搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于平行平板电极的非球面双液体透镜的仿真与实验分析

孔梅梅 董媛 徐春生 刘悦 薛银燕 潘世成 赵瑞

引用本文:
Citation:

基于平行平板电极的非球面双液体透镜的仿真与实验分析

孔梅梅, 董媛, 徐春生, 刘悦, 薛银燕, 潘世成, 赵瑞

Simulation and experimental analysis of aspherical double-liquid lens based on parallel plate electrode

Kong Mei-Mei, Dong Yuan, Xu Chun-Sheng, Liu Yue, Xue Yin-Yan, Pan Shi-Cheng, Zhao Rui
PDF
HTML
导出引用
  • 应用介电泳原理, 设计了一种基于平行平板电极的非球面双液体透镜, 具有结构简单和易于实现的优点. 利用Comsol, Matlab和Zemax软件, 建立了相应的非球面双液体透镜光学模型, 仿真分析了其在不同电压下的焦距变化及成像特性, 并与球面双液体透镜模型进行了比较分析. 非球面双液体透镜的变焦范围大于球面的, 前者的成像质量亦优于后者. 而且, 实验制备了该非球面双液体透镜器件, 结果表明, 在工作电压为0—280 V时, 焦距变化为54.2391—34.5855 mm, 与仿真结果基本相符, 而且该器件的成像分辨率最大可达45.255 lp/mm.
    According to the principle of dielectrophoresis, an aspherical double-liquid lens based on parallel plate electrodes is designed. In comparison with the liquid lenses based on patterned-electrodes, the aspherical double-liquid lens structure uses continuous electrodes, which have the advantages of simpler processing, lower cost, easier realization and more practicability. The droplet in the dielectric electrophoretic liquid lens is polarized in the electric field and moves towards the higher electric field intensity under the action of the dielectrophoretic force. With the change of applied voltage, the dielectrophoretic force varies, thus the contact angle of the droplet at the liquid-liquid interface is changed. Firstly, the models of aspherical double-liquid lenses under different voltages are established with Comsol software, and the data of interfacial profile are derived. Then using Matlab software, the derived interface surface data are fitted by polynomial, and the aspherical coefficients are obtained. Finally, the optical models are built with Zemax software, and the variation range of focal length and root mean square (RMS) radius of aspherical double-liquid lens under different voltages are analyzed. In order to further study the characteristics of aspherical double-liquid lens, it is compared with spherical double-liquid lens model. The liquid material, cavity structure and droplet volume of spherical double-liquid lens are consistent with those of aspherical double-liquid lens. The corresponding spherical double-liquid lens model is established by using the Zemax software, the range of focal length and RMS radius of spherical double-liquid lens under different voltages are obtained. The results show that the focal length variation range of aspherical double-liquid lens is larger than that of spherical double-liquid lens, and the imaging quality of the former is better than that of the latter. The experimental preparation of the designed aspherical double-liquid lens device is carried out, and its focal length and imaging resolution are measured. When the operating voltage is in a range of 0–280 V, the focal length varies from 54.2391 to 34.5855 mm, which is basically consistent with the simulation result. The feasibility of the liquid lens structure is verified experimentally. The imaging resolution can reach 45.255 lp/mm. The designed aspherical double-liquid lens based on the parallel plate electrode can provide a new scheme for the high-quality imaging of liquid lens and its application, and can expand the application scope of liquid lens.
      通信作者: 孔梅梅, kongmm@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61905117, 61775102)资助的课题.
      Corresponding author: Kong Mei-Mei, kongmm@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905117, 61775102).
    [1]

    Sim J H, Kim J, Kim C, Shin D, Lee J, Koo G, Jung G S, Won Y H 2018 Sci. Rep. 8 15416Google Scholar

    [2]

    Cai H, Poon A W 2010 Opt. Lett. 35 2855Google Scholar

    [3]

    Seo S W, Han S, Seo J H, Kim Y M, Kang M S, Min N K, Choi W B, Sung M Y 2009 Jpn. J. Appl. Phys. 48 052404Google Scholar

    [4]

    López C A, Lee C C, Hirsa A H 2005 Appl. Phys. Lett. 87 134102Google Scholar

    [5]

    Ashtiani A O, Jiang H 2013 Appl. Phys. Lett. 103 111101Google Scholar

    [6]

    Zhao P, Ataman C, Zappe H 2015 Opt. Express 23 21264Google Scholar

    [7]

    Mishra K, Murade C, Carreel B, Roghair I, Oh J M, Manukyan G, Van Den Ende D, Mugele F 2014 Sci. Rep. 4 6378Google Scholar

    [8]

