搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4 K大冷量GM型脉冲管制冷机

刘旭明 潘长钊 张宇 廖奕 郭伟杰 俞大鹏

引用本文:
Citation:

4 K大冷量GM型脉冲管制冷机

刘旭明, 潘长钊, 张宇, 廖奕, 郭伟杰, 俞大鹏

4 K GM-type pulse tube cryocooler with large cooling capacity

Liu Xu-Ming, Pan Chang-Zhao, Zhang Yu, Liao Yi, Guo Wei-Jie, Yu Da-Peng
PDF
HTML
导出引用
  • 液氦温区GM型脉冲管制冷机由于具有大冷量、低振动、高可靠性等优点, 在凝聚态物理、量子计算等前沿领域具有重要应用. 调相机构对脉冲管制冷机性能有重要影响, 先前针对GM型脉冲管制冷机调相机构的研究, 主要集中在制冷机获取液氦温度后单个调相元件对制冷性能的影响方面. 本文围绕4 K GM型脉冲管制冷机, 基于Sage软件设计并构建了气耦合两级结构的整机仿真模型, 分析了一、二级小孔和一、二级双向分别对两级制冷温度的影响, 研究了制冷机达到液氦温区温度的调节优化过程. 在此基础上, 搭建了实验系统, 实验样机经优化最低温度可达3.1 K, 并可在4.2 K提供0.8 W制冷量. 该研究不仅可以推进4 K制冷平台国产化进程, 对相关前沿基础科学研究和重要科学仪器设备的自主研制也有支撑作用.
    Owing to the advantages of large cooling capacity, low vibration and high reliability, GM-type pulse tube cryocoolers at liquid helium temperature have important applications in frontier fields of condensed matter physics research, quantum computing, etc. The phase shifter has an important influence on the cooling performance of pulse tube cryocooler. Previous researches on the phase shifter of GM-type pulse tube cryocooler mainly focused on the effect of a single phase shifter on the performance of the cryocooler at liquid helium temperature. In this paper, based on Sage software, a simulation model of a 4 K two-stage gas-coupled GM-type pulse tube cryocooler is first designed and constructed. The influence of the phase shifters of the two stages on the first-stage and the second-stage temperatures are calculated. The adjustment and optimization process of the cryocooler to obtain the liquid helium temperature is studied. Numerical simulations are given below. 1) The lowest temperature of the model is only about 100 K when the phase shifters of the two stages are closed. The lowest temperature of the model can be reduced to 2.7 K by optimizing the first-stage orifice valve, the second-stage orifice valve, the first-stage double-inlet valve and the second-stage double-inlet valve in sequence. 2) The first-stage orifice valve, the second-stage orifice valve, and the second-stage double-inlet valve have a significant effect on reducing the cooling temperature of the second stage, while the first-stage double-inlet valve has little effect on reducing the temperature of the second stage. 3) The first-stage orifice valve and the second-stage double-inlet valve have a significant effect on reducing the cooling temperature of the first stage, and the first-stage double-inlet valve has little effect on reducing the temperature of the first stage. The second-stage orifice valve will worsen the first stage performance. Finally, an experimental system is constructed. The lowest temperature of the experimental prototype can reach 3.1 K, and the cooling capacity of 0.8 W can be produced at 4.2 K, which is presently the best result obtained by the domestic two-stage gas-coupled valve-separated GM type pulse tube cryocooler. This research can not only promote the independent construction of domestic 4 K refrigeration platform, but also support the relevant frontier basic scientific research and the development of important scientific instruments and equipment. In the future, the structure of the first-stage cold-end heat exchanger and the impedance matching between the compressor and the cryocooler will be improved, and the gas coupling characteristics inside the cryocooler will be studied theoretically and experimentally in depth.
      通信作者: 潘长钊, pancz@sustech.edu.cn
    • 基金项目: 深圳市优秀科技创新人才计划(博士启动)项目(批准号: RCBS20221008093120048)资助的课题.
      Corresponding author: Pan Chang-Zhao, pancz@sustech.edu.cn
    • Funds: Project supported by the Science and Technology Innovation Commission of Shenzhen, China (Grant No. RCBS20221008093120048).
    [1]

    俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍 2023 物理学报 72 080701Google Scholar

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701Google Scholar

    [2]

    Yang B, Gao Z Z, Xi X T, Chen L B, Wang J J 2022 J. Low Temp. Phys. 206 321Google Scholar

    [3]

    Radebaugh R 2009 J. Phys. Condens. Matter 21 164219Google Scholar

    [4]

    Gifford W, Longsworth R 1964 J. Eng. Ind. 86 264Google Scholar

    [5]

