搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类场矩诱导的可调零场自旋转移力矩纳米振荡器

郭晓庆 王强 薛海斌

引用本文:
Citation:

类场矩诱导的可调零场自旋转移力矩纳米振荡器

郭晓庆, 王强, 薛海斌

Field-like torque-induced tunable zero-field spin-torque nano-oscillator

Guo Xiao-Qing, Wang Qiang, Xue Hai-Bin
PDF
HTML
导出引用
  • 自旋转移力矩纳米振荡器是一种直流驱动的新型纳米微波振荡器, 因其易集成、尺寸小、频率调制范围宽等优点, 成为未来射频收发器的理想器件. 但是, 自旋转移力矩纳米振荡器的稳定自激振荡需要外加磁场的条件限制了其应用. 基于宏自旋模型(又称单自旋或单畴模型), 利用Landau-Lifshitz-Gilbert-Slonczewski方程, 理论上研究了类场矩和电流强度对垂直磁化的自由层磁矩的零场稳定自激振荡特性的影响. 研究结果表明, 当类场矩参数与自旋转移力矩参数的比值为负值且其绝对值大于某一数值时, 自旋转移力矩纳米振荡器可以实现零场自激振荡, 其物理机制可以通过能量平衡方程解释, 并且这一临界比值依赖于该系统的阻尼系数和电流强度. 尤其是, 自旋转移力矩纳米振荡器的稳定自激振荡频率可以通过类场矩参数与自旋转移力矩参数的比值和电流强度的大小来调节, 并且其类场矩的绝对值越大, 施加的电流强度越小(大于临界电流强度), 则越有利于抑制二次和三次自激振荡频率的形成, 从而提高自旋转移力矩纳米振荡器的“单频”性. 上述结果提供了一种实现频率可调的零场自旋转移力矩纳米振荡器的理论方案.
    The spin-torque nano-oscillator (STNO), which is a novel type of nano-sized microwave oscillator driven by direct current, is considered as a promising candidate for future radio frequency (RF) transceivers owing to its scalability, nanoscale size and high frequency tunability. However, the potential application of STNO is limited because its stable oscillation requires an external magnetic field. In this work, the influences of the field-like torque and applied current intensity on the stable oscillation of STNO with a perpendicularly magnetized free layer are studied theoretically based on the macrospin model (also known as the single-spin or single-domain model) and the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation in the absence of magnetic field. It is demonstrated numerically that a stable oscillation of STNO can be observed when the ratio between the field-like torque and the spin torque is a negative value and larger than a certain value that depends on the damping coefficient and the current intensity, whose physical mechanism can be understood by the energy balance equation. Moreover, the frequency of stable oscillation of STNO can be modulated by the ratio between the field-like torque and the spin torque and also by the current intensity. Particularly, the larger the absolute value of the ratio between the field-like torque and the spin torque and the smaller the applied current intensity (above the critical current intensity), the more conducive it is to suppressing the formation of second and third oscillation frequencies, thereby enhancing the STNO’s “single-frequency” feature. Our findings provide a theoretical scheme for realizing a frequency tunable zero-field STNO, which may be useful for designing future RF transceivers.
      通信作者: 薛海斌, xuehaibin@tyut.edu.cn
    • 基金项目: 山西省应用基础研究计划(批准号: 20210302123184, 201901D211425, 201601D011015)和山西省高等学校优秀青年学术带头人支持计划(批准号: 163220120-S)资助的课题.
      Corresponding author: Xue Hai-Bin, xuehaibin@tyut.edu.cn
    • Funds: Project supported by the Applied Basic Research Program of Shanxi Province, China (Grant Nos. 20210302123184, 201901D211425, 201601D011015) and the Outstanding Innovative Academic Leader of Higher Learning Institutions of Shanxi Province, China (Grant No. 163220120-S).
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Julliere M 1975 Phys. Lett. A 54 225Google Scholar

    [4]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231Google Scholar

    [5]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [6]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380Google Scholar

    [7]

    Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nat. Mater. 6 447Google Scholar

