搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FTO/Ag/FTO构型的高透明红外隐身薄膜设计

王龙 汪刘应 刘顾 唐修检 葛超群 王滨 许可俊 王新军

引用本文:
Citation:

基于FTO/Ag/FTO构型的高透明红外隐身薄膜设计

王龙, 汪刘应, 刘顾, 唐修检, 葛超群, 王滨, 许可俊, 王新军

Design of high transparent infrared stealth thin films based on FTO/Ag/FTO structure

Wang Long, Wang Liu-Ying, Liu Gu, Tang Xiu-Jian, Ge Chao-Qun, Wang Bin, Xu Ke-Jun, Wang Xin-Jun
PDF
HTML
导出引用
  • 红外隐身与可见光隐身对光谱响应的诉求不同, 导致两者功能耦合材料设计难以调和, 因此发展光学特征选择性调控技术至关重要. 基于FTO/Ag/FTO堆叠膜层结构提出一种可见光与红外兼容隐身超构薄膜, 建立可见光高透射与红外低辐射一体化协同设计方法, 诠释微结构特征对可见光透射光谱与红外反射光谱的影响机制, 进而优化设计高透明红外隐身薄膜, 并对其兼容性隐身性能测试表征. 研究表明, 可见光透射取决于半导体介质层与金属层耦合匹配作用, 而红外辐射抑制主要取决于金属层. 经优化设计的FTO/Ag/FTO膜层结构厚度为40/12/40 nm时, 具备高水平的背景透视复现与高温红外辐射抑制能力. 该研究可为可见光与红外兼容隐身材料设计及应用提供新途径.
    Multi-spectral compatible stealth materials have become an imperative development trend, especially visible and infrared compatible stealth materials have become the most important in the field of optoelectronic stealth technology. However, infrared stealth and visible stealth have different requirements for spectral response, which makes it difficult to reconcile the design of functional coupling materials. Therefore, it is very important to develop selective control technology of optical characteristics. A visible and infrared compatible stealth superstructure thin film is proposed based on the FTO/Ag/FTO stacked film structure. A collaborative design method for high visible transmission and low infrared radiation is established, and the mechanism of microstructure characteristics affecting visible transmission and infrared reflection spectra is explained. The infrared stealth thin film with high transparency is optimized, and its compatibility stealth performance is tested and characterized by visible light transmission spectrum, infrared reflection spectrum, and thermal imaging characterization technology. It is shown that visible transmission depends on the coupling and matching effect between the semiconductor dielectric layer and the metal layer, while infrared radiation suppression mainly relies on the metal layer. As the thickness of FTO film increases, the visible transmission peak undergoes a red shift, leading the transmission spectrum curve to flatten, the average transmission first increases and then gradually decreases. As the thickness of Ag thin film layer increases, the transmission peak of visible light undergoes a blue shift, causing the transmission spectrum curve to tend to a high-frequency transmission state, narrowing the frequency domain of visible light transmission and gradually reducing the average transmittance decreases gradually. At the same time, the infrared reflectance increases with the Ag film thickness increasing, but the change of amplitude significantly decreasing when the Ag film thickness is greater than 18 nm. When the thickness of the optimized FTO/Ag/FTO film structure is 40/12/40 nm, it has a high level of background perspective reproduction and high ability to suppress high-temperature infrared radiation. The average transmittance of 0.38–0.78 μm visible light band is 82.52%, and the average reflectance of 3–14 μm mid-far infrared band is 81.46%. The radiation temperature of the sample is 49 ℃ lower in the mid infrared range and 75.8 ℃ lower in far infrared range than that of the quartz sheet at 150 ℃, respectively. The new stealth film can be attached to the camouflage coating surface of special vehicle to achieve visible and infrared compatible stealth, and can be used for cockpit windows to ensure thermal insulation, temperature control, and infrared stealth without affecting the field of view. This study can provide a new approach for designing and utilizing the visible and infrared compatible stealth materials.
      通信作者: 王龙, waloxs@163.com
    • 基金项目: 陕西省“特支计划”科技创新领军人才项目(批准号: 2020TZJH-001)资助的课题.
      Corresponding author: Wang Long, waloxs@163.com
    • Funds: Project supported by the Shaanxi Province “Special Support Plan” Science and Technology Innovation Leading Talent Project, China (Grant No. 2020TZJH-001).
    [1]

