搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二次强度调制的激光测距系统

王菊 邵琦 于晋龙 何可瑞 罗浩 马闯 蔡滋恒 郑紫月 蔡奔

引用本文:
Citation:

基于二次强度调制的激光测距系统

王菊, 邵琦, 于晋龙, 何可瑞, 罗浩, 马闯, 蔡滋恒, 郑紫月, 蔡奔

Laser ranging system based on double intensity modulation

Wang Ju, Shao Qi, Yu Jin-Long, He Ke-Rui, Luo Hao, Ma Chuang, Cai Zi-Heng, Zheng Zi-Yue, Cai Ben
PDF
HTML
导出引用
  • 本文提出的二次强度调制测距系统可以实现绝对距离的测量, 其利用马赫曾德尔强度调制器代替二次偏振调制测距中的电光相位调制器, 通过对信号的光强进行二次调制来进行测距. 相比于二次偏振调制测距, 二次强度调制测距无需考虑测距系统中的偏振态问题, 简化了系统结构, 提高了系统的稳定性. 经过相关理论推导以及实验验证: 二次强度调制测距系统的输出光强与调制频率成余弦关系, 并且可以直接测量调制器到目标物体之间的绝对距离, 系统的频率稳定度、相对测距精度皆达到10–7 量级. 本文提出的测距系统量程达到100 m, 相对测距精度稳定在10–7 量级. 采用摇摆法快速测距, 避免了直接扫频寻找光强极小值点对应的频率, 数据刷新率达到2 kHz. 二次强度调制测距系统测距速度快, 同时兼顾了较大的量程与较好的测距精度, 系统结构简单, 易于搭建, 具有广阔的应用前景.
    Long-range, high-precision, and high-refresh rate absolute distance measurement based on double intensity modulation is proposed and experimentally demonstrated. In this scheme, a Mach-Zehnder modulator is utilized to perform bidirectional modulation by a reversible optical path. In the Mach-Zehnder modulator, interference demodulation is completed by bidirectional modulated light with time difference. By adjusting the driving frequency of the modulator, the curve of light intensity versus driving frequency is achieved. Consequently, the distance to be measured can be obtained by extracted the frequency interval between two adjacent light intensity minimum points. In the traditional double polarization modulation ranging, the optical carrier is polarized by a polarizing beam splitter (PBS) before phase modulator. Moreover, a quarter wave or Faraday rotating mirror need to be placed to adjust the polarization in front of the target object. Therefore, the polarization state is an indispensable factor in the traditional double polarization modulation ranging. Due to the advantage of the intensity modulation, absolute distance measurement is achieved without additional polarization control, greatly simplifying the system. Theoretical analysis of the system is developed, which is then demonstrated by experiments. In the experiments, we achieved the following results. Firstly, the relationship between the intensity of the output light of the system and the modulation frequency is theoretically analyzed, which proved to be a cosine form. Secondly, swing method is introduced to realize high-speed absolute distance measurement during the analytical distance algorithm, and we achieved a refresh rate of 2 kHz in the experiments. Thirdly, the relationship between measurement ranging precision and frequency stability is analyzed. When the modulation frequency is 8.9 GHz, the experimentally measured frequency stability is on the order of 10–7. And when the distance to be measured is 2.73 m, the standard deviation of ranging reaches 1 μm, which represents the precision of the system. That is, the relative measurement precision is also on the order of 10–7, which is consistent with theoretical analysis. Finally, when the distance to be measured increases from 1.57 m to 100.83 m, the measurement precision increases from 1 μm to 30 μm. It is worth mentioning that the relative measurement precision of the system is always stable in the order of 10–7. Our scheme has some significant advantages, such as long-range, high-precision, high-refresh rate, and a simple and compact configuration. Moreover, our method can be used in important applications such as precision instruments, metrology, and aerospace.
      通信作者: 于晋龙, yujinlong@tju.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 62005194)资助的课题.
      Corresponding author: Yu Jin-Long, yujinlong@tju.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62005194).
    [1]

    王镓, 李达飞, 何锡明, 成子青, 许倩, 钱雪茹, 万文辉 2022 深空探测学报 9 62

    Wang J, Li D F, He X M, Cheng Z Q, Xu Q, Qian X R, Wan W H 2022 J. Deep Space Explor. 9 62

    [2]

    于勇, 陶剑, 范玉青 2009 航空制造技术 11 56Google Scholar

    Yu Y, Tao J, Fan Y Q 2009 Aeronaut. Manuf. Technol. 11 56Google Scholar

    [3]

