-
聚变等离子体中快离子分布函数的速度空间层析反演(tomography)是研究磁约束核聚变装置中快离子分布和输运的重要手段. 在东方超环(experimental advanced superconducting tokamak, EAST)中性束注入(neutral beam injection, NBI)与离子回旋共振加热(ion cyclotron range of frequencies heating, ICRF)协同加热实验中, 快离子诊断测量信号以及TRANSP模拟获得的快离子分布函数中观测到协同效应产生的高于中性束注入能量的高能粒子. 为了研究快离子分布行为, 获得不同加热条件下诊断测量的快离子分布函数, 采用不同的正则化方法, 增加先验信息以及将快离子Dα光谱诊断(fast-ion Dα spectroscopy, FIDA)与中子发射谱仪(neutron emission spectrometers, NES)相结合等方式, 有效提高快离子诊断信噪比以及在速度空间权重覆盖率, 实现在单独NBI加热以及NBI和ICRF协同加热条件下基于诊断测量的层析反演, 获得真实可靠的快离子分布函数. 这为下一步提高NBI与ICRF协同加热效率, 研究协同加热机制以及相关的快离子分布和输运行为奠定基础.In magnetic confinement fusion devices, velocity-space tomography of fast-ion velocity distribution function is crucial for investigating fast-ion distribution and transport. In the neutral beam injection (NBI) and ion cyclotron resonance heating (ICRF) synergistic heating experiments in Experimental Advanced Superconducting Tokamak (EAST), high-energy particles with energy exceeding the particle energy in NBI are observed. Simulations of synergistic effect on fast-ion velocity distribution function given by TRANSP also show the existence of particles with energy higher than the particle energy in NBI. To investigate the behaviors of fast ion distribution and calculate the velocity distribution functions under different heating conditions, the first-order Tikhonov regularization tomographic inversion method with higher inversion accuracy is introduced by comparing various regularization techniques. The limitations of the dual-view fast-ion Dα (FIDA) diagnostic measurements in velocity space are addressed by incorporating prior information such as null measurement and the known peaks and effectively mitigate the occurrence of artifacts. This method is first employed in the case of NBI heating. The NBI peak is successfully reconstructed at the expected location in velocity space, which shows significant improvement in the inversion results. In order to further validate the synergistic effect of NBI-ICRF heating and study the mechanism of fast ion distribution under synergistic heating, the combination of FIDA and neutron emission spectrometer (NES) is applied to the first-order Tikhonov regularization tomographic inversion method for enhancing the coverage of velocity space, through which the issue of artifacts in the inversion results is significantly improved, and thus the precision of the obtained fast-ion velocity distribution functions is enhanced. Based on the benefit described above, the method of combining NES diagnosis and FIDA diagnosis is used to obtain fast-ion velocity distribution functions in the NBI and ICRF synergistic heating discharge. The synergistic heating effect is manifested in the fast-ion velocity distribution. The availability of this inversion method in reconstructing fast-ion velocity distribution functions during high-performance operation of NBI-ICRF synergistic heating in the EAST experiment is confirmed. In the next-step EAST research, high performance discharge will demand more efficiency NBI and ICRF synergistic heating, the present work builds the stage for investigating the underlying mechanism of synergistic heating and the intricate behaviors associated with fast ion distribution and transport.
-
Keywords:
- velocity-space tomography /
- fast-ion Dα spectroscopy /
- neutral beam injection /
- ion cyclotron resonance heating.
