi X M, Shi C, Zhang H W, Han K, Wang Z F, Xu X J, Zhou P, Si L, Chen J B 2018 CN Patent 201821644646.3 (in Chinese)

    [22]

    王小林, 张汉伟, 史尘, 段磊, 奚小明 2021 基于SeeFiberLaser的光纤激光建模与仿真 (北京: 科学出版社) 第19, 22, 40, 44页

    Wang X L, Zhang H W, Shi C, Duan L, Xi X M 2021 Fiber Laser Modeling and Simulation Based on SeeFiberLaser (Beijing: Science Press) pp19, 22, 40, 44 (in Chinese)

    [23]

    阿戈沃著(贾东方, 葛春风 译) 2014 非线性光纤光学(第五版) (北京: 电子工业出版社) 第25, 205页

    Agrawal G P (translated by Jia D F, Ge C F) 2014 Nonlinear Fiber Optics (5th Ed.) (Beijing: Publishing House of Electronics Industry) pp25, 205 (in Chinese)

    [24]

    住村和彦日, 西浦匡则日著(宋鑫 译) 2013 图解光纤激光器入门 (北京: 机械工业出版社) 第62页

    Zhu C H Y R, Xi P K Z R(translated by Song X) 2013 Illustrative Introduction to Fiber Lasers (Beijing: China Machine Press) p62 (in Chinese)

    [25]

    Lv X G, Liao T Q, Yi Y 2019 J. Phys. Conf. Ser. 1213 42053Google Scholar

    [26]

    高俊峰, 闫明鉴, 梁慧生, 詹涌, 韩志刚, 朱日宏, 刘明 2021 激光与红外 51 1013Google Scholar

    Gao J F, Yan M J, Liang H S, Zhan Y, Han Z G, Zhu R H, Liu M 2021 Laser & Infrared 51 1013Google Scholar

    [27]

    Villate D, Blanchot N, Rouyer C 2007 Opt. Lett. 32 524Google Scholar

  • 图 1  掺镱光纤的吸收/发射截面

    Fig. 1.  Absorption/emission cross sections of ytterbium-doped fibers

    图 2  时域图 (a) 泵浦脉冲上升沿; (b) 不同上升时间下的输出脉冲

    Fig. 2.  Time domain diagram: (a) Rising edge of pump pulse; (b) output pulses at different rise times.

    图 3  不同结构下的仿真输出光谱

    Fig. 3.  Simulation output spectra under different structure.

    图 4  增益光纤中的非线性效应累积 (a) 功率分布; (b) B积分

    Fig. 4.  Accumulation of nonlinear effects in gain fibers: (a) Power distribution; (b) B integral.

    图 5  双端输出QCW光纤激光器实验结构

    Fig. 5.  Experimental structure of double-ended output QCW fiber laser.

    图 6  一体化测试平台

    Fig. 6.  Integrated test platform.

    图 7  双端输出QCW光纤激光器实验结果 (a) 输出功率与效率曲线; (b) 输出光谱; (c) A端光束质量; (d) B端光束质量

    Fig. 7.  Experimental results of double-ended output QCW fiber laser: (a) Curves of output laser power and efficiency; (b) spectra of output laser; (c) beam quality at end A; (d) beam quality at end B .

    图 8  脉冲形态

    Fig. 8.  Pulse morphology.

    图 9  单端输出QCW光纤激光器实验结构

    Fig. 9.  Experimental structure of single-ended output QCW fiber laser.

    图 10  不同结构下的输出光谱

    Fig. 10.  Output spectra under different structures.

    表 1  QCW激光器科研与产业现状

    Table 1.  QCW laser research and industry status.