    Radebaugh R 1990 Adv. Cryog. Eng. 35 1191

    [6]

    Matsubara Y, Gao J L 1994 Cryogenics 34 259

    [7]

    Tanida K, Gao J L, Yoshimura N, Matsubara Y 1996 Adv. Cryog. Eng. 41 1503

    [8]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 857Google Scholar

    [9]

    Wang C, Heiden C, Thummes G 1998 Cryogenics 38 689Google Scholar

    [10]

    Chen G B, Qiu L M, Zheng J Y, Yan P D, Gan Z H, Bai X, Huang Z X 1997 Cryogenics 37 271Google Scholar

    [11]

    Chen G B, Zheng J Y, Qiu L M, Bai X, Gan Z H, Yan P D, Yu J P, Jin T, Huang Z X 1997 Cryogenics 37 529Google Scholar

    [12]

    Qiu L M, He Y L, Gan Z H, Chen G B 2006 AIP Conf. 823 845Google Scholar

    [13]

    成渝 2006 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Cheng Y 2006 M. S. Thesis (Harbin: Harbin Institute of Technology

    [14]

    闫磊 2007 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Yan L 2007 M. S. Thesis (Harbin: Harbin Institute of Technology

    [15]

    Jiang N, Lindemann U, Giebeler F, Thummes G 2004 Cryogenics 44 809Google Scholar

    [16]

    Wang C 2016 Cryocoolers 19 299

    [17]

    Qiu L M, Zhang K H, Dong W Q, Gan Z H, Wang C, Zhang X J 2012 Int. J. Refrig. 35 2332Google Scholar

    [18]

    Schmidt B, Vorholzer M, Dietrich M, Falter J, Schirmeisen A, Thummes G 2017 Cryogenics 88 129Google Scholar

    [19]

    Schmidt J A, Schmidt B, Dietzel D, Falter J, Thummes G, Schirmeisen A 2022 Cryogenics 122 103417Google Scholar

    [20]

    Japanese 4 K Two-stage GM Type Pulse Tube Cryocoolers https://www.shicryogenics.com/products/cryocoolers/ [2023-6-29

    [21]

    American 4 K Two-Stage GM Type Pluse Tube Cryocoolers https://www.cryomech.com/cryocoolers/pulse-tube-cryocoolers/ [2023-6-29

    [22]

    Wang C 1997 Cryogenics 37 207Google Scholar

    [23]

    Wang C 1997 Cryogenics 37 215Google Scholar

    [24]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 159Google Scholar

    [25]

    Qiu L M, Thummes G 2002 Adv. Cryog. Eng. 47 625Google Scholar

    [26]

    Qiu L M, Thummes G 2002 Cryogenics 42 327Google Scholar

    [27]

    Kim K, Zhi X Q, Qiu L, Nie H L, Wang J J 2017 Int. J. Refrig. 77 1Google Scholar

    [28]

    Liu X M, Chen L B, Wu X L, Yang B, Wang J, Zhu W X, Wang J J, Zhou Y 2020 Sci. China Technol. Sci. 63 434Google Scholar

    [29]

    Gedeon D 2016 Sage User’s Guide: Stirling, Pulse-Tube and Low-T Cooler Model Classes v11 Edition (Athens: Gedeon Associates) p6

    [30]

    戴巍, 罗二仓 2005 低温工程 144 24Google Scholar

    Dai W, Luo E C 2005 Cryog. Eng. 144 24Google Scholar

    [31]

    Pan C Z, Zhang T, Zhou Y, Wang J J 2016 Cryogenics 77 20Google Scholar

  • 图 1  双向进气型气耦合两级GM脉冲管制冷机结构示意图

    Fig. 1.  Schematic of the two-stage gas-coupled double-inlet GM type pulse tube cryocooler.

    图 2  一、二级小孔分别对一级和二级制冷温度的影响

    Fig. 2.  Dependence of the cooling temperatures of the two stages on the openings of the first-stage and the second-stage orifice valves.

    图 3  一、二级双向分别对一级和二级制冷温度的影响

    Fig. 3.  Dependence of the cooling temperatures of the two stages on the openings of the first-stage and the second-stage double-inlet valves.

    图 4  二级双向DC直流对一级和二级制冷温度的影响

    Fig. 4.  Dependence of the cooling temperatures of the two stages on the DC flow rates caused by the second-stage double-inlet valve.

    图 5  实验系统实物照片

    Fig. 5.  Photo of the experimental system with the cryocooler prototype.

    图 6  制冷机样机典型降温曲线

    Fig. 6.  Time-dependent temperature distributions of the cryocooler prototype.