    邵珠法 2005 硕士学位论文 (成都: 电子科技大学)

    Shao Z F 2005 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [4]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [5]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [6]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982Google Scholar

    [7]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716Google Scholar

    [8]

    Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095Google Scholar

    [9]

    Lee J, Han S, Lee K, Bae E, Kim S, Lee S, Kim S W, Kim Y J 2013 Meas. Sci. Technol. 24 045201Google Scholar

    [10]

    Wu G H, Liao L, Xiong S L, Li G Y, Cai Z J, Zhu Z 2018 Sci. Rep. 8 4362Google Scholar

    [11]

    Armano M, Audley H, Baird J, et al. 2018 Phys. Rev. Lett. 120 061101Google Scholar

    [12]

    Gao R H, Liu H S, Luo Z R, Jin G 2019 Chin. Opt. 12 425Google Scholar

    [13]

    Gong Y G, Luo J, Wang B 2021 Nat. Astron. 5 881Google Scholar

    [14]

    Nissinen J, Nissinen I, Kostamovaara J 2009 IEEE J. Solid-State Circuits 44 1486Google Scholar

    [15]

    Wang T S, Huo J, Wang P C, Dong P, Yang R, Li M F 2017 Proceedings of the 2017 Symposium on Quantum Information Technology and Applications Beijing, China, August 6–15, 2017 p50

    [16]

    Kilpela A, Pennala R, Kostamovaara J 2001 Rev. Sci. Instrum. 72 2197Google Scholar

    [17]

    刘玉周 2015 硕士学位论文 (武汉: 华中科技大学)

    Liu Y Z 2015 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [18]

    许贤泽, 翁名杰, 徐逢秋, 白翔 2017 光学精密工程 8 1979

    Xu X Z, Weng M J, Xu F Q, Bai X 2017 Opt. Precis. Eng. 8 1979

    [19]

    郑大青, 陈伟民, 陈丽, 李存龙 2015 光电子·激光 26 303

    Zheng D Q, Chen W M, Chen L, Li C L 2015 J. Optoelectron. Laser 26 303

    [20]

    黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 物理学报 63 100602Google Scholar

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar

    [21]

    肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元 2016 物理学报 65 100601Google Scholar

    Xiao Y, Yu J L, Wang J, Wang W R, Wang Z X, Xie T Y 2016 Acta Phys. Sin. 65 100601Google Scholar

    [22]

    高书苑, 石俊凯, 纪荣祎, 黎尧, 周维虎 2018 中国激光 45 4005

    Gao S Y, Shi J K, Ji R W, Li Y, Zhou W H 2018 Chin. J. Lasers 45 4005

    [23]

    高书苑, 黎尧, 纪荣祎, 石俊凯, 胡哲文, 周维虎 2019 光学精密工程 27 279Google Scholar

    Gao S Y, Li Y, Ji R W, Shi J K, Hu Z W, Zhou W H 2019 Opt. Precis. Eng. 27 279Google Scholar

    [24]

    高超, 纪荣祎, 高书苑, 董登峰, 周维虎 2022 光学精密工程 30 246

    Gao C, Ji R Y, Gao S Y, Dong D F, Zhou W H 2022 Opt. Precis. Eng. 30 246

    [25]

    亢洋 2021 硕士学位论文 (北京: 北京邮电大学)

    Kang Y 2021 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [26]

    张伟婷 2020 硕士学位论文 (成都: 电子科技大学)

    Zhang W T 2020 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [27]

    Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859Google Scholar

  • 图 1  二次强度调制原理示意图(Cir, 环形器; MZM, 马赫曾德尔调制器; PD, 光电探测器)

    Fig. 1.  Schematic diagram of double intensity modulation (Cir, circulator; MZM, Mach-Zehnder modulator; PD, photo detector).

    图 2  马赫-曾德尔调制器传输曲线

    Fig. 2.  Transmission curve of Mach-Zehnder modulator

    图 3  第一类贝塞尔函数

    Fig. 3.  Bessel function of the first kind

    图 4  二次强度调制测距实验结构图(Cir, 环形器; MZM, 马赫-曾德尔调制器; VOA, 可调光衰减; PD, 光电探测器; A/D, 模数转换)

    Fig. 4.  Experimental structure diagram of double intensity modulation ranging (Cir, circulator; MZM, Mach-Zehnder modulator; VOA, variable optical attenuator; PD, photo detector; A/D, analog to digital converter).