    年份科研单位结构/型号峰值功率/kW平均功率
    /kW
    光束质量
    因子M 2
    脉宽/ms频率/kHz
    2013中国科学院理化技术研究所[9]空间MOPA结构(Nd:YAG平板放大器)0.564#0.04231.560.0751
    2015中国科学院理化技术研究所[3]空间MOPA结构(Nd:YAG平板放大器)102.5#8.2>3.50.20.4
    2020中国科学院理化技术研究所[4]空间MOPA结构(Nd:YAG平板放大器)2.2#0.08611.370.10.4
    2022国防科技大学[5]全光纤振荡器9.70.898~2.40.11
    2022国防科技大学[6]全光纤振荡器6.50.5011.380.11
    2022国防科技大学[7]全光纤振荡器7.30.56891.430.11
    2023国防科技大学[8]全光纤振荡器10.750.973~1.610.091
    2015IPG[10]YLM-150/1500-QCW1.50.1501.050.05—500—50
    2015IPG[11]YLM-250/2500-QCW2.50.2501.050.05—500—50
    2015IPG[12]YLS-2000/20000-QCW20212.33#, 44#0.2—102
    2016IPG[13]YLS-2300/23000-QCW232.312.33#, 44#0.2—102
    2018武汉锐科[14]RFL-QCW450/1500FS1.50.450<1.45#, <5.82#0.1—750.050—5
    2018武汉锐科[15]RFL-QCW150/15001.50.150<1.45#, <5.82#0.05—500—5
    2021武汉锐科[16]RFL-QCW1500/15000151.5<11.64#0.05—500—5
    2019创鑫激光[17]MFSQ-150/1500W1.50.1501.3, 2.80.1—500.001—5
    2019创鑫激光[18]MFSQ-500/2500W2.50.5002.50.1—500.001—5
    注: 标#数据根据已知数据计算得出.
    下载: 导出CSV

    表 2  仿真参数

    Table 2.  Simulation parameter.

    物理量物理意义上下标
    符号
    物理意义
    $P$功率$ + $正向
    ${N_0}$掺杂离子浓度$ - $反向
    ${N_1}$基态粒子数密度p泵浦光
    ${N_2}$激发态粒子数密度s信号光
    Acore纤芯面积$m$泵浦光波长序数
    Aeff纤芯有效面积[24]$n$信号光波长序数
    $\lambda $波长$N$信号光波长
    离散数
    $z$增益光纤的轴向坐标e发射截面
    $\varGamma $填充因子a吸收截面
    $\sigma $吸收发射截面$ {\text{OC1}} $输出耦合光栅1
    $R$反射率${\text{OC2}}$输出耦合光栅2
    $a$损耗系数
    gR拉曼增益系数
    $\tau $激发态粒子寿命
    $\nu $光波频率
    $\omega $光波角频率
    Beff斯托克斯辐射的
    有效带宽
    Δλ实际增益光谱带宽
    L增益光纤长度
    h普朗克常量
    $\hbar $约化普朗克常量
    c光速
    下载: 导出CSV
  • [1]

    黄婷, 杜伟哲, 苏坤, 张建超, 李敬洋, 祁俊峰, 雷永平, 武强, 肖荣诗 2022 中国激光 49 28Google Scholar

    Huang T, Du W Z, Su K, Zhang J C, Li J Y, Qi J F, Lei Y P, Wu Q, Xiao R S 2022 Chin. J. Lasers 49 28Google Scholar

    [2]

    Marimuthu S, Smith B 2021 Int. J. Adv. Manuf. Technol. 113 177Google Scholar

    [3]

    Chen Z Z, Xu Y T, Guo Y D, Wang B S, Xu J, Xu J L, Gao H W, Yuan L, Yuan H T, Lin Y Y, Xiao Y S, Bo Y, Peng Q J, Lei W Q, Cui D F, Xu Z Y 2015 Appl. Opt. 54 5011Google Scholar

    [4]

    Bian Q, Bo Y, Zuo J W, Yuan L, Chen H B, Peng Q J, Xu Z Y 2020 Opt. Express 28 13895Google Scholar

    [5]

    Hong Z J, Wan Y C, Xi X M, Zhang H W, Wang X L, Xu X J 2022 Appl. Opt. 61 1826Google Scholar

    [6]

    Wang L, Zhang H W, Wang P, Yang B L, Wang X L, Ning Y, Xu X J 2022 Opt. Laser Technol. 154 108338Google Scholar

    [7]

