搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制

郑智勇 陈立杰 向吕 王鹤 王一平

引用本文:
Citation:

一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制

郑智勇, 陈立杰, 向吕, 王鹤, 王一平

Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice

Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping
PDF
HTML
导出引用
  • 提出了基于超导微波腔的一维晶格理论方案, 其中包含两种不同的微波腔晶胞, 通过磁通量子比特调控晶胞之间的耦合, 使反旋波项与拓扑超导体中的p-波超导配对项相映射, 实现具有p-波超导配对项的一维超导微波腔晶格系统, 进而模拟和研究其中的拓扑绝缘体特性. 结果发现, p-波超导配对项可以对系统的拓扑量子态进行调制, 可以实现四个边缘态的拓扑量子信息传输通道. 此外, 当p-波超导配对项和次近邻作用调制时, 可以发现能带发生波动现象, 从而诱导产生新的能带, 但边缘态的简并性保持稳定, 这可以实现多个拓扑量子态传输路径; 然而, 当调控超过阈值时, 系统的能隙将闭合, 使边缘态湮灭在新的能带中. 另外, 当考虑系统存在缺陷时, 可以发现缺陷强度较小时, 边缘态产生微小的波动, 但可以清晰地区分, 说明其具有鲁棒性; 当缺陷强度超过阈值时, 边缘态和能带将导致无规则波动, 使边缘态融入能带中. 本文的研究结果具有重要的理论价值和实际意义, 未来可以应用在量子光学和量子信息处理中.
    In this work, a one-dimensional lattice theory scheme is proposed based on superconducting microwave cavity, which includes two different types of microwave cavity unit cells. The coupling between the unit cells is controlled by flux qubits to simulate and study their topological insulator characteristics. Specifically, by mapping the counter-rotating wave terms into the p-wave superconducting pairing term, a one-dimensional superconducting microwave cavity lattice scheme with a p-wave superconducting pairing term is obtained. It is found that the p-wave superconducting pairing term can modulate the topological quantum state of the system, allowing the topological quantum information transmission channels with four edge states to be created. In addition, when the p-wave superconducting pairing term interacts with the nearest-neighbor, the energy band undergoes fluctuations, thus inducing new energy bands to be generated, but the degeneracy of the edge states remains stable, which can realize the multiple topological quantum state transmission paths. However, when its regulation exceeds the threshold, the energy gap of the system will close, causing the edge states to annihilate in a new energy band. Furthermore, with defects considered to exist in the system, when the strength of the defect is small, the edge state produces small fluctuations, but it can be clearly distinguished, showing its robustness. When the strength of the defect exceeds the threshold, the edge state and energy band will cause irregular fluctuations, allowing the edge state to integrate into an energy band. Our research results have important theoretical value and practical significance, and can be applied to quantum optics and quantum information processing in the future.
      通信作者: 王一平, ypwang2019@nwafu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12004312)、西北农林科技大学本科生创新计划(批准号: X202310712503)和中央高校基本科研业务费(批准号: 2452022027, 2452022169)资助的课题.
      Corresponding author: Wang Yi-Ping, ypwang2019@nwafu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.12004312), the Undergraduate Innovation Program of Northwest A&F University, China (Grant No. X202310712503), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2452022027, 2452022169).
    [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [4]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [5]

    Xu Z, Zhang Y, Chen S 2017 Phys. Rev. A 96 013606Google Scholar

    [6]

    Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111Google Scholar

    [7]

    Li L, Chen S 2015 Phys. Rev. B 92 085118Google Scholar

    [8]

    Mei F, Zhu S L, Zhang Z M, Oh C H, Goldman N 2012 Phys. Rev. A 85 013638Google Scholar

    [9]

    Wray L A, Xu V, Xia Y, Hsieh D, Fedorov A V, SanHor Y, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys. 7 32Google Scholar

    [10]

    Malki M, Uhrig G S 2017 Phys. Rev. B 95 235118Google Scholar

    [11]

    Chitov G Y 2018 Phys. Rev. B 97 085131Google Scholar

    [12]