    王浩, 姚能智, 王斌, 王学生 2022 物理学报 71 134703Google Scholar

    Wang H, Yao Ne Z, Wang B, Wang X S 2022 Acta Phys. Sin. 71 134703Google Scholar

    [2]

    Zhu R C, Wang J F, Xu C L, Feng M D, Sui S, Wang J, Qiu T S, Zhang L, Jia Y X, Zhang Z T, Qu S B 2020 Infrared Phys. Techn. 111 103546Google Scholar

    [3]

    Huang S N, Fan Q, Xu C L, Wang B K, Wang J F, Yang B Y, Tian C H, Meng Z 2020 Infrared Phys. Techn. 111 103524Google Scholar

    [4]

    Zhong S M, Wu L J, Liu T J, Huang J F, Jiang W, Ma, Y G 2018 Opt. Express 26 16466Google Scholar

    [5]

    Ren Z Y, Chen L P, Liu X M, Li G J, Wang K, Wang Q 2020 Infrared Phys. Techn. 111 103472Google Scholar

    [6]

    刘凯 2016 硕士学位论文 (南京: 南京航空航天大学)

    Liu K 2016 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [7]

    韩超 2015 硕士学位论文 (杭州: 浙江理工大学)

    Han C 2015 M. S. Thesis (Hangzhou: Zhejiang Sci-Tech University

    [8]

    王自荣, 余大斌, 孙晓泉 2000 上海航天 17 24Google Scholar

    Wang Z R, Yu D B, Sun X Q 2000 Aerospace Shanghai 17 24Google Scholar

    [9]

    冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar

    Feng K S, Li N, Li T 2022 Acta Phys. Sin. 71 034101Google Scholar

    [10]

    Liu B, Chen Z S, Li Z G, Shi J M, Wang H 2020 Opt. Eng. 59 127107Google Scholar

    [11]

    Shim H B, Han K, Song J, Hahn J W 2022 Adv. Opt. Mater. 6 10Google Scholar

    [12]

    陈天航, 郑斌, 钱超, 陈红胜 2020 物理学报 69 154104Google Scholar

    Chen T H, Zheng B, Qian C, Chen H S 2020 Acta Phys. Sin. 69 154104Google Scholar

    [13]

    Zhao Y C, Fang F 2021 ACS Appl. Electron. Mater. 3 2694Google Scholar

    [14]

    Qi D, Chen F, Wang X, Luo H, Cheng Y Z, Niu X Y, Gong R Z 2018 Opt. Lett. 43 5323Google Scholar

    [15]

    Xiong Y, Chen F, Cheng Y Z, Luo H 2022 J. Alloy Compd. 920 166008Google Scholar

    [16]

    Xiong Y, Chen F, Cheng Y Z, Luo H 2022 Opt. Mater. 132 112745Google Scholar

    [17]

    黎思睿, 李佳, 刘科, 黄奕嘉, 李玲, 周晓林 2021 四川大学学报 6 115Google Scholar

    Li S R, Li J, Liu K, Huang Y J, Li L, Zhou X L 2021 J. Sichuan Univ. 6 115Google Scholar

    [18]

    牛帅, 杨昌, 常慧聪, 肖林, 郭楠, 曲彦臣, 李国华 2022 红外与毫米波学报 41 745Google Scholar

    Niu S, Yang C, Chang H C, Xiao L, Guo N, Qu Y C, Li G H 2022 J. Infrared Millim. W. 41 745Google Scholar

    [19]

    朱桓正 2021 博士学位论文 (杭州: 浙江大学)

    Zhu H Z 2021 Ph. D. Dissertation (Hangzhou: Zhejiang University

    [20]

    Leftheriotis G, Yianoulis P, Patrikios D 1997 Thin Solid Films 306 92Google Scholar

    [21]