    Wang L, Zhang H W, Wang P, Yang B L, Wang X L, Ning Y, Xu X J 2022 IEEE Photonics J. 14 1Google Scholar

    [8]

    王力, 张汉伟, 王鹏, 王小林, 宁禹, 韩凯, 许晓军 2023 中国激光 50 152Google Scholar

    Wang L, Zhang H W, Wang P, Wang X L, Ning Y, Han K, Xu X J 2023 Chin. J. Lasers 50 152Google Scholar

    [9]

    Zheng J K, Bo Y, Xie S Y, Zuo J W, Wang P Y, Guo Y D, Liu B L, Peng Q J, Cui D F, Lei W Q, Xu Z Y 2013 Chin. Phys. Lett. 30 074202Google Scholar

    [10]

    IPG https://www.ipgphotonics.com/en/229/FileAttachment/YLM-QCW+and+YLR-QCW+Single-mode+Datasheet.pdf [2023-03-30]

    [11]

    IPG https://www.ipgphotonics.com/cn/101/FileAttachment/YLM-QCW+Series+Datasheet.pdf [2023-03-30]

    [12]

    IPG https://www.ipgphotonics.com/ru/86/FileAttachment/YLS-2000_20000-QCW+Datasheet.pdf [2023-03-30]

    [13]

    IPG https://www.ipgphotonics.com/ru/126/FileAttachment/YLS-2300_23000-QCW+Datasheet.pdf [2023-03-30]

    [14]

    武汉锐科 https://www.raycuslaser.com/upload/old_file/201808/5b6168071a474.pdf [2023-03-30]

    [15]

    武汉锐科 https://www.raycuslaser.com/upload/20210507/1f52nmd6in812mko.pdf [2023-03-30]

    [16]

    武汉锐科 https://www.jyothishya.com/view/2636.html [2023-03-30]

    [17]

    创鑫激光 http://www.maxphotonics.com/vancheerfile/files/2020/4/20200416155923674.pdf [2023-03-30]

    [18]

    创鑫激光 http://www.maxphotonics.com/vancheerfile/files/2020/4/20200416155938936.pdf [2023-03-30]

    [19]

    Zhong P L, Wang L, Yang B L, Zhang H W, Xi X M, Wang P, Wang X L 2022 Opt. Lett. 47 2806Google Scholar

    [20]

    Liu J Q, Zeng L F, Wang P, Yang B L, Xi X M, Shi C, Zhang H W, Wang X L, Xi F J 2023 IEEE Photonics J. 15 1500209Google Scholar

    [21]

    王小林, 叶云, 奚小明, 史尘, 张汉伟, 韩凯, 王泽锋, 许晓军, 周朴, 司磊, 陈金宝 2018 中国专利 201821644646.3

    Wang X L, Ye Y, Xi X M, Shi C, Zhang H W, Han K, Wang Z F, Xu X J, Zhou P, Si L, Chen J B 2018 CN Patent 201821644646.3 (in Chinese)

    [22]

    王小林, 张汉伟, 史尘, 段磊, 奚小明 2021 基于SeeFiberLaser的光纤激光建模与仿真 (北京: 科学出版社) 第19, 22, 40, 44页

    Wang X L, Zhang H W, Shi C, Duan L, Xi X M 2021 Fiber Laser Modeling and Simulation Based on SeeFiberLaser (Beijing: Science Press) pp19, 22, 40, 44 (in Chinese)

    [23]

    阿戈沃著(贾东方, 葛春风 译) 2014 非线性光纤光学(第五版) (北京: 电子工业出版社) 第25, 205页

    Agrawal G P (translated by Jia D F, Ge C F) 2014 Nonlinear Fiber Optics (5th Ed.) (Beijing: Publishing House of Electronics Industry) pp25, 205 (in Chinese)

    [24]

    住村和彦日, 西浦匡则日著(宋鑫 译) 2013 图解光纤激光器入门 (北京: 机械工业出版社) 第62页

    Zhu C H Y R, Xi P K Z R(translated by Song X) 2013 Illustrative Introduction to Fiber Lasers (Beijing: China Machine Press) p62 (in Chinese)

