搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌酸锂集成光子器件的发展与机遇

熊霄 曹启韬 肖云峰

引用本文:
Citation:

铌酸锂集成光子器件的发展与机遇

熊霄, 曹启韬, 肖云峰

Thin-film lithium niobate photonic integrated devices: Advances and oppotunities

Xiong Xiao, Cao Qi-Tao, Xiao Yun-Feng
PDF
HTML
导出引用
  • 铌酸锂, 作为应用最广泛的非线性光学晶体之一, 近十年来由于薄膜铌酸锂晶圆的出现而再次获得了学术界与产业界的关注. 基于薄膜铌酸锂的集成光电子器件的优越性能已在诸多应用中得到演示, 例如光信息处理、激光雷达、光学频率梳、微波光子学和量子光学等. 2020年, 薄膜铌酸锂器件通过光刻技术在6 in (1 in=2.54 cm)晶圆上的成功制备, 推动了铌酸锂加工从实验室逐步走向工业化. 薄膜铌酸锂光子器件的研究主要聚焦于利用电光、声光和二阶/三阶非线性效应进行光调制或频率转换; 最近三年, 掺杂稀土离子还成功赋予铌酸锂增益特性, 实现了片上铌酸锂放大器和激光器. 本文将简略回顾薄膜铌酸锂的发展过程, 着眼于集成光子器件, 介绍国内外研究组取得的进展、意义以及面临的挑战.
    Lithium niobate, known as one of the most widely used nonlinear optical crystals, has recently received significant attention from both academia and industrial circles. The surge in interest can be attributed to the commercial availability of thin-film lithium niobate (TFLN) wafers and the rapid advancements in nanofabrication techniques. A milestone was achieved in 2020 with the successful fabrication of wafer-scale TFLN photonic integrated circuits, which paved the way for mass-producible and cost-effective manufacturing of TFLN-based products.At present, the majority of research on TFLN photonic integrated devices focuses on light manipulation, i.e. field modulation and frequency conversion. The electro-optic, acousto-optic, photo-elastic and piezo-electric effects of lithium niobate are harnessed to modulate the amplitude, phase and frequency of light. The second-order and third-order nonlinearities of lithium niobate enable frequency conversion processes, which leads to the development of frequency converters, optical frequency combs, and supercontinuum generation devices. These exceptional optical properties of lithium niobate enable the electromagnetic wave to manipulate covering from radio-frequency to terahertz, infrared, and visible bands. Using the outstanding performance of TFLN photonic integrated devices, including remarkable modulation rate, wide operation bandwidth, efficient nonlinear frequency conversion, and low power consumption, diverse applications, such as spanning optical information processing, laser ranging, optical frequency combs, microwave optics, precision measurement, quantum optics, and quantum computing, are demonstrated.Additionally, it is reported that TFLN-based lasers and amplifiers have made remarkable progress, and both optical and electrical pumps are available. These achievements include combining gain materials, such as rare-earth ions or heterostructures, with III-V semiconductors. The integration of low-dimensional materials or absorptive metals with TFLN can also realize TFLN-based detectors. These significant developments expand the potential applications of TFLN photonic integrated devices, thus paving the way for monolithic TFLN chips.The versatility and high performances of TFLN photonic integrated devices have made revolutionary progress in these fields, opening up new possibilities for cutting-edge technologies and their practical implementations. In this point of view, we briefly introduce the development of TFLN nanofabricationn technology. Subsequently, we review the latest progress of TFLN photonic integrated devices, including lasers, functional nonlinear optical devices, and detectors. Finally, we discuss the future development directions and potential ways of TFLN photonics.
      通信作者: 肖云峰, yfxiao@pku.edu.cn
      Corresponding author: Xiao Yun-Feng, yfxiao@pku.edu.cn
    [1]

    Zhu D, Shao L, Yu M, Cheng R, Desiatov B, Xin C J, Hu Y, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer Christian, Zhang M, Lončar M 2021 Adv. Opt. Photon. 13 242Google Scholar

    [2]

    Boes A, Chang L, Langrock C, Yu M, Zhang M, Lin Q, Lončar M, Fejer M, Bowers J, Mitchell A 2023 Science 379 eabj4396Google Scholar

    [3]

    Jia Y, Wu J, Sun X, Yan X, Xie R, Wang L, Chen Y, Chen F 2022 Laser Photonics Rev. 16 2200059Google Scholar

