-
基于界面激基复合物作为主体的主-客体型有机发光二极管(organic light emitting diodes, OLEDs)的外量子效率已经突破36%, 但其主-客体间能量传递过程还有待深入研究. 本文提出一种基于客体Rubrene热激子反向系间窜越(T2,Rub → S1,Rub)的特征磁响应探测界面激基复合物型OLEDs中能量传递过程的实验策略. 具体通过表征主、客体材料的光物理特性, 证明了主-客体单重态激子间的Förster共振能量传递过程; 通过研究界面激基复合物型器件的磁电致发光响应曲线, 可视化了主-客体三重态激子间的Dexter能量传递过程, 且该过程有效发生对于器件电致发光具有不可忽视的促进作用. 本研究不仅为探测OLEDs中Dexter能量传递过程提供切实可行的理论方法, 还为进一步设计高性能热激子型OLEDs提供新的实验参考.
-
关键词:
- 界面激基复合物 /
- 热激子 /
- Dexter能量传递 /
- 磁电致发光
The maximum external quantum efficiency of the host-guest-type organic light-emitting diodes (OLEDs) with interface exciplex as the host has been over 36%. However, studies about the energy transfer processes occurring from the host to guest remain lacking. Herein, a strategy is proposed to probe the energy transfer processes in interface-type OLEDs by utilizing the characteristic magneto-electroluminescence (MEL) response from the hot exciton reverse intersystem crossing (T2,Rub → S1,Rub) of rubrene. Specifically, a donor/spacer/accepter (D/S/A)-type interface exciplex device and a D/spacer:x% Emitter/A (D/S:3% Rubrene/A)-type Rubrene-doped device are fabricated. The Förster resonance energy transfer (FRET) process occurring between the singlet state of the exciplex-host and the singlet state of Rubrene-guest is demonstrated by characterizing the photophysical properties of the donor, accepter, and guest materials. The Dexter energy transfer (DET, T1,Host → T2,Rub) process between the triplet state of the host and the triplet state of guest is visualized by the comparative studying of the current- and temperature-dependent MEL response curves of D/S/A and D/S:3% Rubrene/A devices, respectively. More importantly, the occurrence of the DET process greatly promotes the electroluminescence intensity of the D/S:3% Rubrene/A device. Furthermore, we also investigate the differences in the electroluminescence performance of devices at low temperature to demonstrate again the co-existence of FRET and DET process in the D/S:3% Rubrene/A system. Obviously, this work not only provides a promising strategy for probing the DET process in OLEDs, but also paves a new way for designing high-performance “hot exciton” type OLEDs.[1] Gu J N, Tang Z Y, Guo H Q, Chen Y, Xiao J, Chen Z J, Xiao L X 2022 J. Mater. Chem. C 10 4521Google Scholar
[2] Shao J H, Chen C, Zhao W C, Zhang E D, Ma W J, Sun Y P, Chen P, Sheng R 2022 Micromachines 13 298Google Scholar
[3] 梁宝炎, 庄旭鸣, 宋小贤, 梁洁, 毕海, 王悦 2023 发光学报 44 61Google Scholar
Liang B Y, Zhuang X M, Song X X, Liang J, Bi H, Wang Y 2023 Chin. J. Lumin. 44 61Google Scholar
[4] Hung W Y, Fang G C, Chang Y C, Kuo T Y, Chou P T, Lin S W, Wong K T 2013 ACS Appl. Mater. Interfaces 5 6826Google Scholar
[5] Nakanotani H, Furukawa T, Morimoto K, Adachi C 2016 Sci. Adv. 2 e1501470Google Scholar
[6] Song X Z, Zhang D D, Huang T Y, Cai M H, Duan L 2018 Sci. China Chem. 61 836Google Scholar
[7] Ying S, Xiao S, Peng L, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2022 ACS Appl. Electron. Mater. 4 3088Google Scholar