    [8]

    Georges B, Grollier J, Cros V, Fert A 2008 Appl. Phys. Lett. 92 232504Google Scholar

    [9]

    Ranjbar M, Drrenfeld P, Haidar M, Iacocca E, Balinskiy M, Le T Q, Fazlali M, Houshang A, Awad A A, Dumas R K, Kerman J 2014 IEEE Magn. Lett. 5 3000504Google Scholar

    [10]

    Kubota H, Yakushiji K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yuasa S, Taniguchi T, Arai H, Imamura H 2013 Appl. Phys. Express 6 103003Google Scholar

    [11]

    Litvinenko A, Iurchuk V, Sethi P, Louis S, Tyberkevych V, Li J, Jenkins A, Ferreira R, Dieny B, Slavin A, Ebels U 2020 Nano Lett. 20 6104Google Scholar

    [12]

    方彬, 曾中明 2014 科学通报 59 1804Google Scholar

    Fang B, Zeng Z M 2014 Chin. Sci. Bull. 59 1804Google Scholar

    [13]

    Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H, Imamura H 2013 Appl. Phys. Express 6 123003Google Scholar

    [14]

    Awad A A, Houshang A, Zahedinejad M, Khymyn R, Åkerman J 2020 Appl. Phys. Lett. 116 232401Google Scholar

    [15]

    Arun R, Gopal R, Chandrasekar V K, Lakshmanan M 2022 J. Phys. Condens. Matter 34 125803Google Scholar

    [16]

    Taniguchi T, Tsunegi S, Kubota H, Imamura H 2014 Appl. Phys. Lett. 104 152411Google Scholar

    [17]

    Taniguchi T, Arai H, Kubota H, Imamura H 2014 IEEE Trans. Magn. 50 1400404Google Scholar

    [18]

    Guo Y Y, Xue H B, Liu Z J 2015 AIP Adv. 5 057114Google Scholar

    [19]

    Arun R, Gopal R, Chandrasekar V K, Lakshmanan M 2022 J. Appl. Phys. 132 094301Google Scholar

    [20]

    Arai H, Matsumoto R, Yuasa S, Imamura H 2015 Appl. Phys. Express 8 083005Google Scholar

    [21]

    Arai H, Matsumoto R, Yuasa S, Imamura H 2016 J. Phys. Soc. Jpn. 85 063802Google Scholar

    [22]

    Guo Y Y, Zhao F F, Xue H B, Liu Z J 2016 Chin. Phys. Lett. 33 037501Google Scholar

    [23]

    Zhao C P, Ma X Q, Huang H B, Liu Z H, Jafri H M, Wang J J, Wang X Y, Chen L Q 2017 Appl. Phys. Lett. 111 082406Google Scholar

    [24]

    郭圆圆, 蒿建龙, 薛海斌, 刘喆颉 2015 物理学报 64 198502Google Scholar

    Guo Y Y, Hao J L, Xue H B, Liu Z J 2015 Acta Phys. Sin. 64 198502Google Scholar

    [25]

    Kowalska E, Kákay A, Fowley C, Sluka V, Lindner J, Fassbender J, Deac A M 2019 J. Appl. Phys. 125 083902Google Scholar

    [26]

    Shirokura T, Hai P N 2020 J. Appl. Phys. 127 103904Google Scholar

    [27]

    Zhang W, Zhang Y, Jiang B, Fang B, Zhong H, Li H, Zeng Z M, Yan S S, Han G, Liu G, Yu S, Kang S 2021 Appl. Phys. Lett. 118 012405Google Scholar

    [28]

    Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar

    [29]

    Slonczewski J C 2005 Phys. Rev. B 71 024411Google Scholar

    [30]

    Fowley C, Sluka V, Berent K, Lindner J, Fassbender J, Rippard W H, Pufall M R, Russek S E, Deac A M 2014 Appl. Phys. Express 7 043001Google Scholar

    [31]

    Taniguchi T, Kubota H 2016 Phys. Rev. B 93 174401Google Scholar

    [32]

