搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Stokes矢量差分法的背景光偏振特性研究

徐菁焓 吴国俊 董晶 于洋 封斐 刘博

引用本文:
Citation:

基于Stokes矢量差分法的背景光偏振特性研究

徐菁焓, 吴国俊, 董晶, 于洋, 封斐, 刘博

Research on polarization characteristics of background light by modified polarization difference imaging method

Xu Jing-Han, Wu Guo-Jun, Dong Jing, Yu Yang, Feng Fei, Liu Bo
PDF
HTML
导出引用
  • 水体介质对光线产生的随机散射事件是水下图像发生退化的主要原因, 水下偏振成像技术利用背景散射光和目标信息光的偏振信息差异可有效提升成像信噪比. 然而随着水体中散射事件增多, 光的偏振特性难以保持, 这使得基于偏振特性去除散射的效果也随之降低. 目前水体中背景散射光的偏振规律尚不明晰, 同时缺少对散射光偏振特性定量描述的数据, 因此研究水下散射光的偏振传输特性对水下偏振成像的去散射工作具有重要意义. 为了明确水下背景散射光的偏振特性, 尤其是偏振角信息, 本文提出一种基于Stokes矢量差分法的背景光偏振方向研究方法. 本方法基于Stokes矢量差分法分析了最优权重系数和Stokes矢量差分结果的图像增强测度(EME)值的耦合关系, 基于最优权重系数计算背景光偏振角度; 结合实验确定不同浊度水体中最优权重系数与Stokes矢量差分法结果的EME分布趋势, 探究散射抑制极限, 分析背景散射光偏振方向随水体浊度变化的趋势. 研究结果表明, 所提方法可得到不同水体环境中背景散射光的确切偏振角度, 揭示了背景散射光的偏振方向随水体浊度的上升呈现与入射光偏振方向正交的趋势. 本文研究为确定水下成像背景散射光的偏振方向提供了方法依据.
    The random scattering event of light by water medium is the primary reason for the degradation in underwater imaging. Underwater polarization imaging technology can enhance the signal-to-noise ratio of imaging effectively by utilizing the polarization information difference between background scattered light and target light. However, as scattering events increase in the water body, it is difficult to maintain the polarization characteristics of light, which reduces the effect of removing scattering based on polarization characteristics. In addition, the polarization rule of background scattered light in water is unclear, and there is a lack of quantitative description of the polarization characteristics of scattered light. Therefore, the study of polarization transmission characteristics of underwater scattered light is of great significance in reducing the scattering light of underwater polarization imaging.In order to clarify the polarization characteristics of underwater background scattered light, especially the polarization angle information, this paper proposes a method for ascertaining polarization angle of background light based on modified polarization difference imaging method. In this method, the coupling relationship between optimal weight coefficient and enhancement measure evaluation (EME) value of the Stokes vector difference result is analyzed, and the background light polarization angle is calculated based on the optimal weight coefficient. Combined with the experimental results, the EME distribution trend of the optimal weight coefficient and the modified polarization difference imaging method results in different turbidity water bodies are determined, the scattering suppression limit is explored, and the trend of background scattered light polarization direction with turbidity of water is analyzed. The results show that the proposed method can obtain the exact polarization angle of background scattered light in different water environments, revealing a trend that the polarization direction of background scattered light becomes orthogonal to the incident light direction as the turbidity of the water increases. This research provides a methodological basis for determining the polarization direction of the background scattered light in underwater imaging.
      通信作者: 吴国俊, wuguojun@opt.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(A类)(批准号: XDA22030201)资助的课题.
      Corresponding author: Wu Guo-Jun, wuguojun@opt.ac.cn
    • Funds: Project supported by the Special project of strategic leading science and technology of Chinese Academy of Sciences (Grant No. XDA22030201).
    [1]

    Liu F, Han P L, Wei Y, Yang K, Huang S Z, Li X, Zhang G, Bai L, Shao X P 2018 Opt. Lett. 43 4903Google Scholar