[1] Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo Y, Vlad G, Zonca F 2007 Nucl. Fusion 47 S264Google Scholar
[2] Heidbrink W W, Luo Y, Burrell K H, Harvey R W, Pinsker R I, Ruskov E 2007 Plasma Phys. Control. Fusion 49 1457Google Scholar
[3] Reisner M, Fable E, Stober J, Bock A, Bañon Navarro A, Di Siena A, Fischer R, Bobkov V, McDermott R 2020 Nucl. Fusion 60 082005Google Scholar
[4] Huynh E A L P, Van Eester D, Bilato C R, Varje J, Johnson T, Sauter O, Villard L, Ferreira J, JET contributors and the EUROfusion-IM Team 2020 AIP Conf. Proc. 2254 060003Google Scholar
[5] Hillairet J, Gallart D, Mantsinen M, Challis C, Frigione D, Graves J, Hobirk J, Belonohy E, Czarnecka A, Eriksson J, Goniche M, Hellesen C, Jacquet P, Joffrin E, Krawczyk N, King D, Lennholm M, Lerche E, Pawelec E, Sips G, Solano E, Tsalas M, Valisa M 2017 EPJ Web Conf. 157 02006Google Scholar
[6] Heidbrink W W 2010 Rev. Sci. Instrum. 81 10D727Google Scholar
[7] Michael C A, Conway N, Crowley B, Jones O, Heidbrink W W, Pinches S, Braeken E, Akers R, Challis C, Turnyanskiy M, Patel A, Muir D, Gaffka R, Bailey S 2013 Plasma Phys. Control. Fusion 55 095007Google Scholar
[8] Nielsen S K, Stejner M, Rasmussen J, Jacobsen A S, Korsholm S B, Leipold F, Maraschek M, Meo F, Michelsen P K, Moseev D, Salewski M, Schubert M, Stober J, Suttrop W, Tardini G, Wagner D 2015 Plasma Phys. Control. Fusion 57 035009Google Scholar
[9] Salewski M, Nocente M, Madsen B, Abramovic I, Fitzgerald M, Gorini G, Hansen P C, Heidbrink W W, Jacobsen A S, Jensen T, Kiptily V G, Klinkby E B, Korsholm S B, Kurki-Suonio T, Larsen A W, Leipold F, Moseev D, Nielsen S K, Pinches S D, Rasmussen J, Rebai M, Schneider M, Shevelev A, Sipila S, Stejner M, Tardocchi M 2018 Nucl. Fusion 58 096019Google Scholar
[10] Nocente M, Källne J, Salewski M, Tardocchi M, Gorini G 2015 Nucl. Fusion 55 123009Google Scholar
[11] Eriksson J, Nocente M, Binda F, Cazzaniga C, Conroy S, Ericsson G, Giacomelli L, Gorini G, Hellesen C, Hellsten T, Hjalmarsson A, Jacobsen A S, Johnson T, Kiptily V, Koskela T, Mantsinen M, Salewski M, Schneider M, Sharapov S, Skiba M, Tardocchi M, Weiszflog M 2015 Nucl. Fusion 55 123026Google Scholar
[12] Jacobsen A S, Salewski M, Eriksson J, Ericsson G, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M 2015 Nucl. Fusion 55 053013Google Scholar
[13] Salewski M, Geiger B, Jacobsen A S, Hansen P C, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Nocente M, Odstrčil T, Rasmussen J, Stagner L, Stejner M, Weiland M 2016 Nucl. Fusion 56 106024Google Scholar
[14] Salewski M, Geiger B, Jacobsen A S, García-Muñoz M, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardini G, Weiland M 2014 Nucl. Fusion 54 023005Google Scholar
[15] Weiland M, Geiger B, Jacobsen A S, Reich M, Salewski M, Odstrčil T 2016 Plasma Phys. Control. Fusion 58 025012Google Scholar
[16] Geiger B, Weiland M, Jacobsen A S, Rittich D, Dux R, Fischer R, Hopf C, Maraschek M, McDermott R M, Nielsen S K, Odstrcil T, Reich M, Ryter F, Salewski M, Schneider P A, Tardini G 2015 Nucl. Fusion 55 083001Google Scholar
[17] Weiland M, Bilato R, Geiger B, Schneider P A, Tardini G, Garcia-Muñoz M, Ryter F, Salewski M, Zohm H 2017 Nucl. Fusion 57 116058Google Scholar
[18] Madsen B, Salewski M, Heidbrink W W, Stagner L, Podestà M, Lin D, Garcia A V, Hansen P C, Huang J 2020 Nucl. Fusion 60 066024Google Scholar
[19] Madsen B, Salewski M, Huang J, Jacobsen A S, Jones O, McClements K G, MAST Team 2018 Rev. Sci. Instrum. 89 10D125Google Scholar
[20] Jacobsen A S, Salewski M, Geiger B, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Weiland M 2016 Plasma Phys. Control. Fusion 58 042002Google Scholar