    Agrapidis C E, van den Brink J, Nishimoto S 2019 Phys. Rev. B 99 224418Google Scholar

    [13]

    Braginskii V B, Manukin A B 1967 Sov. Phys. JETP 25 653

    [14]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys 86 1391Google Scholar

    [15]

    Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204Google Scholar

    [16]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [17]

    Martin I, Shnirman A, Lin T, Zoller P 2004 Phys. Rev. B 69 125339Google Scholar

    [18]

    Huang S M, Agarwal G S 2010 Phys. Rev. A 81 033830Google Scholar

    [19]

    Wang K, Yu Y F, Zhang Z M 2019 Phys. Rev. A 100 053832Google Scholar

    [20]

    Wei W Y, Yu Y F, Zhang Z M 2018 Chin. Phys. B 27 034204Google Scholar

    [21]

    Xiao Y, Yu Y F, Zhang Z M 2014 Opt. Express 22 17979Google Scholar

    [22]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Chin. Phys. B 28 014202Google Scholar

    [23]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [24]

    Massel F, Heikkil T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [25]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [26]

    Zhang Z C, Wang Y P, Yu Y F, Zhang Z M 2019 Ann. Phys. 531 1800461Google Scholar

    [27]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Laser Phys. Lett. 16 015205Google Scholar

    [28]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [29]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175504Google Scholar

    [30]

    Roque T F, Peano V, Yevtushenko O M, Marquardt F 2017 New J. Phys. 19 013006Google Scholar

    [31]

    Wan L L, Lü X Y, Gao J H, Wu Y 2017 Opt. Express 25 017364Google Scholar

    [32]

    Wang W, Wang Y P 2022 Acta Phys. Sin. 71 194203Google Scholar

    [33]

    Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. B 100 062323Google Scholar

    [34]

    Xu X W, Zhao Y J, Wang H, Chen A X, Liu Y X 2022 Front. Phys. 9 813801Google Scholar

    [35]

    刘浪, 王一平 2022 物理学报 71 224202Google Scholar

    Liu L, Wang Y P 2022 Acta Phys. Sin. 71 224202Google Scholar

    [36]

    Mei F, Xue Z Y, Zhang D W, Tian L, Lee C, Zhu S L 2016 Quantum Sci. Technol. 1 015006Google Scholar

    [37]

    Koch J, Houck A A, Le Hur K, Girvin S M 2010 Phys. Rev. A 82 043811Google Scholar

    [38]

    Mei F, You J B, Nie W, Fazio R, Zhu S L, Kwek L C 2015 Phys. Rev. A 92 041805Google Scholar

    [39]

    Cao J, Yi X X, Wang H F 2020 Phys. Rev. A 102 032619Google Scholar

    [40]

    Cai W, Han J, Mei F, Yuan X Z, Sun L Y 2019 Phys. Rev. Lett. 123 080501Google Scholar

    [41]

    Chatterjee P, Pradhan S, Nandy A K, Saha A 2023 Phys. Rev. B 107 085423Google Scholar

    [42]

    Tong X, Meng Y M, Jiang X, Lee C, de Moraes Neto G D, Gao X L 2021 Phys. Rev. B 103 104202Google Scholar

  • 图 1  (a)基于超导微波腔组成的一维晶格系统, $Q_{1}$($Q_{2}$)是晶胞之间的耦合磁通量子比特, $g_{1}$($g_{2}$)表示$a_{n}$($b_{n}$)和$b_{n}$($a_{n+1}$)的耦合参数, T表示$a_{n}$和$a_{n+1}$($b_{n}$和$b_{n+1}$)的耦合参数; (b) $a_{n}$和$b_{n}$耦合在一个频率可调的控制场上, $g_{1}$($g_{2}$) 可以通过磁通量子比特外部磁通调控, T通过电容C耦合调制

    Fig. 1.  (a) Schematic of the 1D superconducting microwave cavity lattice system, $Q_{1}$($Q_{2}$) is the coupling flux qubit between the unit cell, $a_n$ and $b_n$ ($b_n $ and $a_{n+1}$) coupling coefficient is $g_{1}$($g_{2}$), $a_n$ and $a_{n+1}$ ($b_n$ and $b_{n+1}$) coupling coefficient is T; (b) $a_{n}$ and $b_{n}$ are connected in a tunable frequency field, $g_{1}$($g_{2}$) can be modulated by the external flux of qubits, T is modulated by the capacitance C coupling.

