搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

幅值可控的逆反射和镜像反射双通道超表面结构拓扑优化设计

史鹏飞 马馨莹 向川 赵宏革 李渊 高仁璟 刘书田

引用本文:
Citation:

幅值可控的逆反射和镜像反射双通道超表面结构拓扑优化设计

史鹏飞, 马馨莹, 向川, 赵宏革, 李渊, 高仁璟, 刘书田

Topology optimization design of dual-channel metasurface structure with controllable amplitude of retroreflection and mirror reflection

Shi Peng-Fei, Ma Xin-Ying, Xiang Chuan, Zhao Hong-Ge, Li Yuan, Gao Ren-Jing, Liu Shu-Tian
PDF
HTML
导出引用
  • 对斜入射电磁波产生包含逆反射通道的双反射通道, 对于提高目标识别性能、导航性能等具有重要意义. 在双通道反射中, 控制逆反射与镜像反射占比则是实现反射功率分配的关键. 为实现双通道反射功率占比的可控, 本文提出了一种双通道反射超表面微结构拓扑优化设计方法. 构建了包括逆反射的双通道反射超表面实现机理及物理模型, 建立了具有特定逆反射与镜像反射幅值比值或占比的超表面微结构拓扑优化模型. 作为数值算例, 针对TE模式下频率为10 GHz俯仰角$-30^\circ$方向入射平面波, 对逆反射与镜像反射功率比1∶1的双通道反射器进行设计, 所设计超表面在$ \pm 30^\circ $方向表现出较强的方向性, 两方向反射幅值大小相等. 同时, 对具有最大逆反射占比的反射超表面进行设计, 逆反射功率占总功率比值为0.093, 无镜像反射及其他方向奇异反射, 超表面强反射集中在$-30^\circ $, 主波束功率占总反射功率比为0.900. 仿真及实验测试结构均验证了所提方法的可行性.
    For oblique incident electromagnetic waves, the generation of double reflection channels including retroreflection channel is of great significance in improving target recognition performance and navigation performance. In double channel reflection, controlling the ratio of retroreflection to specular reflection is the key to realizing reflection power distribution. In order to realize the control of the proportion of the reflected power in each channel, a topology optimization method for designing the reflective metasurface microstructure with dual channel is proposed in this paper. The implementation mechanism is investigated, physical model of metasurface with dual reflection channel including retroreflection channel is established, and the topology optimization model of metasurface microstructure with specific power ratio of the retroreflection to specular reflection is established. As a numerical example, a dual channel metasurface reflector with a 1∶1 ratio of retroreflection power to specular reflection power is designed for a 10 GHz plane wave in the TE mode with a pitch angle of –30°. The designed metasurface exhibits strong directionality in the retroreflective direction, and the reflection amplitudes in both directions are similar. The retroreflective metasurface with the maximum retroreflection ratio is designed. The retroreflection ratio of the designed metasurface is 0.093. There is no specular reflection or other singular reflection, and the strong reflection on the metasurface is concentrated at –30°. The ratio of the main beam power to the total reflection power is 0.900. The simulated and experimental results verify the feasibility of the proposed method.
      通信作者: 赵宏革, zhaohg@dlmu.edu.cn ; 高仁璟, renjing@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U1808215)、湖北省教育厅科学研究计划指导项目(批准号: B2022620)和深圳市科技计划(批准号: JSGG20200102155001779)资助的课题.
      Corresponding author: Zhao Hong-Ge, zhaohg@dlmu.edu.cn ; Gao Ren-Jing, renjing@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1808215), the Guidance Project of Scientific Research Program of Department of Education of Hubei Province, China (Grant No. B2022620), and the Program of Science and Technology of Shenzhen, China (Grant No. JSGG20200102155001779).
    [1]

    Kuga Y, Ishimaru A 1984 J. Opt. Soc. Am. A 1 831Google Scholar

    [2]

    杨丹青, 王莉, 王新龙 2015 物理学报 64 054301Google Scholar

    Yang D Q, Wang L, Wang X L 2015 Acta Phys. Sin. 64 054301Google Scholar

    [3]