[21] Salewski M, Gorini G, Jacobsen A S, Kiptily V G, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardocchi M, JET Contributors 2016 Nucl. Fusion 56 046009Google Scholar
[22] Su J, Wan B, Huang J, Madsen B, Salewski M, Sun Y, Wang J, Fu J, Chang J, Wu C, Liang L, Chen Y, Zhong G, Liu H, Zang Q, Li Y, Lyu B, Qian J, Gong X 2021 Plasma Sci. Technol. 23 095103Google Scholar
[23] Madsen B, Huang J, Salewski M, Järleblad H, Hansen P C, Stagner L, Su J, Chang J F, Fu J, Wang J, Liang L Z, Zhong G, Li Y, Lyu B, Liu H, Zang Q, Luo Z, Nocente M, Moseev D, Fan T, Zhang Y, Yang D, Sun J, Liao L 2020 Plasma Phys. Control. Fusion 62 115019Google Scholar
[24] Zhang X J, Yang H, Qin C M, Yuan S, Zhao Y P, Wang Y S, Liu L N, Mao Y Z, Cheng Y, Gong X Z, Xu G S, Song Y T, Li J G, Wan B N, Zhang K, Zhang B, Ai L, Wang G X, Guo Y Y 2022 Nucl. Fusion 62 086038Google Scholar
[25] Zhang W, Zhu G H, Zhang X J, Zhong G Q, Ai L, Chu Y Q, Fan T S, Fan H C, Guo Y Y, Hao B L, Huang J, Jin Y F, Liu L N, Liao L Y, Li Y H, Liang Q C, Sun Y X, Wang G X, Yang D K, Yang H, Zhang H P 2023 Nucl. Fusion 63 056015Google Scholar
[26] Ge L J, Hu Z M, Zhang Y M, Sun J Q, Yuan X, Peng X Y, Chen Z J, Du T F, Gorini G, Nocente M, Tardocchi M, Hu L Q, Zhong G Q, Lin S Y, Wan B N, Li X Q, Zhang G H, Chen J X, Fan T S 2018 Plasma Phys. Control. Fusion 60 095004Google Scholar
[27] Hou Y M, Wu C R, Huang J, Heidbrink W W, von Hellermann M G, Xu Z, Jin Z, Chang J F, Zhu Y B, Gao W, Chen Y J, Lyu B, Hu R J, Zhang P F, Zhang L, Gao W, Wu Z W, Yu Y, Ye M Y, Team E 2016 Rev. Sci. Instrum. 87 11E552Google Scholar
[28] Jacobsen A S, Stagner L, Salewski M, Geiger B, Heidbrink W W, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Thomsen H, Weiland M 2016 Plasma Phys. Control. Fusion 58 045016Google Scholar
[29] Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar
[30] Salewski M, Geiger B, Nielsen S K, Bindslev H, Garcia-Munoz M, Heidbrink W W, Korsholm S B, Leipold F, Meo F, Michelsen P K, Moseev D, Stejner M, Tardini G, Team A U 2012 Nucl. Fusion 52 103008Google Scholar
-
图 6 TRANSP模拟的快离子分布函数 (a)单独NBI加热; (b) NBI-ICRF协同加热; 黑色虚线为NBI能量, 黑色实线为单独NBI加热时快离子能量上限
Fig. 6. TRANSP simulation of fast ion distribution function: (a) NBI only heating; (b) NBI-ICRF synergetic heating. Black dashed line is the NBI injection energy, black solid line is the upper limit of fast ion energy for NBI only.
图 8 单独NBI时基于FIDA诊断测量的快离子分布函数层析反演 (a)零阶Tikhonov正则化; (b) 一阶Tikhonov正则化; (c) 一阶Tikhonov正则化, 空值测量区域; (d) 一阶Tikhonov正则化, 已知峰值位置
Fig. 8. Reconstructions of the fast ion distribution function based on FIDA diagnostic measurements during NBI only heating: (a) Zero-order Tikhonov regularization; (b) first-order Tikhonov regularization; (c) first-order Tikhonov regularization, null measurement; (d) first-order Tikhonov regularization, known peak.
图 9 NBI-ICRF协同加热阶段基于TRANSP模拟合成信号的层析反演 (a) 零阶Tikhonov正则化; (b) 一阶Tikhonov正则化; (c) 一阶Tikhonov正则化, 空值测量区域
Fig. 9. Reconstructions of synthetic signal based on the TRANSP distributions: (a) Zero-order Tikhonov regularization; (b) first-order Tikhonov regularization; (c) first-order Tikhonov regularization, null measurement.
图 10 基于快离子诊断数据的分布函数层析反演 (a), (b) 不添加先验信息; (c), (d) TRANSP模拟的快离子能量上限作为先验信息; 其中(a), (c)仅使用FIDA测量; (b), (d) FIDA与NES测量结合
Fig. 10. Reconstructions based on fast ion diagnostic data: (a), (b) Without adding a priori information; (c), (d) fast ion energy upper bounds for TRANSP simulations as prior information. Only FIDA measurement is used in panel (a) and (c); FIDA in combination with NES measurements are used in panel (b) and (d).