    Leng J, Yu Z N, Xue W, Zhang T, Jiang Y R, Zhang J, Zhang D P 2010 J. Appl. Phys. 108 073109Google Scholar

    [22]

    Wu C C, Chen P S, Peng C H, Wang C C 2013 J. Mater. Sci-Mater. El. 24 2461Google Scholar

    [23]

    Daeil K 2010 Appl. Surf. Sci. 257 704Google Scholar

    [24]

    Liu X J, Cai X, Qiao J S, Mao J F, Jiang N 2003 Thin Solid Films 441 200Google Scholar

    [25]

    Wang L, Wang W H, Wang L Y, Liu G, Ge C Q, Yang N J, Li P 2022 J. Opt. 51 874Google Scholar

    [26]

    王子君 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang Z J 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China

  • 图 1  DMD膜层结构

    Fig. 1.  DMD film structure.

    图 2  半导体介质层对可见光透射光谱的影响 (a)外层; (b)内层

    Fig. 2.  Effect of semiconductor dielectric layer on visible transmission spectrum: (a) Outer layer; (b) inner layer.

    图 3  金属层对可见光透射光谱的影响

    Fig. 3.  Effect of metal layer on visible transmission spectrum.

    图 4  膜系结构周期数对可见光透射光谱的影响

    Fig. 4.  Effect of the cycle number of film structure on visible transmission spectrum.

    图 5  金属层对红外反射光谱的影响

    Fig. 5.  Effect of metal layer on infrared reflection spectrum.

    图 6  半导体介质层对红外反射光谱的影响 (a)外层; (b)内层

    Fig. 6.  Effect of semiconductor dielectric layer on infrared reflection spectrum: (a) Outer layer; (b) inner layer.

    图 7  膜系结构周期数对红外反射光谱的影响

    Fig. 7.  Effect of the cycle number of film structure on infrared reflection spectrum.

    图 8  优化后FTO/Ag/FTO膜层结构的光谱特性 (a)可见光透射; (b)红外反射

    Fig. 8.  Spectral characteristics of optimized FTO/Ag/FTO film structure: (a) Visible light transmission; (b) infrared reflection.

    图 9  样件的光学特性 (a)实物透光效果; (b)可见光透射光谱; (c)红外反射光谱

    Fig. 9.  Optical characteristics of sample: (a) Physical transparency effect; (b) visible transmission spectrum; (c) infrared reflectance spectrum.

    图 10  FTO/Ag/FTO复合薄膜在不同环境温度下的3—5 μm中红外热像图 (a) 24 ℃; (b) 50 ℃; (c) 90 ℃; (d) 110 ℃; (e) 130 ℃; (f) 150 ℃

    Fig. 10.  3–5 μm mid-infrared thermal image of FTO/Ag/FTO composite films at different environmental temperatures: (a) 24 ℃; (b) 50 ℃; (c) 90 ℃; (d) 110 ℃; (e) 130 ℃; (f) 150 ℃.

    图 11  FTO/Ag/FTO复合薄膜在不同环境温度下的8—14 μm远红外热像图 (a) 24 ℃; (b) 50 ℃; (c) 90 ℃; (d) 110 ℃; (e) 130 ℃; (f) 150 ℃

    Fig. 11.  8–14 μm far-infrared thermal image of FTO/Ag/FTO composite films at different environmental temperatures: (a) 24 ℃; (b) 50 ℃; (c) 90 ℃; (d) 110 ℃; (e) 130 ℃; (f) 150 ℃.

    图 12  样件在中远红外的辐射温度变化

    Fig. 12.  Radiation temperature changes of the sample in the mid-far infrared band.