    Taniguchi T, Ito T, Tsunegi S, Kubota H, Utsumi Y 2017 Phys. Rev. B 96 024406Google Scholar

    [33]

    Taniguchi T, Isogami S, Shiokawa Y, Ishitani Y, Komura E, Sasaki T, Mitani S, Hayashi M 2022 Phys. Rev. B 106 104431Google Scholar

    [34]

    Mancilla-Almonacid D, Arias R E, Escobar R A, Altbir D, Allende S 2018 J. Appl. Phys. 124 162102Google Scholar

    [35]

    Talatchian P, Romera M, Araujo F A, Bortolotti P, Cros V, Vodenicarevic D, Locatelli N, Querlioz D, Grollier J 2020 Phys. Rev. Appl. 13 024073Google Scholar

    [36]

    Zeng L, Xu X J, Chen H H, Zhou Y, Zhang D M, Wang Y J, Zhang Y G, Zhao W S 2020 Appl. Phys. Lett. 117 082404Google Scholar

    [37]

    Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E, Katine J A 2005 Nature 437 389Google Scholar

    [38]

    Mancoff F B, Rizzo N D, Engel B N, Tehrani S 2005 Nature 437 393Google Scholar

    [39]

    Singh H, Konishi K, Bhuktare S, Bose A, Miwa S, Fukushima A, Yakushiji K, Yuasa S, Kubota H, Suzuki Y, Tulapurkar A A 2017 Phys. Rev. Appl. 8 064011Google Scholar

    [40]

    Singh H, Bose A, Bhuktare S, Fukushima A, Yakushiji K, Yuasa S, Kubota H, Tulapurkar A A 2018 Phys. Rev. Appl. 10 024001Google Scholar

    [41]

    Zeng L, Liu Y, Chen H H, Zhou Y, Zhang D M, Zhang Y G, Zhao W S 2020 Nanotechnology 31 375205Google Scholar

  • 图 1  由三个圆形薄膜组成的自旋转移力矩纳米振荡器的示意图. 该结构上面为厚度d和截面半径r分别为2 nm和60 nm的自由层, 且其磁矩垂直于膜面; 中间为1 nm厚度非磁性材料形成的隧道势垒层; 下面为磁矩平行于膜面的极化层. 在笛卡尔坐标系中, x-y平面和z轴分别平行和垂直于膜面, 而在球坐标系中$\varphi $θ分别为自由层磁矩的方位角和极角

    Fig. 1.  Schematic diagram for the considered spin-transfer torque nano-oscillator consisting of the trilayer circular thin films. Here, the top, middle and bottom layers are the 2 nm-thick perpendicular magnetized free layer with a radius of 60 nm, the 1 nm-thick tunnel barrier layer formed by non-magnetic material and the in-plane polarizer pinned layer, respectively. Moreover, in the Cartesian coordinate system, the x-y plane and z-axes of are parallel and perpendicular to the free layer, respectively; while the $\varphi $ and θ in the spherical coordinate system are the azimuth and polar angles of the magnetization of the free layer, respectively.

    图 2  自由层磁矩$x$轴分量${m_x}$的均方根${m_{x{\text{-rms}}}}$在不同阻尼系数下随βI变化的相图 (a) $\alpha = 0.003$; (b) $\alpha = 0.005$; (c) $\alpha = 0.007$; (d) $\alpha = 0.009$

    Fig. 2.  Phase diagrams of the root-mean-square value of ${m_{x{\text{-rms}}}}$ of the ${m_x}$ component of the free layer as a function of β and I with different Gilbert damping constants: (a) $\alpha = 0.003$; (b) $\alpha = 0.005$; (c) $\alpha = 0.007$; (d) $\alpha = 0.009$

    图 3  当电流为1.5 mA时, 在一个周期内, 自旋转移力矩提供的平均能量${\overline W_{\text{s}}}$, 阻尼消耗的平均能量${\overline W_\alpha }$, 以及其平均能量之差${\overline W_{\text{s}}} - {\overline W_\alpha }$随自由层磁矩z分量的变化 (a) β = 0; (b) β = –0.2; (c) β = 0.2

    Fig. 3.  In a precession period, the average work done by the spin-transfer torque ${\overline W_{\text{s}}}$, the average energy dissipation due to the damping ${\overline W_\alpha }$, and the energy difference between ${\overline W_{\text{s}}}$ and ${\overline W_\alpha }$ as a function of the z component of the free layer magnetization at given current intensity I = 1.5 Ma: (a) β = 0; (b) β = –0.2; (c) β = 0.2.