    图 2  (a)系统能谱与晶格数目的关系; (b)蓝色和(c)红色边缘态的概率分布图; 其中$\widetilde{G}_{12}=0.15, \widetilde{G}_{24}=0.3$和晶格数$N=100$

    Fig. 2.  (a) Energy spectrum of the system via the lattice numbers; (b), (c) probability distributions of (b) blue and (c) red edge states. $\widetilde{G}_{12}=0.15, \widetilde{G}_{24}=0.3$ and lattice size $N=100$.

    图 3  系统能谱与晶格数目的关系 (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.003$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.03$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.06$; (d) $2\widetilde{G}_{11}=$ $ \widetilde{G}_{23}=0.15 $; (e) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.165$; (f) $2\widetilde{G}_{11}=\widetilde{G}_{23}=2.1$; 其他参数为$\widetilde{G}_{12}=0.15, \widetilde{G}_{24}=0.3$和晶格数$N=200$

    Fig. 3.  Energy spectrum of the system via the lattice numbers: (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.003$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.03$; (c) $2\widetilde{G}_{11}= $$\widetilde{G}_{23}=0.06 $; (d) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.15$; (e) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.165$; (f) $2\widetilde{G}_{11}=\widetilde{G}_{23}=2.1$. Other parameters are $ \widetilde{G}_{12}=0.15,$ $ \widetilde{G}_{24}=0.3$ and lattice size $N=200$.

    图 4  4个不同边缘态的概率分布图 (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.003$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.006$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.009$; (d) $2\widetilde{G}_{11}= $ $ \widetilde{G}_{23}=0.015$; (e) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.021$; (f) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.027$; 其他参数为$\widetilde{G}_{12}=0.15$, $\widetilde{G}_{24}=0.3$和晶格数$N=200$

    Fig. 4.  State distributions of four different edge states: (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.003$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.006$; (c) $2\widetilde{G}_{11}= $ $ \widetilde{G}_{23}=0.009$; (d) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.015$; (e) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.021$; (f) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.027$. Other parameters are $\widetilde{G}_{12}=0.15$, $\widetilde{G}_{24}=0.3$ and lattice size $N=200$.

    图 5  系统能谱与相位的关系 (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1,\; T=0$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1,\; T=0.05$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08(1+ $$ \cos\theta),\; T=0$; 其他参数为$\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$和晶格数$N=200$

    Fig. 5.  Energy spectrum of the system via the phase: (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1,\; T=0$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}= 0.1,\; T=0.05$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08(1+\cos\theta),\; T=0$. Other parameters are $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$ and lattice size $N=200$.

    图 6  系统能谱与相位的关系 (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.16$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.24$; (d) $2\widetilde{G}_{11}= $ $\widetilde{G}_{23}=0.32$; 其他参数为$\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $T=0.1$和晶格数$N=200$

    Fig. 6.  Energy spectrum of the system via the phase: (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.16$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.24$; (d) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.32$. Other parameters are $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $T=0.1$ and lattice size $N=200$.

    图 7  系统能谱与相位的关系 (a) $T=0.1$; (b) $T=0.2$; (c) $T=0.3$; (d) $T=3$; 其他参数为$\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $2\widetilde{G}_{11}= \widetilde{G}_{23}=0.04$和晶格数$N=200$

    Fig. 7.  Energy spectrum of the system via the phase: (a) $T=0.1$; (b) $T=0.2$; (c) $T=0.3$; (d) $T=3$. Other parameters are $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.04$ and lattice size $N=200$.