  • [1]

    王浩, 姚能智, 王斌, 王学生 2022 物理学报 71 134703Google Scholar

    Wang H, Yao Ne Z, Wang B, Wang X S 2022 Acta Phys. Sin. 71 134703Google Scholar

    [2]

    Zhu R C, Wang J F, Xu C L, Feng M D, Sui S, Wang J, Qiu T S, Zhang L, Jia Y X, Zhang Z T, Qu S B 2020 Infrared Phys. Techn. 111 103546Google Scholar

    [3]

    Huang S N, Fan Q, Xu C L, Wang B K, Wang J F, Yang B Y, Tian C H, Meng Z 2020 Infrared Phys. Techn. 111 103524Google Scholar

    [4]

    Zhong S M, Wu L J, Liu T J, Huang J F, Jiang W, Ma, Y G 2018 Opt. Express 26 16466Google Scholar

    [5]

    Ren Z Y, Chen L P, Liu X M, Li G J, Wang K, Wang Q 2020 Infrared Phys. Techn. 111 103472Google Scholar

    [6]

    刘凯 2016 硕士学位论文 (南京: 南京航空航天大学)

    Liu K 2016 M. S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics

    [7]

    韩超 2015 硕士学位论文 (杭州: 浙江理工大学)

    Han C 2015 M. S. Thesis (Hangzhou: Zhejiang Sci-Tech University

    [8]

    王自荣, 余大斌, 孙晓泉 2000 上海航天 17 24Google Scholar

    Wang Z R, Yu D B, Sun X Q 2000 Aerospace Shanghai 17 24Google Scholar

    [9]

    冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar

    Feng K S, Li N, Li T 2022 Acta Phys. Sin. 71 034101Google Scholar

    [10]

    Liu B, Chen Z S, Li Z G, Shi J M, Wang H 2020 Opt. Eng. 59 127107Google Scholar

    [11]

    Shim H B, Han K, Song J, Hahn J W 2022 Adv. Opt. Mater. 6 10Google Scholar

    [12]

    陈天航, 郑斌, 钱超, 陈红胜 2020 物理学报 69 154104Google Scholar

    Chen T H, Zheng B, Qian C, Chen H S 2020 Acta Phys. Sin. 69 154104Google Scholar

    [13]

    Zhao Y C, Fang F 2021 ACS Appl. Electron. Mater. 3 2694Google Scholar

    [14]

    Qi D, Chen F, Wang X, Luo H, Cheng Y Z, Niu X Y, Gong R Z 2018 Opt. Lett. 43 5323Google Scholar

    [15]

    Xiong Y, Chen F, Cheng Y Z, Luo H 2022 J. Alloy Compd. 920 166008Google Scholar

    [16]

    Xiong Y, Chen F, Cheng Y Z, Luo H 2022 Opt. Mater. 132 112745Google Scholar

    [17]

    黎思睿, 李佳, 刘科, 黄奕嘉, 李玲, 周晓林 2021 四川大学学报 6 115Google Scholar

    Li S R, Li J, Liu K, Huang Y J, Li L, Zhou X L 2021 J. Sichuan Univ. 6 115Google Scholar

    [18]

    牛帅, 杨昌, 常慧聪, 肖林, 郭楠, 曲彦臣, 李国华 2022 红外与毫米波学报 41 745Google Scholar

    Niu S, Yang C, Chang H C, Xiao L, Guo N, Qu Y C, Li G H 2022 J. Infrared Millim. W. 41 745Google Scholar

    [19]

    朱桓正 2021 博士学位论文 (杭州: 浙江大学)

    Zhu H Z 2021 Ph. D. Dissertation (Hangzhou: Zhejiang University

    [20]

    Leftheriotis G, Yianoulis P, Patrikios D 1997 Thin Solid Films 306 92Google Scholar

    [21]

    Leng J, Yu Z N, Xue W, Zhang T, Jiang Y R, Zhang J, Zhang D P 2010 J. Appl. Phys. 108 073109Google Scholar

    [22]

    Wu C C, Chen P S, Peng C H, Wang C C 2013 J. Mater. Sci-Mater. El. 24 2461Google Scholar

    [23]

    Daeil K 2010 Appl. Surf. Sci. 257 704Google Scholar

    [24]

    Liu X J, Cai X, Qiao J S, Mao J F, Jiang N 2003 Thin Solid Films 441 200Google Scholar

    [25]

    Wang L, Wang W H, Wang L Y, Liu G, Ge C Q, Yang N J, Li P 2022 J. Opt. 51 874Google Scholar