    图 4  (a) 自旋转移力矩纳米振荡器的振幅和频率对β的依赖关系; (b), (c) 自由层磁矩的x分量和z分量在不同类场矩β情形下的稳态振荡情况(I = 1.5 mA)

    Fig. 4.  (a) Dependences of the amplitude and frequency of spin-transfer torque nano-oscillator on the β; (b), (c) the x and the z components of the free layer magnetization as a function of time for the different ratios between the spin-tranfer torque and the field-like torque β (I = 1.5 mA).

    图 5  α = 0.005时, 自旋转移力矩纳米振荡器稳定自激振荡的频率(a)和振幅(b)随βI变化的相图

    Fig. 5.  Phase diagrams of the frequency (a) and amplitude (b) of stable oscillation of spin-transfer torque nano-oscillator as a function of the β and the I at α = 0.005.

    图 6  (a)自旋转移力矩纳米振荡器的振幅和频率对施加电流强度I的依赖关系; (b), (c) 自由层磁矩的x分量和z分量在不同电流强度情形下的稳态振荡情况(β = –0.2)

    Fig. 6.  (a) Dependences of the amplitude and frequency of spin-transfer torque nano-oscillator on the applied current intensity I; (b), (c) the x and the z components of the free layer magnetization as a function of time for the different values of current intensity (β = –0.2).

  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Julliere M 1975 Phys. Lett. A 54 225Google Scholar

    [4]

    Miyazaki T, Tezuka N 1995 J. Magn. Magn. Mater. 139 L231Google Scholar

    [5]

    Moodera J S, Kinder L R, Wong T M, Meservey R 1995 Phys. Rev. Lett. 74 3273Google Scholar

    [6]

    Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A, Ralph D C 2003 Nature 425 380Google Scholar

    [7]

    Houssameddine D, Ebels U, Delaet B, Rodmacq B, Firastrau I, Ponthenier F, Brunet M, Thirion C, Michel J P, Prejbeanu-Buda L, Cyrille M C, Redon O, Dieny B 2007 Nat. Mater. 6 447Google Scholar

    [8]

    Georges B, Grollier J, Cros V, Fert A 2008 Appl. Phys. Lett. 92 232504Google Scholar

    [9]

    Ranjbar M, Drrenfeld P, Haidar M, Iacocca E, Balinskiy M, Le T Q, Fazlali M, Houshang A, Awad A A, Dumas R K, Kerman J 2014 IEEE Magn. Lett. 5 3000504Google Scholar

    [10]

    Kubota H, Yakushiji K, Fukushima A, Tamaru S, Konoto M, Nozaki T, Ishibashi S, Saruya T, Yuasa S, Taniguchi T, Arai H, Imamura H 2013 Appl. Phys. Express 6 103003Google Scholar

    [11]

    Litvinenko A, Iurchuk V, Sethi P, Louis S, Tyberkevych V, Li J, Jenkins A, Ferreira R, Dieny B, Slavin A, Ebels U 2020 Nano Lett. 20 6104Google Scholar

    [12]

    方彬, 曾中明 2014 科学通报 59 1804Google Scholar

    Fang B, Zeng Z M 2014 Chin. Sci. Bull. 59 1804Google Scholar

    [13]

    Taniguchi T, Arai H, Tsunegi S, Tamaru S, Kubota H, Imamura H 2013 Appl. Phys. Express 6 123003Google Scholar

    [14]

    Awad A A, Houshang A, Zahedinejad M, Khymyn R, Åkerman J 2020 Appl. Phys. Lett. 116 232401Google Scholar