    图 8  4个不同边缘态的分布图 (a) $\theta=\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (b) $\theta=\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1$; (c) $\theta=3\pi/2$, $2\widetilde{G}_{11}= $ $ \widetilde{G}_{23}=0.08$; (d) $\theta=3\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1$. 其他参数为$T=0.1$, $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$和晶格数$N=200$

    Fig. 8.  State distributions of four different edge states: (a) $\theta=\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (b) $\theta=\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}= $$ 0.1$; (c) $\theta=3\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (d) $\theta=3\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1$. Other parameters are $T=0.1$, $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$ and lattice size $N=200$.

    图 9  系统能谱与随机缺陷的关系图 (a) $\omega=0.1$, $\nu=\tau=0$; (b) $\omega=0.3$, $\nu=\tau=0$; (c) $\omega=0.5$, $\nu=\tau=0$; (d) $\omega=0.7$, $\nu=\tau=0$; (e) $\nu=0.1$, $\omega=\tau=0$; (f) $\nu=0.2$, $\omega=\tau=0$; (g) $\nu=0.3$, $\omega=\tau=0$; (h) $\nu=0.4$, $\omega=\tau=0$; (i) $\tau=0.1$, $\omega=\nu=0$; (j) $\tau=0.2$, $\omega=\nu=0$; (k) $\tau=0.3$, $\omega=\nu=0$; (l) $\tau=0.4$, $\omega=\nu=0$; 其他参数为$\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.04$, $T=0.1$和晶格数$N=200$

    Fig. 9.  Energy spectrum of the system via the random defects: (a) $\omega=0.1$, $\nu=\tau=0$; (b) $\omega=0.3$, $\nu=\tau=0$; (c) $\omega=0.5$, $\nu=\tau=0$; (d) $\omega=0.7$, $\nu=\tau=0$; (e) $\nu=0.1$, $\omega=\tau=0$; (f) $\nu=0.2$, $\omega=\tau=0$; (g) $\nu=0.3$, $\omega=\tau=0$; (h) $\nu=0.4$, $\omega=\tau=0$; (i) $\tau=0.1$, $\omega=\nu=0$; (j) $\tau=0.2$, $\omega=\nu=0$; (k) $\tau=0.3$, $\omega=\nu=0$; (l) $\tau=0.4$, $\omega=\nu=0$. Other parameters are $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.04$, $T=0.1$ and lattice size $N=200$.

  • [1]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [4]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [5]

    Xu Z, Zhang Y, Chen S 2017 Phys. Rev. A 96 013606Google Scholar

    [6]

    Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111Google Scholar

    [7]

    Li L, Chen S 2015 Phys. Rev. B 92 085118Google Scholar

    [8]

    Mei F, Zhu S L, Zhang Z M, Oh C H, Goldman N 2012 Phys. Rev. A 85 013638Google Scholar

    [9]

    Wray L A, Xu V, Xia Y, Hsieh D, Fedorov A V, SanHor Y, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys. 7 32Google Scholar

    [10]

    Malki M, Uhrig G S 2017 Phys. Rev. B 95 235118Google Scholar

    [11]

    Chitov G Y 2018 Phys. Rev. B 97 085131Google Scholar

    [12]

    Agrapidis C E, van den Brink J, Nishimoto S 2019 Phys. Rev. B 99 224418Google Scholar

    [13]

    Braginskii V B, Manukin A B 1967 Sov. Phys. JETP 25 653

    [14]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys 86 1391Google Scholar

    [15]

    Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204Google Scholar

    [16]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [17]

    Martin I, Shnirman A, Lin T, Zoller P 2004 Phys. Rev. B 69 125339Google Scholar

    [18]

    Huang S M, Agarwal G S 2010 Phys. Rev. A 81 033830Google Scholar

    [19]

    Wang K, Yu Y F, Zhang Z M 2019 Phys. Rev. A 100 053832Google Scholar

    [20]

    Wei W Y, Yu Y F, Zhang Z M 2018 Chin. Phys. B 27 034204Google Scholar

    [21]

    Xiao Y, Yu Y F, Zhang Z M 2014 Opt. Express 22 17979Google Scholar

    [22]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Chin. Phys. B 28 014202Google Scholar