    [2]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [3]

    Yang L M, Liang J, Zhang W F, Ju H J, Ren L Y, Shao X P 2019 Opt. Commun. 438 96Google Scholar

    [4]

    Cariou J, Le J B, Lotrian J, Guern Y 1990 Appl. Opt. 29 1689Google Scholar

    [5]

    Sabbah S, Shashar N 2007 J. Opt. Soc. Am. A 24 2049Google Scholar

    [6]

    Cronin T W, Marshall J 2011 Phil. Trans. R. Soc. B 366 619Google Scholar

    [7]

    Schechner Y Y, Karpel N 2004 Oceans ’04 MTS/IEEE Techno-Ocean ’04 Kobe, Japan, November 9–12, 2004 p1255

    [8]

    Schechner Y Y, Karpel N 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington, DC, USA, 27 June, 2004 p536

    [9]

    Karpel N, Schechner Y Y 2004 Conference on Polarization - Measurement, Analysis, and Remote Sensing VI Bellingham, WA, July 15, 2004 p106

    [10]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385Google Scholar

    [11]

    贺敬航, 段锦, 战俊彤, 赫立群, 蔡立娟, 张肃 2021 激光与光电子学进展 58 0529002Google Scholar

    He J H, Duan J, Zhan J T, He L Q, Cai L J, Zhang S 2021 Laser Optoelectron. Prog. 58 0529002Google Scholar

    [12]

    Van der Laan J D, Scrymgeour D A, Kemme S A, Dereniak E L 2015 Appl. Opt. 54 2266Google Scholar

    [13]

    Hu H, Zhao L, Li X, Wang H, Yang J, Li K, Liu T 2018 Opt. Express 26 25047Google Scholar

    [14]

    陈养渭 2003 光学与光电技术 56 1719Google Scholar

    Chen Y W 2003 Opt. Optoelectro. Technol. 56 1719Google Scholar

    [15]

    陈养渭 2000 舰船电子工程 20 15

    Chen Y W 2000 Ship Electro. Eng. 20 15

    [16]

    孙晶华 2010 博士学位论文(哈尔滨: 哈尔滨工程大学)

    Sun J H 2010 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [17]

    管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203Google Scholar

    Guan J G, Zhu J P, Tian H, Hou X, 2015 Acta Phys. Sin. 64 224203Google Scholar

    [18]

    Tian H, Zhu J, Tan S, Zhang Y, Zhang Y, Li Y, Hou X 2018 Opt. Laser Technol. 108 515Google Scholar

    [19]

    Tyo J S, Rowe M P, Pugh E N, Engheta N 1996 Appl. Opt. 35 1855Google Scholar

    [20]

    Golestein D 2003 Polarized Light (2nd Ed.) (New York: Marcel Dekker) pp89, 90

    [21]

    Agaian S S, Panetta K 2001 IEEE. T. Image Process. 10 367Google Scholar

    [22]

    杨晓伟, 殷高方, 赵南京, 甘婷婷, 杨瑞芳, 祝玮, 刘建国, 刘文清 2019 光谱学与光谱分析 39 2912Google Scholar

    Chen X W, Yin G F, Zhao N J, Gan T T, Yang R F, Zhu W, Liu J G, Liu W Q 2019 Spectrosc. Spect. Anal. 39 2912Google Scholar

    [23]

    Ntziachtistos V 2010 Nat. Meth. 7 603Google Scholar

  • 图 1  偏振差分探测原理[17]

    Fig. 1.  Detection principle of polarization difference imaging[17]

    图 2  基于M-PDI的背景光偏振方向研究方法流程图

    Fig. 2.  Flow chart of research method for polarization direction of background light based on M-PDI.

    图 3  实验室光路搭建示意图 (a) 理论实验示意图; (b) 实验室光路

    Fig. 3.  Schematic diagram of laboratory light path construction: (a) Schematic diagram of theoretical experiment; (b) laboratory light path.