    盛泉, 耿婧旎, 王爱华, 王盟, 齐岳, 刘俊杰, 付士杰, 史伟, 姚建铨 2023 物理学报 72 044203Google Scholar

    Sheng Q, Geng J N, Wang A H, Wang M, Qi Y, Liu J J, Fu S J, Shi W, Yao J Q 2023 Acta Phys. Sin. 72 044203Google Scholar

    [4]

    Yang R, Fan Y, Zhu W, Hu C, Chen S, Wei H, Chen W, Chang C T, Zhao Q, Zhou J, Zhang F, Qiu C W 2023 Laser Photonics Rev. 17 2200975Google Scholar

    [5]

    Jin X, Holzman J F 2010 IEEE Sens. J. 10 1875Google Scholar

    [6]

    Vitaz J A, Buerkle A M, Sarabandi K 2010 IEEE Trans. Antennas Propag. 58 3539Google Scholar

    [7]

    Deroba J C, Sobczak K D, Good A, Larimore Z, Mirotznik M 2019 IEEE Aero. El. Sys. Mag. 34 20Google Scholar

    [8]

    Kim H, Lee B 2007 Opt. Eng. 46 094002Google Scholar

    [9]

    Kadera P, Jimenez-Saez A, Burmeister T, Lacik J, Jakoby R 2020 IEEE Access 8 212765Google Scholar

    [10]

    Chang C C, Chen T Y, Tsai J C 2016 IEEE Photonics Technol. Lett. 28 554Google Scholar

    [11]

    Pon C Y 1964 IEEE Trans. Antennas Propag. 12 176Google Scholar

    [12]

    Yan L, Shen Z 2020 IEEE Antennas Wirel. Propag. Lett. 19 736Google Scholar

    [13]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [14]

    Hessel A, Schmoys J, Tseng D Y 1975 J. Opt. Soc. Am. 65 380Google Scholar

    [15]

    Jull E V, Heath J W, Ebbeson G R 1977 J. Opt. Soc. Am. 67 557Google Scholar

    [16]

    Ra'Di Y, Sounas D L, Alu A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [17]

    Hoang T V, Lee C H, Lee J H 2019 IEEE Trans. Antennas Propag. 68 2451Google Scholar

    [18]

    Wong A M H, Eleftheriades G V 2017 Phys. Rev. X 8 011036Google Scholar

    [19]

    Wong A M H, Christian P, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 2892Google Scholar

    [20]

    Lee S G, Lee J H 2020 IEEE Trans. Antennas Propag. 69 3588Google Scholar

    [21]

    Tao C, Itoh T U 2020 IEEE Trans. Antennas Propag. 68 6193Google Scholar

    [22]

    Estakhri N M, Alù A 2016 Phys. Rev. X 6 041008Google Scholar

    [23]

    Wang X C, Díaz-Rubio A, Li H, Tretyakov S A, Alù A 2020 Phys. Rev. Appl. 13 044040Google Scholar

    [24]

    Wang X, Díaz-Rubio A, Tretyakov S A 2020 Phys. Rev. Appl. 14 024089Google Scholar

    [25]

    Asadchy V S, Díaz-Rubio A, Tcvetkova S N, et al. 2017 Phys. Rev. X 7 031046Google Scholar

  • 图 1  介质表面镜像反射通道和逆反射通道

    Fig. 1.  Specular reflection and retroreflection of medium surface.

    图 2  双通道超表面阵列及超胞 (a) 平面型二维超表面阵列; (b) 超表面超胞; (c) 超表面超胞结构

    Fig. 2.  Double-channel metasurface array and super unit: (a) 2D planar metasurface array; (b) metasurface super unit; (c) the microstructure of the super unit.

    图 3  逆反射超表面拓扑优化流程图

    Fig. 3.  Flow chart of topology optimization for retroreflection metasurface.

    图 4  所设计双通道反射功率1∶1超表面反射器及反射特性 (a) 超胞; (b) 微结构; (c) 反射器俯仰向归一化双站RCS; (d) 三维双站RCS

    Fig. 4.  Designed double-channel metasurface reflector with a 1∶1 ratio of retroreflection power to specular reflection power and its reflection characteristics: (a) The unit cell; (b) the microstructure; (c) the normalized bistatic RCS in the elevation coordinate; (d) the three-dimensional bistatic RCS of the designed reflector.