    [26]

    王子君 2018 博士学位论文 (合肥: 中国科学技术大学)

    Wang Z J 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China

  • [1] 农洁, 张伊祎, 韦雪玲, 姜鑫鹏, 李宁, 王冬迎, 肖思洋, 陈泓廷, 张振荣, 杨俊波. 电介质/金属/电介质膜系实现可见光波段高透兼容激光隐身研究. 物理学报, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [2] 周书星, 方仁凤, 魏彦锋, 陈传亮, 曹文彧, 张欣, 艾立鹍, 李豫东, 郭旗. 磷化铟高电子迁移率晶体管外延结构材料抗电子辐照加固设计. 物理学报, 2022, 71(3): 037202. doi: 10.7498/aps.71.20211265
    [3] 徐睆垚, 徐亮, 沈先春, 徐寒杨, 孙永丰, 刘文清, 刘建国. 基于红外多光谱相机分析长后焦距对无热化设计的影响. 物理学报, 2021, 70(18): 184201. doi: 10.7498/aps.70.20210217
    [4] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [5] 张连超, 邱丽莉, 芦薇, 于颖杰, 孟子晖, 王树山, 薛敏, 刘文芳. 蛋白石型光子晶体红外隐身材料的制备. 物理学报, 2017, 66(8): 084208. doi: 10.7498/aps.66.084208
    [6] 魏新权, 毕甲紫, 李然. 超高强块体非晶合金的研究进展. 物理学报, 2017, 66(17): 176408. doi: 10.7498/aps.66.176408
    [7] 包括, 马帅领, 徐春红, 崔田. 过渡金属轻元素化合物高硬度多功能材料的设计. 物理学报, 2017, 66(3): 036104. doi: 10.7498/aps.66.036104
    [8] 陆智淼, 蔡力, 温激鸿, 温熙森. 基于五模材料的圆柱声隐身斗篷坐标变换设计. 物理学报, 2016, 65(17): 174301. doi: 10.7498/aps.65.174301
    [9] 黄大庆, 康飞宇, 周卓辉, 刘翔, 程红飞. 微波低通高阻复合材料构件的设计与性能验证. 物理学报, 2015, 64(18): 188401. doi: 10.7498/aps.64.188401
    [10] 党可征, 时家明, 李志刚, 孟祥豪, 王启超. 基于高阻抗表面的多频带Salisbury屏设计. 物理学报, 2015, 64(11): 114101. doi: 10.7498/aps.64.114101
    [11] 刘奇福, 李方家, 刘军. 在固体透明材料中利用级联四波混频方法获得宽带多色飞秒激光脉冲的研究. 物理学报, 2014, 63(9): 094209. doi: 10.7498/aps.63.094209
    [12] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究. 物理学报, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [13] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [14] 高东宝, 曾新吾. 基于各向同性材料的层状椭圆柱形声隐身衣设计. 物理学报, 2012, 61(18): 184301. doi: 10.7498/aps.61.184301
    [15] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [16] 杨一鸣, 王甲富, 屈绍波, 柏鹏, 李哲, 夏颂, 王军, 徐卓. 基于高介电常数基板和金属结构负折射材料的设计,仿真与验证. 物理学报, 2011, 60(5): 054103. doi: 10.7498/aps.60.054103
    [17] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测. 物理学报, 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [18] 张拴勤, 石云龙, 黄长庚, 连长春. 隐身涂层的光谱反射特性设计. 物理学报, 2007, 56(9): 5508-5512. doi: 10.7498/aps.56.5508
    [19] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟. 物理学报, 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [20] 闫文胜, 王文楼, 吴敏昌, 韦世强. 同步辐射XAFS研究高比能LiMn2O4材料的局域结构. 物理学报, 2002, 51(10): 2302-2307. doi: 10.7498/aps.51.2302
计量
  • 文章访问数:  2766
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-03
  • 修回日期:  2023-08-27
  • 上网日期:  2023-09-18
  • 刊出日期:  2023-12-20

/

返回文章
返回