    [15]

    Arun R, Gopal R, Chandrasekar V K, Lakshmanan M 2022 J. Phys. Condens. Matter 34 125803Google Scholar

    [16]

    Taniguchi T, Tsunegi S, Kubota H, Imamura H 2014 Appl. Phys. Lett. 104 152411Google Scholar

    [17]

    Taniguchi T, Arai H, Kubota H, Imamura H 2014 IEEE Trans. Magn. 50 1400404Google Scholar

    [18]

    Guo Y Y, Xue H B, Liu Z J 2015 AIP Adv. 5 057114Google Scholar

    [19]

    Arun R, Gopal R, Chandrasekar V K, Lakshmanan M 2022 J. Appl. Phys. 132 094301Google Scholar

    [20]

    Arai H, Matsumoto R, Yuasa S, Imamura H 2015 Appl. Phys. Express 8 083005Google Scholar

    [21]

    Arai H, Matsumoto R, Yuasa S, Imamura H 2016 J. Phys. Soc. Jpn. 85 063802Google Scholar

    [22]

    Guo Y Y, Zhao F F, Xue H B, Liu Z J 2016 Chin. Phys. Lett. 33 037501Google Scholar

    [23]

    Zhao C P, Ma X Q, Huang H B, Liu Z H, Jafri H M, Wang J J, Wang X Y, Chen L Q 2017 Appl. Phys. Lett. 111 082406Google Scholar

    [24]

    郭圆圆, 蒿建龙, 薛海斌, 刘喆颉 2015 物理学报 64 198502Google Scholar

    Guo Y Y, Hao J L, Xue H B, Liu Z J 2015 Acta Phys. Sin. 64 198502Google Scholar

    [25]

    Kowalska E, Kákay A, Fowley C, Sluka V, Lindner J, Fassbender J, Deac A M 2019 J. Appl. Phys. 125 083902Google Scholar

    [26]

    Shirokura T, Hai P N 2020 J. Appl. Phys. 127 103904Google Scholar

    [27]

    Zhang W, Zhang Y, Jiang B, Fang B, Zhong H, Li H, Zeng Z M, Yan S S, Han G, Liu G, Yu S, Kang S 2021 Appl. Phys. Lett. 118 012405Google Scholar

    [28]

    Slonczewski J C 1989 Phys. Rev. B 39 6995Google Scholar

    [29]

    Slonczewski J C 2005 Phys. Rev. B 71 024411Google Scholar

    [30]

    Fowley C, Sluka V, Berent K, Lindner J, Fassbender J, Rippard W H, Pufall M R, Russek S E, Deac A M 2014 Appl. Phys. Express 7 043001Google Scholar

    [31]

    Taniguchi T, Kubota H 2016 Phys. Rev. B 93 174401Google Scholar

    [32]

    Taniguchi T, Ito T, Tsunegi S, Kubota H, Utsumi Y 2017 Phys. Rev. B 96 024406Google Scholar

    [33]

    Taniguchi T, Isogami S, Shiokawa Y, Ishitani Y, Komura E, Sasaki T, Mitani S, Hayashi M 2022 Phys. Rev. B 106 104431Google Scholar

    [34]

    Mancilla-Almonacid D, Arias R E, Escobar R A, Altbir D, Allende S 2018 J. Appl. Phys. 124 162102Google Scholar

    [35]

    Talatchian P, Romera M, Araujo F A, Bortolotti P, Cros V, Vodenicarevic D, Locatelli N, Querlioz D, Grollier J 2020 Phys. Rev. Appl. 13 024073Google Scholar

    [36]

    Zeng L, Xu X J, Chen H H, Zhou Y, Zhang D M, Wang Y J, Zhang Y G, Zhao W S 2020 Appl. Phys. Lett. 117 082404Google Scholar

    [37]

    Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E, Katine J A 2005 Nature 437 389Google Scholar

    [38]

    Mancoff F B, Rizzo N D, Engel B N, Tehrani S 2005 Nature 437 393Google Scholar

    [39]