    图 4  0, 10, 20, 30 NTU条件下传统探测结果和M-PDI探测结果对比

    Fig. 4.  Comparison between traditional detection results and M-PDI detection results under the conditions of 0, 10, 20 and 30 NTU.

    图 5  20 NTU水体中M-PDI输出结果EME值与权重系数γ的关系

    Fig. 5.  Relationship between EME value and weight coefficient γ of M-PDI output results in 20 NTU.

    图 6  0—38 NTU范围内γ和EME值的变化情况

    Fig. 6.  Changes of γ and EME values in the range of 0–38 NTU.

    图 7  最优权重系数在不同浊度下的变化趋势

    Fig. 7.  Variation trend of optimal weight coefficient under different turbidity.

    图 8  EME在不同浊度下的变化趋势

    Fig. 8.  Trend of EME under different turbidity.

    表 1  传统探测结果和M-PDI探测结果EME值对比

    Table 1.  Comparison of EME values between traditional detection results and M-PDI detection results.

    Types of turbidity/
    NTU
    Normal detection result /EME M-PDI dectection
    result/EME
    0 6.6119 12.2156
    10 2.4624 4.5323
    20 1.6951 3.6281
    30 1.4843 4.5022
    下载: 导出CSV

    表 2  不同浊度条件背景光偏振方向变化数据

    Table 2.  Data on the variation of background light polarization direction under different turbidity conditions.

    Turbidity/NTUαTurbidity/NTUα
    044°42′49″1828°5′20″
    244°42′49″2027°18′45″
    444°42′49″2227°44′57″
    644°42′49″2426°12′7″
    844°42′49″2626°1′22″
    1044°42′49″2825°19′27″
    1232°53′10″3025°19′27″
    1429°43′47″3224°39′80″
    1628°53′40″3424°29′34″
    下载: 导出CSV
  • [1]

    Liu F, Han P L, Wei Y, Yang K, Huang S Z, Li X, Zhang G, Bai L, Shao X P 2018 Opt. Lett. 43 4903Google Scholar

    [2]

    韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏 2018 物理学报 67 054202Google Scholar

    Han P L, Liu F, Zhang G, Tao Y, Shao X P 2018 Acta Phys. Sin. 67 054202Google Scholar

    [3]

    Yang L M, Liang J, Zhang W F, Ju H J, Ren L Y, Shao X P 2019 Opt. Commun. 438 96Google Scholar

    [4]

    Cariou J, Le J B, Lotrian J, Guern Y 1990 Appl. Opt. 29 1689Google Scholar

    [5]

    Sabbah S, Shashar N 2007 J. Opt. Soc. Am. A 24 2049Google Scholar

    [6]

    Cronin T W, Marshall J 2011 Phil. Trans. R. Soc. B 366 619Google Scholar

    [7]

    Schechner Y Y, Karpel N 2004 Oceans ’04 MTS/IEEE Techno-Ocean ’04 Kobe, Japan, November 9–12, 2004 p1255

    [8]

    Schechner Y Y, Karpel N 2004 Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Washington, DC, USA, 27 June, 2004 p536

    [9]

    Karpel N, Schechner Y Y 2004 Conference on Polarization - Measurement, Analysis, and Remote Sensing VI Bellingham, WA, July 15, 2004 p106

    [10]

    Treibitz T, Schechner Y Y 2009 IEEE Trans. Pattern Anal. Mach. Intell. 31 385Google Scholar

    [11]

    贺敬航, 段锦, 战俊彤, 赫立群, 蔡立娟, 张肃 2021 激光与光电子学进展 58 0529002Google Scholar

    He J H, Duan J, Zhan J T, He L Q, Cai L J, Zhang S 2021 Laser Optoelectron. Prog. 58 0529002Google Scholar

    [12]