-
[1] Fasoli A, Gormenzano C, Berk H L, Breizman B, Briguglio S, Darrow D S, Gorelenkov N, Heidbrink W W, Jaun A, Konovalov S V, Nazikian R, Noterdaeme J M, Sharapov S, Shinohara K, Testa D, Tobita K, Todo Y, Vlad G, Zonca F 2007 Nucl. Fusion 47 S264Google Scholar
[2] Heidbrink W W, Luo Y, Burrell K H, Harvey R W, Pinsker R I, Ruskov E 2007 Plasma Phys. Control. Fusion 49 1457Google Scholar
[3] Reisner M, Fable E, Stober J, Bock A, Bañon Navarro A, Di Siena A, Fischer R, Bobkov V, McDermott R 2020 Nucl. Fusion 60 082005Google Scholar
[4] Huynh E A L P, Van Eester D, Bilato C R, Varje J, Johnson T, Sauter O, Villard L, Ferreira J, JET contributors and the EUROfusion-IM Team 2020 AIP Conf. Proc. 2254 060003Google Scholar
[5] Hillairet J, Gallart D, Mantsinen M, Challis C, Frigione D, Graves J, Hobirk J, Belonohy E, Czarnecka A, Eriksson J, Goniche M, Hellesen C, Jacquet P, Joffrin E, Krawczyk N, King D, Lennholm M, Lerche E, Pawelec E, Sips G, Solano E, Tsalas M, Valisa M 2017 EPJ Web Conf. 157 02006Google Scholar
[6] Heidbrink W W 2010 Rev. Sci. Instrum. 81 10D727Google Scholar
[7] Michael C A, Conway N, Crowley B, Jones O, Heidbrink W W, Pinches S, Braeken E, Akers R, Challis C, Turnyanskiy M, Patel A, Muir D, Gaffka R, Bailey S 2013 Plasma Phys. Control. Fusion 55 095007Google Scholar
[8] Nielsen S K, Stejner M, Rasmussen J, Jacobsen A S, Korsholm S B, Leipold F, Maraschek M, Meo F, Michelsen P K, Moseev D, Salewski M, Schubert M, Stober J, Suttrop W, Tardini G, Wagner D 2015 Plasma Phys. Control. Fusion 57 035009Google Scholar
[9] Salewski M, Nocente M, Madsen B, Abramovic I, Fitzgerald M, Gorini G, Hansen P C, Heidbrink W W, Jacobsen A S, Jensen T, Kiptily V G, Klinkby E B, Korsholm S B, Kurki-Suonio T, Larsen A W, Leipold F, Moseev D, Nielsen S K, Pinches S D, Rasmussen J, Rebai M, Schneider M, Shevelev A, Sipila S, Stejner M, Tardocchi M 2018 Nucl. Fusion 58 096019Google Scholar
[10] Nocente M, Källne J, Salewski M, Tardocchi M, Gorini G 2015 Nucl. Fusion 55 123009Google Scholar
[11] Eriksson J, Nocente M, Binda F, Cazzaniga C, Conroy S, Ericsson G, Giacomelli L, Gorini G, Hellesen C, Hellsten T, Hjalmarsson A, Jacobsen A S, Johnson T, Kiptily V, Koskela T, Mantsinen M, Salewski M, Schneider M, Sharapov S, Skiba M, Tardocchi M, Weiszflog M 2015 Nucl. Fusion 55 123026Google Scholar
[12] Jacobsen A S, Salewski M, Eriksson J, Ericsson G, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M 2015 Nucl. Fusion 55 053013Google Scholar
[13] Salewski M, Geiger B, Jacobsen A S, Hansen P C, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Nocente M, Odstrčil T, Rasmussen J, Stagner L, Stejner M, Weiland M 2016 Nucl. Fusion 56 106024Google Scholar
[14] Salewski M, Geiger B, Jacobsen A S, García-Muñoz M, Heidbrink W W, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardini G, Weiland M 2014 Nucl. Fusion 54 023005Google Scholar
[15] Weiland M, Geiger B, Jacobsen A S, Reich M, Salewski M, Odstrčil T 2016 Plasma Phys. Control. Fusion 58 025012Google Scholar