    图 7  制冷机样机不同温度下的典型制冷量

    Fig. 7.  Tested cooling power of the cryocooler prototype at different temperatures.

    图 8  制冷机样机不同位置压力波动 (a)实时数据; (b)傅里叶分析

    Fig. 8.  Tested pressure oscillation of the cryocooler prototype at different positions: (a) Real-time data; (b) Fourier analysis.

    图 9  制冷机样机相位调节和直流调节的影响 (a)实物照片; (b)温度波动

    Fig. 9.  Effects of phase shifting and DC flow on the cryocooler prototype: (a) Physical photo; (b) temperature fluctuation.

    表 1  4 K GM型脉冲管制冷机主要结构参数

    Table 1.  Main structural parameters of the 4 K GM-type pulse tube cryocooler.

    参数数值
    一级回热器外径/长度/(mm/mm)60/210
    一级脉冲管外径/长度/(mm/mm)44/210
    一级气库容积/L3
    二级回热器外径/长度/(mm/mm)33/210
    二级脉冲管外径/长度/(mm/mm)25/450
    二级气库容积/L3
    下载: 导出CSV

    表 2  与其他同类主流制冷机产品比较

    Table 2.  Comparison with mainstream products of 4 K GM-type pulse tube cryocoolers.

    生产厂商 降温
    时间/h
    最低
    温度/K
    制冷量
    Sumitomo RP-182 B2 S 2 < 2.8 1.5 W@4.2 K
    Cryomech PT415* 2 2.8 1.35 W@4.2 K
    本文 3 3.1 0.8 W@4.2 K
    注: *表示阀分离型
    下载: 导出CSV
  • [1]

    俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍 2023 物理学报 72 080701Google Scholar

    Zu H Y, Cheng W J, Wang Y N, Wang X T, Li K, Dai W 2023 Acta Phys. Sin. 72 080701Google Scholar

    [2]

    Yang B, Gao Z Z, Xi X T, Chen L B, Wang J J 2022 J. Low Temp. Phys. 206 321Google Scholar

    [3]

    Radebaugh R 2009 J. Phys. Condens. Matter 21 164219Google Scholar

    [4]

    Gifford W, Longsworth R 1964 J. Eng. Ind. 86 264Google Scholar

    [5]

    Radebaugh R 1990 Adv. Cryog. Eng. 35 1191

    [6]

    Matsubara Y, Gao J L 1994 Cryogenics 34 259

    [7]

    Tanida K, Gao J L, Yoshimura N, Matsubara Y 1996 Adv. Cryog. Eng. 41 1503

    [8]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 857Google Scholar

    [9]

    Wang C, Heiden C, Thummes G 1998 Cryogenics 38 689Google Scholar

    [10]

    Chen G B, Qiu L M, Zheng J Y, Yan P D, Gan Z H, Bai X, Huang Z X 1997 Cryogenics 37 271Google Scholar

    [11]

    Chen G B, Zheng J Y, Qiu L M, Bai X, Gan Z H, Yan P D, Yu J P, Jin T, Huang Z X 1997 Cryogenics 37 529Google Scholar

    [12]

    Qiu L M, He Y L, Gan Z H, Chen G B 2006 AIP Conf. 823 845Google Scholar

    [13]

    成渝 2006 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Cheng Y 2006 M. S. Thesis (Harbin: Harbin Institute of Technology

    [14]

    闫磊 2007 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Yan L 2007 M. S. Thesis (Harbin: Harbin Institute of Technology

    [15]

    Jiang N, Lindemann U, Giebeler F, Thummes G 2004 Cryogenics 44 809Google Scholar

    [16]

    Wang C 2016 Cryocoolers 19 299

    [17]

    Qiu L M, Zhang K H, Dong W Q, Gan Z H, Wang C, Zhang X J 2012 Int. J. Refrig. 35 2332Google Scholar

    [18]

    Schmidt B, Vorholzer M, Dietrich M, Falter J, Schirmeisen A, Thummes G 2017 Cryogenics 88 129Google Scholar

    [19]

    Schmidt J A, Schmidt B, Dietzel D, Falter J, Thummes G, Schirmeisen A 2022 Cryogenics 122 103417Google Scholar

    [20]

    Japanese 4 K Two-stage GM Type Pulse Tube Cryocoolers https://www.shicryogenics.com/products/cryocoolers/ [2023-6-29

    [21]

    American 4 K Two-Stage GM Type Pluse Tube Cryocoolers https://www.cryomech.com/cryocoolers/pulse-tube-cryocoolers/ [2023-6-29

    [22]

    Wang C 1997 Cryogenics 37 207Google Scholar

    [23]

    Wang C 1997 Cryogenics 37 215Google Scholar

    [24]