    Van der Laan J D, Scrymgeour D A, Kemme S A, Dereniak E L 2015 Appl. Opt. 54 2266Google Scholar

    [13]

    Hu H, Zhao L, Li X, Wang H, Yang J, Li K, Liu T 2018 Opt. Express 26 25047Google Scholar

    [14]

    陈养渭 2003 光学与光电技术 56 1719Google Scholar

    Chen Y W 2003 Opt. Optoelectro. Technol. 56 1719Google Scholar

    [15]

    陈养渭 2000 舰船电子工程 20 15

    Chen Y W 2000 Ship Electro. Eng. 20 15

    [16]

    孙晶华 2010 博士学位论文(哈尔滨: 哈尔滨工程大学)

    Sun J H 2010 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [17]

    管今哥, 朱京平, 田恒, 侯洵 2015 物理学报 64 224203Google Scholar

    Guan J G, Zhu J P, Tian H, Hou X, 2015 Acta Phys. Sin. 64 224203Google Scholar

    [18]

    Tian H, Zhu J, Tan S, Zhang Y, Zhang Y, Li Y, Hou X 2018 Opt. Laser Technol. 108 515Google Scholar

    [19]

    Tyo J S, Rowe M P, Pugh E N, Engheta N 1996 Appl. Opt. 35 1855Google Scholar

    [20]

    Golestein D 2003 Polarized Light (2nd Ed.) (New York: Marcel Dekker) pp89, 90

    [21]

    Agaian S S, Panetta K 2001 IEEE. T. Image Process. 10 367Google Scholar

    [22]

    杨晓伟, 殷高方, 赵南京, 甘婷婷, 杨瑞芳, 祝玮, 刘建国, 刘文清 2019 光谱学与光谱分析 39 2912Google Scholar

    Chen X W, Yin G F, Zhao N J, Gan T T, Yang R F, Zhu W, Liu J G, Liu W Q 2019 Spectrosc. Spect. Anal. 39 2912Google Scholar

    [23]

    Ntziachtistos V 2010 Nat. Meth. 7 603Google Scholar

  • [1] 相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏. 计算偏振彩色傅里叶叠层成像: 散射光场偏振特性的复用技术. 物理学报, 2024, 73(12): 124202. doi: 10.7498/aps.73.20240268
    [2] 赵富, 胡渝曜, 王鹏, 刘军. 偏振复用散射成像. 物理学报, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [3] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术. 物理学报, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [4] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [5] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [6] 周毅, 陈瑞, 陈雯洁, 马云贵. 空域模拟光学计算器件的研究进展. 物理学报, 2020, 69(15): 157803. doi: 10.7498/aps.69.20200283
    [7] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析. 物理学报, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] 刘宾, 赵鹏翔, 赵霞, 罗悦, 张立超. 融合偏振信息的多孔径水下成像算法. 物理学报, 2020, 69(18): 184202. doi: 10.7498/aps.69.20200471
    [9] 卫毅, 刘飞, 杨奎, 韩平丽, 王新华, 邵晓鹏. 浅海被动水下偏振成像探测方法. 物理学报, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [10] 韩平丽, 刘飞, 张广, 陶禹, 邵晓鹏. 多尺度水下偏振成像方法. 物理学报, 2018, 67(5): 054202. doi: 10.7498/aps.67.20172009
    [11] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [12] 付成花. 微纳粒子光学散射分析. 物理学报, 2017, 66(9): 097301. doi: 10.7498/aps.66.097301
    [13] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [14] 李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏. 基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术. 物理学报, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [15] 管今哥, 朱京平, 田恒, 侯洵. 基于Stokes矢量的实时偏振差分水下成像研究. 物理学报, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [16] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [17] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [18] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法. 物理学报, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [19] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [20] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响. 物理学报, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
计量
  • 文章访问数:  2967
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-09-15
  • 上网日期:  2023-10-08
  • 刊出日期:  2023-12-20

/

返回文章
返回