    Li L, Wang J H, Wang Q H, Wu S T 2018 Opt. Express 26 25839Google Scholar

    [9]

    Jin B, Xu M, Ren H, Wang Q H 2014 Opt. Express 22 31041Google Scholar

    [10]

    Xu M, Xu D, Ren H, Yoo I S, Wang Q H 2014 J. Opt. 16 105601Google Scholar

    [11]

    Wang J H, Zhou X, Luo L, Yuan R Y, Wang Q H 2019 Opt. Commun. 445 56Google Scholar

    [12]

    Zhang C Y, Li L, Wang Q H 2017 J. Soc. Inf. Display 25 331Google Scholar

    [13]

    Hung K Y, Tseng F G, Liao T H 2008 J. Microelectromech. Syst. 17 370Google Scholar

    [14]

    Yu H, Zhou G, Leung H M, Chau F S 2010 Opt. Express 18 9945Google Scholar

    [15]

    Mishra K, Mugele F 2016 Opt. Express 24 14672Google Scholar

    [16]

    Lima N C, Mishra K, Mugele F 2017 Opt. Express 25 6700Google Scholar

    [17]

    Mishra K, Narayanan A, Mugele F 2019 Opt. Express 27 17601Google Scholar

    [18]

    Chen Q, Tong X, Zhu Y, Tsoi C C, Jia Y, Li Z, Zhang X 2020 Lab Chip 20 995Google Scholar

    [19]

    Kong M M, Zhu L F, Chen D, Liang Z C, Zhao R, Xu E M 2016 J. Opt. Soc. Korea 20 427Google Scholar

    [20]

    Kong M M, Chen X, Yuan Y, Zhao R, Chen T, Liang Z C 2019 Curr. Opt. Photonics 3 177Google Scholar

    [21]

    Wu S T, Ren H 2012 Introduction to adaptive lenses (Hoboken: Willey) pp148–108

    [22]

    孔梅梅, 潘世成, 袁东, 孙小波, 薛银燕, 赵瑞, 陈陶 2023 激光与光电子学进展 60 192202Google Scholar

    Kong M M, Pan S C, Yuan D, Sun X B, Xue Y Y, Zhao R, Chen T 2023 Laser Optoelectron. Progr. 60 192202Google Scholar

    [23]

    孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞 2023 物理学报 72 154206Google Scholar

    Kong M M, Liu Y, Dong Y, Xue Y Y, Pan S C, Zhao R 2023 Acta Phys. Sin. 72 154206Google Scholar

    [24]

    梁丹 2022 硕士学位论文 (南京: 南京邮电大学)

    Liang D 2022 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

    [25]

    Ren H, Xianyu H, Xu S, Wu S T 2008 Opt. Express 16 14954Google Scholar

    [26]

    Xu M, Liu Y T, Yuan Y, Lu H B, Qiu L Z 2022 Opt. Lett. 47 509Google Scholar

  • 图 1  液体透镜参数设置示意图

    Fig. 1.  Schematic diagram of parameter setting of the liquid lens.

    图 2  基于平行平板电极的非球面双液体透镜的结构原理示意图

    Fig. 2.  Structural principle diagram of the aspherical double-liquid lens based on parallel plate electrode.

    图 3  利用软件进行非球面双液体透镜建模的仿真流程图

    Fig. 3.  Simulation flow chart of aspherical double-liquid lens modeling with softwares.

    图 4  Comsol中的非球面双液体透镜模型 (a) 立体斜视图; (b) 电场线分布图(40 V)

    Fig. 4.  A spherical double-liquid lens model in Comsol: (a) Stereoscopic oblique view; (b) electric field line distribution diagram (40 V).

    图 5  利用Matlab拟合的280 V电压下的界面面型图

    Fig. 5.  Surface diagrams of interfaces fitted with Matlab under the voltage of 280 V.

    图 6  同一电压(320 V)非球面和球面双液体透镜的光路图 (a) 非球面双液体透镜; (b) 球面双液体透镜

    Fig. 6.  Optical path diagrams of aspherical and spherical double-liquid lenses surface at 320 V: (a) Aspherical double-liquid lens; (b) spherical double-liquid lens.

    图 7  不同电压下非球面与球面双液体透镜的焦距对比图

    Fig. 7.  Comparison of focal lengths between aspherical and spherical double-liquid lenses at different voltages.

    图 8  不同电压下非球面与球面双液体透镜的成像点列图中RMS半径的对比

    Fig. 8.  Comparison of RMS radius of spot diagrams of aspherical and spherical double-liquid lenses at different voltages.