    [4]

    Luo Q, Bo F, Kong Y, Zhang G, Xu J 2023 Adv. Photonics 5 034002Google Scholar

    [5]

    Saravi S, Pertsch T, Setzpfandt F 2021 Adv. Opt. Mater. 9 2100789Google Scholar

    [6]

    Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar

    [7]

    Gao R, Yao N, Guan J, Deng L, Lin J, Wang M, Qiao L, Fang W, Cheng Y 2022 Chin. Opt. Lett. 20 011902Google Scholar

    [8]

    Hu H, Ricken R, Sohler W, Wehrspohn R B 2007 IEEE Photon. IEEE Photon. Technol. Lett. 19 417Google Scholar

    [9]

    Zhuang R, He J, Qi Y, Li Y 2022 Adv. Mater. 35 2208113Google Scholar

    [10]

    Luke K, Kharel P, Reimer C, He L, Loncar M, Zhang M 2020 Opt. Express 28 24452Google Scholar

    [11]

    Snigirev V, Riedhauser A, Lihachev G, Churaev M, Riemensberger, Wang R N, Siddharth A, Huang G, Möhl C, Popoff Y, Drechsler U, Caimi D, Hönl S, Liu J, Seidler P, Kippenberg T J 2023 Nature 615 411Google Scholar

    [12]

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [13]

    He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L, Cai X 2019 Nat. Photonics 13 359Google Scholar

    [14]

    Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J, Lončar M 2019 Nature 568 373Google Scholar

    [15]

    Hu Y, Yu M, Zhu D, Sinclair N, Shams-Ansari A, Shao L, Holzgrafe J, Puma E, Zhang M, Lončar M 2021 Nature 599 587Google Scholar

    [16]

    Yu M, Barton D, Cheng R, Reimer C, Kharel P, He L, Shao L, Zhu D, Hu Y, Grant H R, Johansson L, Okawachi Y, Gaeta A L, Zhang M, Lončar M 2022 Nature 612 252Google Scholar

    [17]

    Sarabalis C J, McKenna T P, Patel R N, Van Laer R, Safavi-Naeini A H 2020 APL Photonics 5 086104Google Scholar

    [18]

    Lu J, Li M, Zou C-L, Sayem A A, Tang H X 2020 Optica 7 1654Google Scholar

    [19]

    Lin J, Yao N, Hao Z, Zhang J, Mao W, Wang M, Chu W, Wu R, Fang Z, Qiao L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar

    [20]

    Luo R, He Y, Liang H, Li M, Lin Q 2019 Laser Photonics Rev. 13 1800288Google Scholar

    [21]

    Yuan T, Wu J, Liu Y, Yan X, Jiang H, Li H, Liang Z, Lin Q, Chen Y, Chen X F 2023 Sci. China-Phys. Mech. Astron. 66 284211Google Scholar

    [22]

    He Y, Yang Q F, Ling J W, Luo R, Liang H X, Li M X, Shen B Q, Wang H M, Vahala K, Lin Q 2019 Optica 6 1138Google Scholar

    [23]

    Shao L, Yu M, Maity S, Sinclair N, Zheng L, Chia C, Shams-Ansari A, Wang C, Zhang M, Lai K, Lončar M 2019 Optica 6 1498Google Scholar

    [24]

    Xue G T, Niu Y F, Liu X, Duan J C, Chen W, Pan Y, Jia K, Wang X, Liu H Y, Zhang Y, Xu P, Zhao G, Cai X, Gong Y X, Hu X, Xie Z, Zhu S N 2021 Phys. Rev. Applied 15 064059Google Scholar

    [25]

    Nehra R, Sekine R, Ledezma L, Guo Q, Gray R M, Roy A, Marandi A 2022 Science 377 1333Google Scholar

    [26]

    Liu H Y, Shang M, Liu X, Wei Y, Mi M, Zhang L, Gong Y X, Xie Z, Zhu S N 2022 Adv. Photon. Nexus 2 016003Google Scholar

    [27]

    Desiatov B, Lončar M 2019 Appl. Phys. Lett. 115 121108Google Scholar

    [28]