[8] Han S H, Lee J Y 2018 J. Mater. Chem. C 6 1504Google Scholar
[9] Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H, Tu L Y, Xiong Z H 2020 Adv. Funct. Mater. 30 2005765Google Scholar
[10] Xu Y W, Liang X M, Zhou X H, Yuan P S, Zhou J D, Wang C, Li B B, Hu D H, Qiao X F, Jiang X F, Liu L L, Su S J, Ma D G, Ma Y G 2019 Adv. Mater. 31 1807388Google Scholar
[11] Kim H B, Kim J J 2020 Phys. Rev. Appl. 13 024006Google Scholar
[12] Huh D H, Kim G W, Kim G H, Kulshreshtha C, Kwon J H 2013 Synth. Met. 180 79Google Scholar
[13] 宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar
Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar
[14] Ying S, Pang P Y, Zhang S, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2019 ACS Appl. Mater. Interfaces 11 31078Google Scholar
[15] Matsumoto N, Nishiyama M, Adachi C 2008 J. Phys. Chem. C 112 7735Google Scholar
[16] Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar
[17] Zhao B, Miao Y Q, Wang Z Q, Chen W H, Wang K X, Wang H, Hao Y Y, Xu B S, Li W L 2016 Org. Electron. 37 1Google Scholar
[18] Song X Z, Zhang D D, Li H Y, Cai M H, Huang T Y, Duan L 2019 ACS Appl. Mater. Interfaces 11 22595Google Scholar
[19] 黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第 52页
Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p52
[20] Kim K H, Yoo S J, Kim J J 2016 Chem. Mater. 28 1936Google Scholar
[21] Tang X T, Tu L Y, Zhao X, Chen J, Ning Y R, Wu F J, Xiong Z H 2022 J. Phys. Chem. C 126 9456Google Scholar
[22] 汤仙童, 潘睿亨, 熊祖洪 2023 科学通报 68 2401Google Scholar
Tang X T, Pan R H, Xiong Z H 2023 Chin. Sci. Bull 68 2401Google Scholar
[23] Tsai K W, Lee T H, Wu J H, Jhou J Y, Huang W S, Hsieh S N, Wen T C, Guo T F, Huang J C A 2013 Org. Electron. 14 1376Google Scholar
[24] Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar
[25] Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar
[26] Tang X T, Pan R H, Zhao X, Zhu H Q, Xiong Z H 2020 J. Phys. Chem. Lett. 11 2804Google Scholar
[27] 王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 物理学报 71 217201Google Scholar
Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar
[28] Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar
[29] Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar
-
图 2 (a) 室温下器件1—3的归一化EL谱; (b) 室温下器件1—3的I-B曲线; (c)不同工作温度下, 器件2在100 μA偏置电流时的EL谱; (d) 器件2在不同工作温度下的I-B曲线; (e) 不同工作温度下, 器件3在100 μA偏置电流时的EL谱; (f) 器件3在不同工作温度下的I-B曲线
Fig. 2. (a) Normalized EL spectra of devices 1–3 at room temperature; (b) I-B curves of devices 1–3 at room temperature; (c) EL spectra of Dev. 2 at bias current of 100 μA with different operating temperatures; (d) I-B curves of Dev. 2 at different operating temperatures; (e) EL spectra of Dev. 3 at bias current of 100 μA with different operating temperatures; (f) I-B curves of Dev. 3 at different operating temperatures.
表 1 有机发光器件1—3的具体结构
Table 1. Specific structure of organic light-emitting devices 1–3.