    图 5  实验扫频曲线

    Fig. 5.  Experimental sweep curve

    图 6  不同位置下f$ \Delta U $的关系 (a) f在光强极小值点对应频率的左侧; (b) f为光强极小值点对应的频率; (c) f在光强极小值点对应频率的右侧

    Fig. 6.  Relationship between f and $ \Delta U $ at different positions: (a) f is on the left side of the frequency corresponding to the light intensity minimum point; (b) f is the frequency corresponding to the minimum point of light intensity; (c) f is on the right side of the frequency corresponding to the light intensity minimum point.

    图 7  摇摆差值曲线及其零点局部放大 (a)摇摆差值曲线; (b)摇摆差值零点局部放大

    Fig. 7.  Swing difference curve and local amplification at zero point: (a) Swing difference curve; (b) partial amplification of zero point of swing difference.

    图 8  系统测距结果

    Fig. 8.  Distance measurement results of the system

    表 1  f1的相对稳定度

    Table 1.  Relative stability of f1.

    Group Average of
    $ f_{1}$/Hz
    Standard
    deviation of
    $ f_{1}$/Hz
    Relative
    accuracy/10–7
    8965550359 2737 3.05
    8965546127 2760 3.07
    8965538910 3736 4.17
    下载: 导出CSV

    表 2  相对测距精度

    Table 2.  Relative distance measurement accuracy.

    Group Average of D/m Standard deviation
    of D/μm
    Relative accuracy
    /10–7
    1.575537 1 6.35
    9.139261 5 5.47
    23.313040 8 3.43
    38.786468 10 2.57
    54.107275 15 2.77
    64.199287 16 2.55
    79.673707 26 3.49
    100.830172 30 2.98
    下载: 导出CSV
  • [1]

    王镓, 李达飞, 何锡明, 成子青, 许倩, 钱雪茹, 万文辉 2022 深空探测学报 9 62

    Wang J, Li D F, He X M, Cheng Z Q, Xu Q, Qian X R, Wan W H 2022 J. Deep Space Explor. 9 62

    [2]

    于勇, 陶剑, 范玉青 2009 航空制造技术 11 56Google Scholar

    Yu Y, Tao J, Fan Y Q 2009 Aeronaut. Manuf. Technol. 11 56Google Scholar

    [3]

    邵珠法 2005 硕士学位论文 (成都: 电子科技大学)

    Shao Z F 2005 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [4]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [5]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [6]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982Google Scholar

    [7]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photonics 4 716Google Scholar

    [8]

    Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095Google Scholar

    [9]

    Lee J, Han S, Lee K, Bae E, Kim S, Lee S, Kim S W, Kim Y J 2013 Meas. Sci. Technol. 24 045201Google Scholar

    [10]

    Wu G H, Liao L, Xiong S L, Li G Y, Cai Z J, Zhu Z 2018 Sci. Rep. 8 4362Google Scholar

    [11]

    Armano M, Audley H, Baird J, et al. 2018 Phys. Rev. Lett. 120 061101Google Scholar

    [12]

    Gao R H, Liu H S, Luo Z R, Jin G 2019 Chin. Opt. 12 425Google Scholar

    [13]

    Gong Y G, Luo J, Wang B 2021 Nat. Astron. 5 881Google Scholar

    [14]

    Nissinen J, Nissinen I, Kostamovaara J 2009 IEEE J. Solid-State Circuits 44 1486Google Scholar

    [15]

    Wang T S, Huo J, Wang P C, Dong P, Yang R, Li M F 2017 Proceedings of the 2017 Symposium on Quantum Information Technology and Applications Beijing, China, August 6–15, 2017 p50

    [16]

    Kilpela A, Pennala R, Kostamovaara J 2001 Rev. Sci. Instrum. 72 2197Google Scholar

    [17]

    刘玉周 2015 硕士学位论文 (武汉: 华中科技大学)

    Liu Y Z 2015 M. S. Thesis (Wuhan: Huazhong University of Science and Technology

    [18]

    许贤泽, 翁名杰, 徐逢秋, 白翔 2017 光学精密工程 8 1979

    Xu X Z, Weng M J, Xu F Q, Bai X 2017 Opt. Precis. Eng. 8 1979

    [19]

    郑大青, 陈伟民, 陈丽, 李存龙 2015 光电子·激光 26 303

    Zheng D Q, Chen W M, Chen L, Li C L 2015 J. Optoelectron. Laser 26 303

    [20]

    黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强 2014 物理学报 63 100602Google Scholar