    Singh H, Konishi K, Bhuktare S, Bose A, Miwa S, Fukushima A, Yakushiji K, Yuasa S, Kubota H, Suzuki Y, Tulapurkar A A 2017 Phys. Rev. Appl. 8 064011Google Scholar

    [40]

    Singh H, Bose A, Bhuktare S, Fukushima A, Yakushiji K, Yuasa S, Kubota H, Tulapurkar A A 2018 Phys. Rev. Appl. 10 024001Google Scholar

    [41]

    Zeng L, Liu Y, Chen H H, Zhou Y, Zhang D M, Zhang Y G, Zhao W S 2020 Nanotechnology 31 375205Google Scholar

  • [1] 王康颖, 马才媛, 蔚慧敏, 张海涛, 岑建勇, 王英英, 潘俊星, 张进军. 振荡场作用下聚合物/纳米棒混合体系的自组装. 物理学报, 2023, 72(7): 079401. doi: 10.7498/aps.72.20222207
    [2] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转. 物理学报, 2023, 72(8): 087202. doi: 10.7498/aps.72.20222433
    [3] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似. 物理学报, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [4] 赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰. 基于金刚石固态单自旋的纳米尺度零场探测. 物理学报, 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [5] 许碧荣, 王光义. 忆感器文氏电桥振荡器. 物理学报, 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [6] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [7] 高洁, 张民仓. 包含非中心电耦极矩的环状非谐振子势场赝自旋对称性的三对角化表示. 物理学报, 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [8] 郭园园, 蒿建龙, 薛海斌, 刘喆颉. 面内形状各向异性能对自旋转矩振荡器零场振荡特性的影响. 物理学报, 2015, 64(19): 198502. doi: 10.7498/aps.64.198502
    [9] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [10] 金伟, 万振茂, 刘要稳. 自旋转移矩效应激发的非线性磁化动力学. 物理学报, 2011, 60(1): 017502. doi: 10.7498/aps.60.017502
    [11] 曹士英, 张志刚, 柴 路, 王清月. 钛宝石飞秒激光振荡器的稳定性改善. 物理学报, 2008, 57(5): 2971-2975. doi: 10.7498/aps.57.2971
    [12] 詹杰民, 李毓湘. 温盐双扩散均衡场中的振荡现象. 物理学报, 2002, 51(4): 828-834. doi: 10.7498/aps.51.828
    [13] 姚春梅, 郭光灿. 压缩相干态腔场的类自旋GHZ态的制备. 物理学报, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
    [14] 王永久, 唐智明. 质量四极矩场中的轨道进动效应. 物理学报, 2001, 50(12): 2284-2288. doi: 10.7498/aps.50.2284
    [15] 李永民, 樊巧云, 张宽收, 谢常德, 彭堃墀. 三共振准相位匹配光学参量振荡器反射抽运场的正交位相压缩. 物理学报, 2001, 50(8): 1492-1495. doi: 10.7498/aps.50.1492
    [16] 杜懋陆, 李兆民, 谌家军. d~3络合物零场分裂的双自旋-轨道耦合参数模型. 物理学报, 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [17] 楼祺洪, 黄武汉. 自旋—自旋相互作用对红宝石基态零场分裂的贡献. 物理学报, 1965, 21(12): 1962-1967. doi: 10.7498/aps.21.1962
    [18] 冯秉铨, 许鹏飞. 强力振荡器之相角补偿. 物理学报, 1950, 7(6): 59-71. doi: 10.7498/aps.7.59-2
    [19] 许鹏飞, 冯秉铨. 电子耦合振荡器之频率稳定性. 物理学报, 1950, 7(6): 72-80. doi: 10.7498/aps.7.72-2
    [20] 冯秉铨. 强力振荡器之板极效率. 物理学报, 1949, 7(4): 249-257. doi: 10.7498/aps.7.43
计量
  • 文章访问数:  2879
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-18
  • 修回日期:  2023-06-01
  • 上网日期:  2023-06-14
  • 刊出日期:  2023-08-20

/

返回文章
返回