    图 5  仅金属接地板归一化双站RCS

    Fig. 5.  Normalized bistatic RCS of the reflector only with metallic ground.

    图 6  双通道超表面实验测试平台及结果 (a) RCS测试示意图; (b) 所设计超表面试件; (c)测试所得反射特性

    Fig. 6.  Experimental platform for the double-channel metasurface reflector testing and the tested results: (a) The schematic diagram of the RCS testing platform; (b) the designed metasurface specimen; (c) the tested reflection characteristics.

    图 7  入射角度偏差下的反射功率1∶1超表面反射特性 (a) 归一化双站RCS; (b) 负反射角度及镜像反射与负反射幅值比

    Fig. 7.  Reflection characteristics of the metasurface with a 1∶1 ratio of retroreflection power to specular reflection power when the incident angle is adjusted: (a) The normalized bistatic RCS of the metasurface; (b) the retroreflection angle and ratio between the specular reflection and retroreflection.

    图 8  入射波频率偏差下的反射功率1∶1超表面反射特性 (a) 归一化双站RCS; (b) 负反射角度及镜像反射与负反射幅值比

    Fig. 8.  Reflection characteristics of the metasurface with a 1∶1 ratio of retroreflection power to specular reflection power when the frequency of the incident wave is biased: (a) The normalized bistatic RCS of the designed metasurface; (b) the retroreflection angle and the ratio between the specular reflection and retroreflection.

    图 9  所设计的逆反射占比最大超表面反射器及反射特性 (a) 超胞; (b) 微结构; (c) 俯仰向归一化双站RCS; (d) 测试所得反射特性及所设计超表面试件

    Fig. 9.  Designed metasurface reflector with the maximum retroreflection ratio and its reflection characteristics: (a) The unit cell; (b) the microstructure; (c) the normalized bistatic RCS in the elevation coordinate; (d) the tested radiation pattern and the metasurface retroreflector prototype.

    图 10  入射角度偏差下的逆反射占比最大超表面反射特性 (a) 归一化双站RCS; (b) 负反射角度及逆反射功率占比

    Fig. 10.  Reflection characteristics of the metasurface with the maximum retroreflection ratio when the incident angle is adjusted: (a) The normalized bistatic RCS of the metasurface; (b) the retroreflection angle and retroreflection ratio under excitation of incident waves with different incident angle.

    图 11  入射波频率偏差下的逆反射占比最大超表面反射特性 (a) 归一化双站RCS; (b) 负反射角度及逆反射功率占比

    Fig. 11.  Reflection characteristics of the metasurface with the maximum retroreflection ratio when the frequency of the incident wave is biased: (a) The normalized bistatic RCS of the designed metasurface; (b) the retroreflection angle and retroreflection ratio under excitation of incident waves with different frequencies.

  • [1]

    Kuga Y, Ishimaru A 1984 J. Opt. Soc. Am. A 1 831Google Scholar

    [2]

    杨丹青, 王莉, 王新龙 2015 物理学报 64 054301Google Scholar

    Yang D Q, Wang L, Wang X L 2015 Acta Phys. Sin. 64 054301Google Scholar

    [3]

    盛泉, 耿婧旎, 王爱华, 王盟, 齐岳, 刘俊杰, 付士杰, 史伟, 姚建铨 2023 物理学报 72 044203Google Scholar

    Sheng Q, Geng J N, Wang A H, Wang M, Qi Y, Liu J J, Fu S J, Shi W, Yao J Q 2023 Acta Phys. Sin. 72 044203Google Scholar

    [4]

    Yang R, Fan Y, Zhu W, Hu C, Chen S, Wei H, Chen W, Chang C T, Zhao Q, Zhou J, Zhang F, Qiu C W 2023 Laser Photonics Rev. 17 2200975Google Scholar

    [5]