Device name Structure Dev. 1 ITO/PEDOT:PSS/TCTA (50 nm)/PO-T2T (70 nm)/LiF (1 nm)/Al Dev. 2 ITO/PEDOT:PSS/TCTA (50 nm)/DPEPO (4 nm)/PO-T2T (70 nm)/LiF (1 nm)/Al Dev. 3 ITO/PEDOT:PSS/TCTA (50 nm)/DPEPO:3% Rubrene (4 nm)/PO-T2T (70 nm)/LiF (1 nm)/Al -
[1] Gu J N, Tang Z Y, Guo H Q, Chen Y, Xiao J, Chen Z J, Xiao L X 2022 J. Mater. Chem. C 10 4521Google Scholar
[2] Shao J H, Chen C, Zhao W C, Zhang E D, Ma W J, Sun Y P, Chen P, Sheng R 2022 Micromachines 13 298Google Scholar
[3] 梁宝炎, 庄旭鸣, 宋小贤, 梁洁, 毕海, 王悦 2023 发光学报 44 61Google Scholar
Liang B Y, Zhuang X M, Song X X, Liang J, Bi H, Wang Y 2023 Chin. J. Lumin. 44 61Google Scholar
[4] Hung W Y, Fang G C, Chang Y C, Kuo T Y, Chou P T, Lin S W, Wong K T 2013 ACS Appl. Mater. Interfaces 5 6826Google Scholar
[5] Nakanotani H, Furukawa T, Morimoto K, Adachi C 2016 Sci. Adv. 2 e1501470Google Scholar
[6] Song X Z, Zhang D D, Huang T Y, Cai M H, Duan L 2018 Sci. China Chem. 61 836Google Scholar
[7] Ying S, Xiao S, Peng L, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2022 ACS Appl. Electron. Mater. 4 3088Google Scholar
[8] Han S H, Lee J Y 2018 J. Mater. Chem. C 6 1504Google Scholar
[9] Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H, Tu L Y, Xiong Z H 2020 Adv. Funct. Mater. 30 2005765Google Scholar
[10] Xu Y W, Liang X M, Zhou X H, Yuan P S, Zhou J D, Wang C, Li B B, Hu D H, Qiao X F, Jiang X F, Liu L L, Su S J, Ma D G, Ma Y G 2019 Adv. Mater. 31 1807388Google Scholar
[11] Kim H B, Kim J J 2020 Phys. Rev. Appl. 13 024006Google Scholar
[12] Huh D H, Kim G W, Kim G H, Kulshreshtha C, Kwon J H 2013 Synth. Met. 180 79Google Scholar
[13] 宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar
Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar
[14] Ying S, Pang P Y, Zhang S, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2019 ACS Appl. Mater. Interfaces 11 31078Google Scholar
[15] Matsumoto N, Nishiyama M, Adachi C 2008 J. Phys. Chem. C 112 7735Google Scholar
[16] Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar
[17] Zhao B, Miao Y Q, Wang Z Q, Chen W H, Wang K X, Wang H, Hao Y Y, Xu B S, Li W L 2016 Org. Electron. 37 1Google Scholar
[18] Song X Z, Zhang D D, Li H Y, Cai M H, Huang T Y, Duan L 2019 ACS Appl. Mater. Interfaces 11 22595Google Scholar
[19] 黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第 52页
Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p52
[20] Kim K H, Yoo S J, Kim J J 2016 Chem. Mater. 28 1936Google Scholar
[21] Tang X T, Tu L Y, Zhao X, Chen J, Ning Y R, Wu F J, Xiong Z H 2022 J. Phys. Chem. C 126 9456Google Scholar
[22] 汤仙童, 潘睿亨, 熊祖洪 2023 科学通报 68 2401Google Scholar
Tang X T, Pan R H, Xiong Z H 2023 Chin. Sci. Bull 68 2401Google Scholar
[23] Tsai K W, Lee T H, Wu J H, Jhou J Y, Huang W S, Hsieh S N, Wen T C, Guo T F, Huang J C A 2013 Org. Electron. 14 1376Google Scholar
[24] Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar
[25] Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar
[26] Tang X T, Pan R H, Zhao X, Zhu H Q, Xiong Z H 2020 J. Phys. Chem. Lett. 11 2804Google Scholar
[27] 王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 物理学报 71 217201Google Scholar
Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar
[28] Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar
[29] Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar
计量
- 文章访问数: 3295
- PDF下载量: 50
- 被引次数: 0