    [25]

    Lv X G, Liao T Q, Yi Y 2019 J. Phys. Conf. Ser. 1213 42053Google Scholar

    [26]

    高俊峰, 闫明鉴, 梁慧生, 詹涌, 韩志刚, 朱日宏, 刘明 2021 激光与红外 51 1013Google Scholar

    Gao J F, Yan M J, Liang H S, Zhan Y, Han Z G, Zhu R H, Liu M 2021 Laser & Infrared 51 1013Google Scholar

    [27]

    Villate D, Blanchot N, Rouyer C 2007 Opt. Lett. 32 524Google Scholar

  • [1] 李科, 叶云, 李欣然, 丁欣怡, 徐小勇, 粟荣涛, 王小林, 宁禹, 习锋杰. 4.5 kW 1050 nm双端输出近单模全光纤激光振荡器. 物理学报, 2025, 74(10): . doi: 10.7498/aps.74.20250072
    [2] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2022, 71(3): 034205. doi: 10.7498/aps.71.20211751
    [3] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器. 物理学报, 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [4] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211751
    [5] 刘鸿志, 王宇恒, 郑浩, 赵云峰, 于永吉, 金光勇. 双端泵浦Nd3+掺杂MgO:LiNbO3正交偏振双波长连续激光调控. 物理学报, 2021, 70(18): 184203. doi: 10.7498/aps.70.20210449
    [6] 安毅, 潘志勇, 杨欢, 黄良金, 马鹏飞, 闫志平, 姜宗福, 周朴. 国产长锥形光纤实现400 W单频单模激光输出. 物理学报, 2021, 70(20): 204204. doi: 10.7498/aps.70.20210682
    [7] 张雨秋, 黄良金, 常琦, 安毅, 马鹏飞, 冷进勇, 周朴. 光纤激光基模光束的${\boldsymbol{\beta}}$因子. 物理学报, 2021, 70(20): 204203. doi: 10.7498/aps.70.20210281
    [8] 王井上, 张瑶, 王军利, 魏志义, 常国庆. 飞秒光纤激光相干合成技术最新进展. 物理学报, 2021, 70(3): 034206. doi: 10.7498/aps.70.20201683
    [9] 粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军. 窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析. 物理学报, 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [10] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [11] 谢仕永, 张小富, 乐小云, 杨程亮, 薄勇, 王鹏远, 许祖彦. 885nm双端泵准连续微秒脉冲1319nm三镜环形腔激光. 物理学报, 2016, 65(15): 154205. doi: 10.7498/aps.65.154205
    [12] 姜曼, 马鹏飞, 周朴, 王小林. 基于多层电介质光栅光谱合成的光束质量. 物理学报, 2016, 65(10): 104203. doi: 10.7498/aps.65.104203
    [13] 李时春, 陈根余, 周聪, 陈晓锋, 周宇. 万瓦级光纤激光焊接过程中小孔内外等离子体研究. 物理学报, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [14] 张利明, 周寿桓, 赵鸿, 张昆, 郝金坪, 张大勇, 朱辰, 李尧, 王雄飞, 张浩彬. 780W全光纤窄线宽光纤激光器. 物理学报, 2014, 63(13): 134205. doi: 10.7498/aps.63.134205
    [15] 韩凯, 许晓军, 周朴, 马阎星, 王小林, 刘泽金. 多波长激光主动式相干合成理论初探. 物理学报, 2011, 60(7): 074206. doi: 10.7498/aps.60.074206
    [16] 王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君. 基于相位调制-解调的光纤激光相位噪声检测方法研究. 物理学报, 2011, 60(8): 084203. doi: 10.7498/aps.60.084203
    [17] 耿超, 李新阳, 张小军, 饶长辉. 倾斜相差对光纤激光相干合成的影响与模拟校正. 物理学报, 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [18] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究. 物理学报, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [19] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [20] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
计量
  • 文章访问数:  6188
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-16
  • 修回日期:  2023-05-13
  • 上网日期:  2023-05-29
  • 刊出日期:  2023-08-05

/

返回文章
返回