    图 9  制备的基于平行平板电极的非球面双液体透镜实物图

    Fig. 9.  Actual image of prepared aspheric double-liquid lens based on parallel plate electrode.

    图 10  放大率法焦距测量原理 (a) 焦距测量原理; (b) 玻罗分划线

    Fig. 10.  Magnification method focal length measurement principle: (a) Principle of focal length measurement; (b) the Porro dividing line.

    图 11  不同电压下仿真与实验测得的焦距对比图

    Fig. 11.  Comparison of focal length measured by simulation and experiment at different voltages.

    图 12  不同状态下非球面双液体透镜的分辨率图 (a) 0 V; (b) 280 V

    Fig. 12.  Resolution of aspherical double-liquid lens in different states: (a) 0 V; (b) 280 V.

    表 1  不同工作电压下面型拟合精度(R-Square值)

    Table 1.  Precision of surface fitting under different working voltages (R-Square value).

    电压/VR-Square值
    00.9998
    400.9998
    800.9998
    1200.9998
    1600.9997
    2000.9996
    2400.9993
    2800.9987
    3200.9968
    下载: 导出CSV
  • [1]

    Sim J H, Kim J, Kim C, Shin D, Lee J, Koo G, Jung G S, Won Y H 2018 Sci. Rep. 8 15416Google Scholar

    [2]

    Cai H, Poon A W 2010 Opt. Lett. 35 2855Google Scholar

    [3]

    Seo S W, Han S, Seo J H, Kim Y M, Kang M S, Min N K, Choi W B, Sung M Y 2009 Jpn. J. Appl. Phys. 48 052404Google Scholar

    [4]

    López C A, Lee C C, Hirsa A H 2005 Appl. Phys. Lett. 87 134102Google Scholar

    [5]

    Ashtiani A O, Jiang H 2013 Appl. Phys. Lett. 103 111101Google Scholar

    [6]

    Zhao P, Ataman C, Zappe H 2015 Opt. Express 23 21264Google Scholar

    [7]

    Mishra K, Murade C, Carreel B, Roghair I, Oh J M, Manukyan G, Van Den Ende D, Mugele F 2014 Sci. Rep. 4 6378Google Scholar

    [8]

    Li L, Wang J H, Wang Q H, Wu S T 2018 Opt. Express 26 25839Google Scholar

    [9]

    Jin B, Xu M, Ren H, Wang Q H 2014 Opt. Express 22 31041Google Scholar

    [10]

    Xu M, Xu D, Ren H, Yoo I S, Wang Q H 2014 J. Opt. 16 105601Google Scholar

    [11]

    Wang J H, Zhou X, Luo L, Yuan R Y, Wang Q H 2019 Opt. Commun. 445 56Google Scholar

    [12]

    Zhang C Y, Li L, Wang Q H 2017 J. Soc. Inf. Display 25 331Google Scholar

    [13]

    Hung K Y, Tseng F G, Liao T H 2008 J. Microelectromech. Syst. 17 370Google Scholar

    [14]

    Yu H, Zhou G, Leung H M, Chau F S 2010 Opt. Express 18 9945Google Scholar

    [15]

    Mishra K, Mugele F 2016 Opt. Express 24 14672Google Scholar

    [16]

    Lima N C, Mishra K, Mugele F 2017 Opt. Express 25 6700Google Scholar

    [17]

    Mishra K, Narayanan A, Mugele F 2019 Opt. Express 27 17601Google Scholar

    [18]

    Chen Q, Tong X, Zhu Y, Tsoi C C, Jia Y, Li Z, Zhang X 2020 Lab Chip 20 995Google Scholar

    [19]

    Kong M M, Zhu L F, Chen D, Liang Z C, Zhao R, Xu E M 2016 J. Opt. Soc. Korea 20 427Google Scholar

    [20]

    Kong M M, Chen X, Yuan Y, Zhao R, Chen T, Liang Z C 2019 Curr. Opt. Photonics 3 177Google Scholar

    [21]

    Wu S T, Ren H 2012 Introduction to adaptive lenses (Hoboken: Willey) pp148–108

    [22]

    孔梅梅, 潘世成, 袁东, 孙小波, 薛银燕, 赵瑞, 陈陶 2023 激光与光电子学进展 60 192202Google Scholar

    Kong M M, Pan S C, Yuan D, Sun X B, Xue Y Y, Zhao R, Chen T 2023 Laser Optoelectron. Progr. 60 192202Google Scholar

    [23]

    孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞 2023 物理学报 72 154206Google Scholar

    Kong M M, Liu Y, Dong Y, Xue Y Y, Pan S C, Zhao R 2023 Acta Phys. Sin. 72 154206Google Scholar

    [24]