    [23]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [24]

    Massel F, Heikkil T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [25]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [26]

    Zhang Z C, Wang Y P, Yu Y F, Zhang Z M 2019 Ann. Phys. 531 1800461Google Scholar

    [27]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Laser Phys. Lett. 16 015205Google Scholar

    [28]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [29]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175504Google Scholar

    [30]

    Roque T F, Peano V, Yevtushenko O M, Marquardt F 2017 New J. Phys. 19 013006Google Scholar

    [31]

    Wan L L, Lü X Y, Gao J H, Wu Y 2017 Opt. Express 25 017364Google Scholar

    [32]

    Wang W, Wang Y P 2022 Acta Phys. Sin. 71 194203Google Scholar

    [33]

    Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. B 100 062323Google Scholar

    [34]

    Xu X W, Zhao Y J, Wang H, Chen A X, Liu Y X 2022 Front. Phys. 9 813801Google Scholar

    [35]

    刘浪, 王一平 2022 物理学报 71 224202Google Scholar

    Liu L, Wang Y P 2022 Acta Phys. Sin. 71 224202Google Scholar

    [36]

    Mei F, Xue Z Y, Zhang D W, Tian L, Lee C, Zhu S L 2016 Quantum Sci. Technol. 1 015006Google Scholar

    [37]

    Koch J, Houck A A, Le Hur K, Girvin S M 2010 Phys. Rev. A 82 043811Google Scholar

    [38]

    Mei F, You J B, Nie W, Fazio R, Zhu S L, Kwek L C 2015 Phys. Rev. A 92 041805Google Scholar

    [39]

    Cao J, Yi X X, Wang H F 2020 Phys. Rev. A 102 032619Google Scholar

    [40]

    Cai W, Han J, Mei F, Yuan X Z, Sun L Y 2019 Phys. Rev. Lett. 123 080501Google Scholar

    [41]

    Chatterjee P, Pradhan S, Nandy A K, Saha A 2023 Phys. Rev. B 107 085423Google Scholar

    [42]

    Tong X, Meng Y M, Jiang X, Lee C, de Moraes Neto G D, Gao X L 2021 Phys. Rev. B 103 104202Google Scholar

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 张毅军, 慕晓冬, 郭乐勐, 张朋, 赵导, 白文华. 一种基于量子线路的支持向量机训练方案. 物理学报, 2023, 72(7): 070302. doi: 10.7498/aps.72.20222003
    [3] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展. 物理学报, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [4] 关欣, 陈刚. 双链超导量子电路中的拓扑非平庸节点. 物理学报, 2023, 72(14): 140301. doi: 10.7498/aps.72.20230152
    [5] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象. 物理学报, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [6] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [7] 贾亮广, 刘猛, 陈瑶瑶, 张钰, 王业亮. 单层二维量子自旋霍尔绝缘体1T'-WTe2研究进展. 物理学报, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [8] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [9] 刘浪, 王一平. 基于可调频光力晶格中声子-光子拓扑性质的模拟和探测. 物理学报, 2022, 71(22): 224202. doi: 10.7498/aps.71.20221286
    [10] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [11] 卫容宇, 聂敏, 杨光, 张美玲, 孙爱晶, 裴昌幸. 基于软件定义量子通信的自由空间量子通信信道参数自适应调整策略. 物理学报, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [12] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [13] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [14] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [15] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质. 物理学报, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [16] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析. 物理学报, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [17] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [18] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [19] 嵇英华. 脉冲信号对介观RLC电路量子态的影响. 物理学报, 2003, 52(3): 692-695. doi: 10.7498/aps.52.692
    [20] 嵇英华, 雷敏生, 谢芳森, 熊小华. 脉冲信号作用下介观LC电路的量子效应. 物理学报, 2001, 50(6): 1163-1166. doi: 10.7498/aps.50.1163
计量
  • 文章访问数:  1957
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-13
  • 修回日期:  2023-09-03
  • 上网日期:  2023-12-01
  • 刊出日期:  2023-12-20

/

返回文章
返回