    Jin X, Holzman J F 2010 IEEE Sens. J. 10 1875Google Scholar

    [6]

    Vitaz J A, Buerkle A M, Sarabandi K 2010 IEEE Trans. Antennas Propag. 58 3539Google Scholar

    [7]

    Deroba J C, Sobczak K D, Good A, Larimore Z, Mirotznik M 2019 IEEE Aero. El. Sys. Mag. 34 20Google Scholar

    [8]

    Kim H, Lee B 2007 Opt. Eng. 46 094002Google Scholar

    [9]

    Kadera P, Jimenez-Saez A, Burmeister T, Lacik J, Jakoby R 2020 IEEE Access 8 212765Google Scholar

    [10]

    Chang C C, Chen T Y, Tsai J C 2016 IEEE Photonics Technol. Lett. 28 554Google Scholar

    [11]

    Pon C Y 1964 IEEE Trans. Antennas Propag. 12 176Google Scholar

    [12]

    Yan L, Shen Z 2020 IEEE Antennas Wirel. Propag. Lett. 19 736Google Scholar

    [13]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [14]

    Hessel A, Schmoys J, Tseng D Y 1975 J. Opt. Soc. Am. 65 380Google Scholar

    [15]

    Jull E V, Heath J W, Ebbeson G R 1977 J. Opt. Soc. Am. 67 557Google Scholar

    [16]

    Ra'Di Y, Sounas D L, Alu A 2017 Phys. Rev. Lett. 119 067404Google Scholar

    [17]

    Hoang T V, Lee C H, Lee J H 2019 IEEE Trans. Antennas Propag. 68 2451Google Scholar

    [18]

    Wong A M H, Eleftheriades G V 2017 Phys. Rev. X 8 011036Google Scholar

    [19]

    Wong A M H, Christian P, Eleftheriades G V 2018 IEEE Trans. Antennas Propag. 66 2892Google Scholar

    [20]

    Lee S G, Lee J H 2020 IEEE Trans. Antennas Propag. 69 3588Google Scholar

    [21]

    Tao C, Itoh T U 2020 IEEE Trans. Antennas Propag. 68 6193Google Scholar

    [22]

    Estakhri N M, Alù A 2016 Phys. Rev. X 6 041008Google Scholar

    [23]

    Wang X C, Díaz-Rubio A, Li H, Tretyakov S A, Alù A 2020 Phys. Rev. Appl. 13 044040Google Scholar

    [24]

    Wang X, Díaz-Rubio A, Tretyakov S A 2020 Phys. Rev. Appl. 14 024089Google Scholar

    [25]

    Asadchy V S, Díaz-Rubio A, Tcvetkova S N, et al. 2017 Phys. Rev. X 7 031046Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [3] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [4] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [6] 桑迪, 徐明峰, 安强, 付云起. 基于拓扑优化的自由形状波分复用超光栅. 物理学报, 2022, 71(22): 224204. doi: 10.7498/aps.71.20221013
    [7] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [10] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [11] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析. 物理学报, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [12] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] 李含灵, 曹炳阳. 微纳尺度体点导热的拓扑优化. 物理学报, 2019, 68(20): 200201. doi: 10.7498/aps.68.20190923
    [14] 莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛. 基于拓扑优化设计的宽频吸波复合材料. 物理学报, 2018, 67(21): 217801. doi: 10.7498/aps.67.20181170
    [15] 高健, 桑田, 李俊浪, 王啦. 利用窄刻槽金属光栅实现石墨烯双通道吸收增强. 物理学报, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [16] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] 罗小元, 李昊, 马巨海. 基于最小刚性图代数特性的无线网络拓扑优化算法. 物理学报, 2016, 65(24): 240201. doi: 10.7498/aps.65.240201
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] 陈凡, 郝军, 李红根, 曹庄琪. 基于古斯-汉欣位移的双通道窄带滤波器. 物理学报, 2011, 60(7): 074223. doi: 10.7498/aps.60.074223
计量
  • 文章访问数:  2596
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-13
  • 修回日期:  2023-09-05
  • 上网日期:  2023-10-08
  • 刊出日期:  2023-12-20

/

返回文章
返回