[16] Geiger B, Weiland M, Jacobsen A S, Rittich D, Dux R, Fischer R, Hopf C, Maraschek M, McDermott R M, Nielsen S K, Odstrcil T, Reich M, Ryter F, Salewski M, Schneider P A, Tardini G 2015 Nucl. Fusion 55 083001Google Scholar
[17] Weiland M, Bilato R, Geiger B, Schneider P A, Tardini G, Garcia-Muñoz M, Ryter F, Salewski M, Zohm H 2017 Nucl. Fusion 57 116058Google Scholar
[18] Madsen B, Salewski M, Heidbrink W W, Stagner L, Podestà M, Lin D, Garcia A V, Hansen P C, Huang J 2020 Nucl. Fusion 60 066024Google Scholar
[19] Madsen B, Salewski M, Huang J, Jacobsen A S, Jones O, McClements K G, MAST Team 2018 Rev. Sci. Instrum. 89 10D125Google Scholar
[20] Jacobsen A S, Salewski M, Geiger B, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Weiland M 2016 Plasma Phys. Control. Fusion 58 042002Google Scholar
[21] Salewski M, Gorini G, Jacobsen A S, Kiptily V G, Korsholm S B, Leipold F, Madsen J, Moseev D, Nielsen S K, Rasmussen J, Stejner M, Tardocchi M, JET Contributors 2016 Nucl. Fusion 56 046009Google Scholar
[22] Su J, Wan B, Huang J, Madsen B, Salewski M, Sun Y, Wang J, Fu J, Chang J, Wu C, Liang L, Chen Y, Zhong G, Liu H, Zang Q, Li Y, Lyu B, Qian J, Gong X 2021 Plasma Sci. Technol. 23 095103Google Scholar
[23] Madsen B, Huang J, Salewski M, Järleblad H, Hansen P C, Stagner L, Su J, Chang J F, Fu J, Wang J, Liang L Z, Zhong G, Li Y, Lyu B, Liu H, Zang Q, Luo Z, Nocente M, Moseev D, Fan T, Zhang Y, Yang D, Sun J, Liao L 2020 Plasma Phys. Control. Fusion 62 115019Google Scholar
[24] Zhang X J, Yang H, Qin C M, Yuan S, Zhao Y P, Wang Y S, Liu L N, Mao Y Z, Cheng Y, Gong X Z, Xu G S, Song Y T, Li J G, Wan B N, Zhang K, Zhang B, Ai L, Wang G X, Guo Y Y 2022 Nucl. Fusion 62 086038Google Scholar
[25] Zhang W, Zhu G H, Zhang X J, Zhong G Q, Ai L, Chu Y Q, Fan T S, Fan H C, Guo Y Y, Hao B L, Huang J, Jin Y F, Liu L N, Liao L Y, Li Y H, Liang Q C, Sun Y X, Wang G X, Yang D K, Yang H, Zhang H P 2023 Nucl. Fusion 63 056015Google Scholar
[26] Ge L J, Hu Z M, Zhang Y M, Sun J Q, Yuan X, Peng X Y, Chen Z J, Du T F, Gorini G, Nocente M, Tardocchi M, Hu L Q, Zhong G Q, Lin S Y, Wan B N, Li X Q, Zhang G H, Chen J X, Fan T S 2018 Plasma Phys. Control. Fusion 60 095004Google Scholar
[27] Hou Y M, Wu C R, Huang J, Heidbrink W W, von Hellermann M G, Xu Z, Jin Z, Chang J F, Zhu Y B, Gao W, Chen Y J, Lyu B, Hu R J, Zhang P F, Zhang L, Gao W, Wu Z W, Yu Y, Ye M Y, Team E 2016 Rev. Sci. Instrum. 87 11E552Google Scholar
[28] Jacobsen A S, Stagner L, Salewski M, Geiger B, Heidbrink W W, Korsholm S B, Leipold F, Nielsen S K, Rasmussen J, Stejner M, Thomsen H, Weiland M 2016 Plasma Phys. Control. Fusion 58 045016Google Scholar
[29] Pankin A, McCune D, Andre R, Bateman G, Kritz A 2004 Comput. Phys. Commun. 159 157Google Scholar
[30] Salewski M, Geiger B, Nielsen S K, Bindslev H, Garcia-Munoz M, Heidbrink W W, Korsholm S B, Leipold F, Meo F, Michelsen P K, Moseev D, Stejner M, Tardini G, Team A U 2012 Nucl. Fusion 52 103008Google Scholar
计量
- 文章访问数: 3764
- PDF下载量: 224
- 被引次数: 0