    Wang C, Thummes G, Heiden C 1997 Cryogenics 37 159Google Scholar

    [25]

    Qiu L M, Thummes G 2002 Adv. Cryog. Eng. 47 625Google Scholar

    [26]

    Qiu L M, Thummes G 2002 Cryogenics 42 327Google Scholar

    [27]

    Kim K, Zhi X Q, Qiu L, Nie H L, Wang J J 2017 Int. J. Refrig. 77 1Google Scholar

    [28]

    Liu X M, Chen L B, Wu X L, Yang B, Wang J, Zhu W X, Wang J J, Zhou Y 2020 Sci. China Technol. Sci. 63 434Google Scholar

    [29]

    Gedeon D 2016 Sage User’s Guide: Stirling, Pulse-Tube and Low-T Cooler Model Classes v11 Edition (Athens: Gedeon Associates) p6

    [30]

    戴巍, 罗二仓 2005 低温工程 144 24Google Scholar

    Dai W, Luo E C 2005 Cryog. Eng. 144 24Google Scholar

    [31]

    Pan C Z, Zhang T, Zhou Y, Wang J J 2016 Cryogenics 77 20Google Scholar

  • [1] 何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨. 面向机载平台的小型超导单光子探测系统. 物理学报, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [2] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界二氧化碳类液-类气区边界线数值分析. 物理学报, 2022, 71(4): 040201. doi: 10.7498/aps.71.20211464
    [3] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界CO2类液-类气区边界线数值分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211464
    [4] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远. 用于亚开温区的极低温绝热去磁制冷机. 物理学报, 2021, 70(9): 090702. doi: 10.7498/aps.70.20202237
    [5] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [6] 彭星, 孔令豹. 基于室内可见光通信技术的新型两级光学接收天线设计与分析. 物理学报, 2018, 67(9): 094201. doi: 10.7498/aps.67.20172341
    [7] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [8] 王观, 胡华, 伍康, 李刚, 王力军. 基于两级摆杆结构的超低频垂直隔振系统. 物理学报, 2016, 65(20): 200702. doi: 10.7498/aps.65.200702
    [9] 廖志贤, 罗晓曙, 黄国现. 两级式光伏并网逆变器建模与非线性动力学行为研究. 物理学报, 2015, 64(13): 130503. doi: 10.7498/aps.64.130503
    [10] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [11] 陈应天, 何祚庥. 用于轴对称的两级光学聚光器的非成像二次反射镜. 物理学报, 2013, 62(13): 134209. doi: 10.7498/aps.62.134209
    [12] 黄峰, 李鹏程, 周效信. 利用两色组合激光场驱动氦原子产生单个阿秒脉冲. 物理学报, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [13] 王刚, 胡芃, 陈则韶, 程晓舫. 两级透射-反射聚光分频电热联产系统设计和分析. 物理学报, 2012, 61(18): 184216. doi: 10.7498/aps.61.184216
    [14] 何弦, 何济洲, 肖宇玲. 四能级量子制冷循环. 物理学报, 2012, 61(15): 150302. doi: 10.7498/aps.61.150302
    [15] 李建勋, 柯熙政. 基于循环平稳信号相干统计量的脉冲星周期估计新方法. 物理学报, 2010, 59(11): 8304-8310. doi: 10.7498/aps.59.8304
    [16] 杨薇, 刘迎, 肖立峰, 高树理. 两级串联声光可调谐滤波器旁瓣抑制的研究. 物理学报, 2009, 58(1): 328-332. doi: 10.7498/aps.58.328
    [17] 王久敏, 陈坤基, 宋 捷, 余林蔚, 吴良才, 李 伟, 黄信凡. 氮化硅介质中双层纳米硅薄膜的两级电荷存储. 物理学报, 2006, 55(11): 6080-6084. doi: 10.7498/aps.55.6080
    [18] 何济洲, 王 磊, 李俊彬. 量子简并性对气体斯特林制冷循环性能的影响. 物理学报, 2005, 54(1): 24-29. doi: 10.7498/aps.54.24
    [19] 李 广, 姜 勇, 孙 霞, 汤 萍, 黄 真, 王 胜, 袁松柳. 液氦温区La2/3Ca1/3Mn1-xCuxO3(x=0.15)体系的磁电阻弛豫效应. 物理学报, 2000, 49(1): 124-127. doi: 10.7498/aps.49.124
    [20] 朱浩荣, 居广林, 唐秀云, 沈学础. 两级非磁性超高压装置. 物理学报, 1984, 33(4): 472-476. doi: 10.7498/aps.33.472
计量
  • 文章访问数:  5628
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-07-28
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-10-05

/

返回文章
返回