    Guan H Y, Hong J Y, Wang X L, Ming J Y, Zhang Z L, Liang A J, Han X Y, Dong J L, Qiu W T, Chen Z, Lu H H, Zhang H 2021 Adv. Opt. Mater. 9 2100245Google Scholar

    [29]

    Sun X L, Sheng Y, Gao X, Liu Y, Ren F, Tan Y, Yang Z X, Jia Y C, Chen F 2022 Small 18 2203532Google Scholar

    [30]

    Sayem A A, Cheng R, Wang S, Tang H X 2020 Appl. Phys. Lett. 116 151102Google Scholar

  • 图 1  刻蚀后的TFLN晶圆, 以及TFLN微纳结构的平滑表面[10]

    Fig. 1.  TFLN wafers after patterning, and TFLN nanostructures with smooth surface[10].

    图 2  薄膜铌酸锂非线性光子器件 光调制器[12], 谐波产生[18], 光频率梳[22], 量子光学[26]

    Fig. 2.  TFLN nonlinear optical devices: optical modulators[12], harmonics generation[18], frequency combs[22], quantum optics[26].

  • [1]

    Zhu D, Shao L, Yu M, Cheng R, Desiatov B, Xin C J, Hu Y, Holzgrafe J, Ghosh S, Shams-Ansari A, Puma E, Sinclair N, Reimer Christian, Zhang M, Lončar M 2021 Adv. Opt. Photon. 13 242Google Scholar

    [2]

    Boes A, Chang L, Langrock C, Yu M, Zhang M, Lin Q, Lončar M, Fejer M, Bowers J, Mitchell A 2023 Science 379 eabj4396Google Scholar

    [3]

    Jia Y, Wu J, Sun X, Yan X, Xie R, Wang L, Chen Y, Chen F 2022 Laser Photonics Rev. 16 2200059Google Scholar

    [4]

    Luo Q, Bo F, Kong Y, Zhang G, Xu J 2023 Adv. Photonics 5 034002Google Scholar

    [5]

    Saravi S, Pertsch T, Setzpfandt F 2021 Adv. Opt. Mater. 9 2100789Google Scholar

    [6]

    Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar

    [7]

    Gao R, Yao N, Guan J, Deng L, Lin J, Wang M, Qiao L, Fang W, Cheng Y 2022 Chin. Opt. Lett. 20 011902Google Scholar

    [8]

    Hu H, Ricken R, Sohler W, Wehrspohn R B 2007 IEEE Photon. IEEE Photon. Technol. Lett. 19 417Google Scholar

    [9]

    Zhuang R, He J, Qi Y, Li Y 2022 Adv. Mater. 35 2208113Google Scholar

    [10]

    Luke K, Kharel P, Reimer C, He L, Loncar M, Zhang M 2020 Opt. Express 28 24452Google Scholar

    [11]

    Snigirev V, Riedhauser A, Lihachev G, Churaev M, Riemensberger, Wang R N, Siddharth A, Huang G, Möhl C, Popoff Y, Drechsler U, Caimi D, Hönl S, Liu J, Seidler P, Kippenberg T J 2023 Nature 615 411Google Scholar

    [12]

    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar

    [13]

    He M, Xu M, Ren Y, Jian J, Ruan Z, Xu Y, Gao S, Sun S, Wen X, Zhou L, Liu L, Guo C, Chen H, Yu S, Liu L, Cai X 2019 Nat. Photonics 13 359Google Scholar

    [14]

    Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R, Kahn J, Lončar M 2019 Nature 568 373Google Scholar

    [15]

    Hu Y, Yu M, Zhu D, Sinclair N, Shams-Ansari A, Shao L, Holzgrafe J, Puma E, Zhang M, Lončar M 2021 Nature 599 587Google Scholar

    [16]

    Yu M, Barton D, Cheng R, Reimer C, Kharel P, He L, Shao L, Zhu D, Hu Y, Grant H R, Johansson L, Okawachi Y, Gaeta A L, Zhang M, Lončar M 2022 Nature 612 252Google Scholar

    [17]

    Sarabalis C J, McKenna T P, Patel R N, Van Laer R, Safavi-Naeini A H 2020 APL Photonics 5 086104Google Scholar

    [18]

    Lu J, Li M, Zou C-L, Sayem A A, Tang H X 2020 Optica 7 1654Google Scholar

    [19]

    Lin J, Yao N, Hao Z, Zhang J, Mao W, Wang M, Chu W, Wu R, Fang Z, Qiao L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar

    [20]

    Luo R, He Y, Liang H, Li M, Lin Q 2019 Laser Photonics Rev. 13 1800288Google Scholar

    [21]

    Yuan T, Wu J, Liu Y, Yan X, Jiang H, Li H, Liang Z, Lin Q, Chen Y, Chen X F 2023 Sci. China-Phys. Mech. Astron. 66 284211Google Scholar

    [22]

    He Y, Yang Q F, Ling J W, Luo R, Liang H X, Li M X, Shen B Q, Wang H M, Vahala K, Lin Q 2019 Optica 6 1138Google Scholar

    [23]

    Shao L, Yu M, Maity S, Sinclair N, Zheng L, Chia C, Shams-Ansari A, Wang C, Zhang M, Lai K, Lončar M 2019 Optica 6 1498Google Scholar

    [24]

    Xue G T, Niu Y F, Liu X, Duan J C, Chen W, Pan Y, Jia K, Wang X, Liu H Y, Zhang Y, Xu P, Zhao G, Cai X, Gong Y X, Hu X, Xie Z, Zhu S N 2021 Phys. Rev. Applied 15 064059Google Scholar

    [25]

    Nehra R, Sekine R, Ledezma L, Guo Q, Gray R M, Roy A, Marandi A 2022 Science 377 1333Google Scholar

    [26]

    Liu H Y, Shang M, Liu X, Wei Y, Mi M, Zhang L, Gong Y X, Xie Z, Zhu S N 2022 Adv. Photon. Nexus 2 016003Google Scholar

    [27]

    Desiatov B, Lončar M 2019 Appl. Phys. Lett. 115 121108Google Scholar

    [28]

    Guan H Y, Hong J Y, Wang X L, Ming J Y, Zhang Z L, Liang A J, Han X Y, Dong J L, Qiu W T, Chen Z, Lu H H, Zhang H 2021 Adv. Opt. Mater. 9 2100245Google Scholar

    [29]

    Sun X L, Sheng Y, Gao X, Liu Y, Ren F, Tan Y, Yang Z X, Jia Y C, Chen F 2022 Small 18 2203532Google Scholar

    [30]

    Sayem A A, Cheng R, Wang S, Tang H X 2020 Appl. Phys. Lett. 116 151102Google Scholar

  • [1] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件. 物理学报, 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [2] 刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰. 可调反射器辅助的可重构微环光滤波器. 物理学报, 2023, 72(8): 084208. doi: 10.7498/aps.72.20222384
    [3] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [4] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [5] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展. 物理学报, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [7] 李庚霖, 贾曰辰, 陈峰. 绝缘体上铌酸锂薄膜片上光子学器件的研究进展. 物理学报, 2020, 69(15): 157801. doi: 10.7498/aps.69.20200302
    [8] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [9] 辛成舟, 马健男, 马静, 南策文. 伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应. 物理学报, 2018, 67(15): 157502. doi: 10.7498/aps.67.20180810
    [10] 辛成舟, 马健男, 马静, 南策文. 厚度剪切模式铌酸锂基复合材料的磁电性能优化. 物理学报, 2017, 66(6): 067502. doi: 10.7498/aps.66.067502
    [11] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [12] 孙运利, 王昌辉, 乐孜纯. 基于微流控光学可调谐的渐变折射率特性研究. 物理学报, 2014, 63(15): 154701. doi: 10.7498/aps.63.154701
    [13] 师丽红, 阎文博, 申绪男, 陈贵锋, 陈洪建, 乔会宾, 贾芳芳, 林爱调. 掺铁铌酸锂晶体中光致散射的锂组分和温度依赖关系研究. 物理学报, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [14] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [15] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究. 物理学报, 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [16] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [17] 杨 光, 陈正豪. 掺Ag纳米颗粒的BaTiO3复合薄膜的非线性光学特性. 物理学报, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [18] 梁小蕊, 赵 波, 周志华. 几种香豆素衍生物分子的二阶非线性光学性质的从头算研究. 物理学报, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [19] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究. 物理学报, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [20] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计. 物理学报, 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
计量
  • 文章访问数:  5458
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-09
  • 修回日期:  2023-09-02
  • 上网日期:  2023-09-18
  • 刊出日期:  2023-12-05

/

返回文章
返回