    Hei K F, Yu J L, Wang J, Wang W R, Jia S, Wu Q, Xue J Q 2014 Acta Phys. Sin. 63 100602Google Scholar

    [21]

    肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元 2016 物理学报 65 100601Google Scholar

    Xiao Y, Yu J L, Wang J, Wang W R, Wang Z X, Xie T Y 2016 Acta Phys. Sin. 65 100601Google Scholar

    [22]

    高书苑, 石俊凯, 纪荣祎, 黎尧, 周维虎 2018 中国激光 45 4005

    Gao S Y, Shi J K, Ji R W, Li Y, Zhou W H 2018 Chin. J. Lasers 45 4005

    [23]

    高书苑, 黎尧, 纪荣祎, 石俊凯, 胡哲文, 周维虎 2019 光学精密工程 27 279Google Scholar

    Gao S Y, Li Y, Ji R W, Shi J K, Hu Z W, Zhou W H 2019 Opt. Precis. Eng. 27 279Google Scholar

    [24]

    高超, 纪荣祎, 高书苑, 董登峰, 周维虎 2022 光学精密工程 30 246

    Gao C, Ji R Y, Gao S Y, Dong D F, Zhou W H 2022 Opt. Precis. Eng. 30 246

    [25]

    亢洋 2021 硕士学位论文 (北京: 北京邮电大学)

    Kang Y 2021 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [26]

    张伟婷 2020 硕士学位论文 (成都: 电子科技大学)

    Zhang W T 2020 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [27]

    Frankel M Y, Esman R D 1998 J. Lightwave Technol. 16 859Google Scholar

  • [1] 刘欣宇, 杨苏辉, 廖英琦, 林学彤. 基于小波变换的激光水下测距. 物理学报, 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [2] 李坤, 杨苏辉, 廖英琦, 林学彤, 王欣, 张金英, 李卓. 强度调制532 nm激光水下测距. 物理学报, 2021, 70(8): 084203. doi: 10.7498/aps.70.20201612
    [3] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [4] 孟文东, 张海峰, 邓华荣, 汤凯, 吴志波, 王煜蓉, 吴光, 张忠萍, 陈欣扬. 基于1.06 μm波长的空间合作目标及碎片高精度激光测距试验. 物理学报, 2020, 69(1): 019502. doi: 10.7498/aps.69.20191299
    [5] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术. 物理学报, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [6] 曹辉, 宋有建, 于佳禾, 师浩森, 胡明列, 王清月. 奇异谱分析用于提升双光梳激光测距精度. 物理学报, 2018, 67(1): 010601. doi: 10.7498/aps.67.20171922
    [7] 黄民双, 马鹏, 刘晓晨. 高频共振预探测多脉冲激光测距方法. 物理学报, 2018, 67(7): 074202. doi: 10.7498/aps.67.20172079
    [8] 潘浩, 曲兴华, 史春钊, 李雅婷, 张福民. 激光调频连续波测距的精度评定方法研究. 物理学报, 2018, 67(9): 090201. doi: 10.7498/aps.67.20180142
    [9] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法. 物理学报, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [10] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [11] 徐孝彬, 张合, 张祥金, 陈杉杉, 张伟. 脉冲激光探测平面目标特性对测距分布的影响. 物理学报, 2016, 65(21): 210601. doi: 10.7498/aps.65.210601
    [12] 张晓声, 易旺民, 胡明皓, 杨再华, 吴冠豪. 基于飞秒激光模间拍频法的大尺寸测距方法. 物理学报, 2016, 65(8): 080602. doi: 10.7498/aps.65.080602
    [13] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [14] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [15] 肖洋, 于晋龙, 王菊, 王文睿, 王子雄, 谢田元, 于洋, 薛纪强. 二次偏振调制测距系统中调制频率与测距精度的关系. 物理学报, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [16] 寇添, 王海晏, 王芳, 吴学铭, 王领, 徐强. 机载多脉冲激光测距特性及其不确定度研究. 物理学报, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [17] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [18] 时光, 张福民, 曲兴华, 孟祥松. 高分辨率调频连续波激光绝对测距研究. 物理学报, 2014, 63(18): 184209. doi: 10.7498/aps.63.184209
    [19] 黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强. 基于二次偏振调制的变频测距方法与系统实现. 物理学报, 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [20] 王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞. 一种双光梳多外差大尺寸高精度绝对测距新方法的理论分析. 物理学报, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
计量
  • 文章访问数:  2514
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 修回日期:  2023-07-30
  • 上网日期:  2023-09-05
  • 刊出日期:  2023-11-20

/

返回文章
返回