    梁丹 2022 硕士学位论文 (南京: 南京邮电大学)

    Liang D 2022 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications

    [25]

    Ren H, Xianyu H, Xu S, Wu S T 2008 Opt. Express 16 14954Google Scholar

    [26]

    Xu M, Liu Y T, Yuan Y, Lu H B, Qiu L Z 2022 Opt. Lett. 47 509Google Scholar

  • [1] 孔梅梅, 薛银燕, 徐春生, 董媛, 刘悦, 潘世成, 赵瑞. 含有圆孔平板电极结构的双凸液体透镜的设计与分析. 物理学报, 2024, 73(1): 014207. doi: 10.7498/aps.73.20231291
    [2] 尚修霆, 陈陶, 谌静, 徐荣青. 基于双柔性电极模拟叉指图案电极的液体介电泳研究. 物理学报, 2024, 73(3): 034701. doi: 10.7498/aps.73.20231485
    [3] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [4] 孔梅梅, 刘悦, 董媛, 薛银燕, 潘世成, 赵瑞. 基于平面电极的非球面双液体透镜的设计与分析. 物理学报, 2023, 72(15): 154206. doi: 10.7498/aps.72.20230758
    [5] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法. 物理学报, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [6] 翟永贵, 王瑞, 王洪广, 林舒, 陈坤, 李永东. 介质部分填充平行平板传输线微放电过程分析. 物理学报, 2018, 67(15): 157901. doi: 10.7498/aps.67.20180351
    [7] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程. 液体电极上辉光放电丝的运动特性研究. 物理学报, 2018, 67(7): 075201. doi: 10.7498/aps.67.20172205
    [8] 兰斌, 冯国英, 张涛, 梁井川, 周寿桓. 用于透明平板平行度和均匀性测量的单元件干涉仪. 物理学报, 2017, 66(6): 069501. doi: 10.7498/aps.66.069501
    [9] 周龙峰, 张昂, 张俊波, 樊新龙, 魏凌, 陈善球, 鲜浩. 基于成像清晰度函数的非球面反射镜位置校正实验研究. 物理学报, 2016, 65(13): 139501. doi: 10.7498/aps.65.139501
    [10] 谢娜, 张宁, 赵瑞, 陈陶, 郝丽丽, 徐荣青. 交流作用下电润湿液体透镜动态过程的测试与分析. 物理学报, 2016, 65(22): 224202. doi: 10.7498/aps.65.224202
    [11] 朱幸福, 梁斌明, 湛胜高, 陈家璧, 庄松林. 负折射平板透镜景深特性仿真分析. 物理学报, 2014, 63(13): 134202. doi: 10.7498/aps.63.134202
    [12] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [13] 刘虹遥, 吕强, 罗海陆, 文双春. 各向异性超常材料平板透镜的聚焦特性分析. 物理学报, 2010, 59(1): 256-263. doi: 10.7498/aps.59.256
    [14] 任玉坤, 敖宏瑞, 顾建忠, 姜洪源, Antonio Ramos. 面向微系统的介电泳力微纳粒子操控研究. 物理学报, 2009, 58(11): 7869-7877. doi: 10.7498/aps.58.7869
    [15] 张 波, 王 智. 二维空气孔型光子晶体负折射平板透镜的减反层. 物理学报, 2007, 56(3): 1404-1408. doi: 10.7498/aps.56.1404
    [16] 陈 刚, 朱震刚, 水嘉鹏. 利用强迫振动扭摆方法测量液体粘滞系数的原理. 物理学报, 1999, 48(3): 421-425. doi: 10.7498/aps.48.421
    [17] 许培英, 盛冬宁, 陆怀先. 磁性液体的介电特性. 物理学报, 1988, 37(7): 1192-1196. doi: 10.7498/aps.37.1192
    [18] 艾克聪, 西门纪业, 周立伟. 电磁复合聚焦—偏转球面阴极透镜的相对论象差理论. 物理学报, 1986, 35(9): 1210-1222. doi: 10.7498/aps.35.1210
    [19] 艾克聪, 周立伟, 西门纪业. 宽束和细束电磁复合聚焦球面阴极透镜的象差理论. 物理学报, 1986, 35(9): 1199-1209. doi: 10.7498/aps.35.1199
    [20] 张幼文;杨存武;仰晓东. 偏轴非球面红外光学系统的自动设计. 物理学报, 1979, 28(4): 492-502. doi: 10.7498/aps.28.492
计量
  • 文章访问数:  1813
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 修回日期:  2023-09-14
  • 上网日期:  2023-10-08
  • 刊出日期:  2023-12-20

/

返回文章
返回