搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于冷原子的非平衡量子多体物理研究

翟荟

引用本文:
Citation:

基于冷原子的非平衡量子多体物理研究

翟荟

Non-equilibrium quantum many-body physics with ultracold atoms

Zhai Hui
PDF
HTML
导出引用
  • 量子多体物理和非平衡物理相结合, 是当前物理学研究的重要机遇和挑战. 非平衡量子多体物理不仅是当前物理学多个分支共同感兴趣的问题, 而且是发展新兴量子科技不可或缺的理论基础. 冷原子体系为研究非平衡量子多体物理提供了理想的平台. 冷原子等人工量子体系的优势, 体现在研究孤立系统热化、和环境耦合导致的耗散、系统参数的扫描、跳变和周期驱动等多种非平衡动力学过程. 本文结合笔者的研究成果, 给出3个具体的例子, 展示基于冷原子的非平衡量子多体物理的研究, 如何突破拓扑物理研究的已有框架, 发展新的测量量子多体关联的方法, 以及丰富规范理论研究的内涵. 这类研究聚焦量子多体系统的拓扑、关联等基本性质, 利用冷原子体系的优势以实现理论和实验的定量结合, 以期提炼出具有普适性的物理规律, 并推广到凝聚态物质、核物质等其他物理系统的非平衡过程.
    Combining quantum many-body physics and nonequilibrium physics is an important opportunity and challenge for current physics research. Nonequilibrium quantum many-body physics is not only a subject of common interest to many branches of physics but also an indispensable theoretical foundation for developing emergent quantum technologies. Cold atom system provides an ideal platform for studying nonequilibrium quantum many-body physics. The advantages of cold atom system, as well as other synthetic quantum systems, are reflected in studying various nonequilibrium processes such as the thermalization of isolated system, dissipation induced by coupling to the environment, ramping, quench, or periodically driving physical parameters of a system. In this work, three examples from our research are discussed to show how the study of nonequilibrium quantum many-body physics with cold atoms can help us go beyond the existing framework of topological physics, uncover new methods of detecting quantum many-body correlations, and enrich the physical content of gauge theory. Such a research concerns the fundamental properties of quantum many-body system, such as topology and correlation, utilizes the advantages of cold atomic system to achieve a quantitative comparison between theory and experiment, and aims at discovering universal physical rules for nonequilibrium quantum many-body process, which can be extended to condensed matter and nuclear matter systems.
      Corresponding author: Zhai Hui, hzhai@mail.tsinghua.edu.cn
    [1]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001Google Scholar

    [2]

    Altman E 2018 Nat. Phys. 14 979Google Scholar

    [3]

    Serbyn M, Abanin D A, Papić Z 2021 Nat. Phys. 17 675Google Scholar

    [4]

    Yao N, Nayak C 2018 Phys. Today 71 40Google Scholar

    [5]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [6]

    Zheng W, Zhai H 2014 Phys. Rev. A 89 061603(RGoogle Scholar

    [7]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [8]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett 118 185701Google Scholar

    [9]

    Tarnowshi M, Unal F N, Flaschner N, Rem B S, Eckardt A, Sengstock K, Weitenberg C 2019 Nat. Commun. 10 1728Google Scholar

    [10]

    Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767Google Scholar

    [11]

    Zhao Y J, Tian Y, Ye J L, Wu Y, Zhao Z H, Chi Z H, Tian T, Yao H P, Hu J Z, Chen Y, Chen W L 2023 arXiv: 2309.10257v1 [cond-mat. quant-gas

    [12]

    Liang L, Zheng W, Yao R, Zheng Q, Yao Z, Zhou T G, Huang Q, Zhang Z, Ye J, Zhou X, Chen X, Chen W L, Zhai H, J. Hu J Z 2022 Sci. Bull. 67 2550Google Scholar

    [13]

    Bernein H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletic V, Lukin M D 2017 Nature 551 579Google Scholar

    [14]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [15]

    Cheng Y, Liu S, Zheng W, Zhang P, Zhai H 2022 PRX Quantum 3 040317Google Scholar

    [16]

    Yao Z Y, Pan L, Liu S, Zhai H 2022 Phys. Rev. B 105 125123Google Scholar

    [17]

    Wang H Y, Zhang W Y, Yao Z, Liu Y, Zhu Z H, Zheng Y G, Wang X K, Zhai H, Yuan Z S, Pan J W 2023 Phys. Rev. Lett. 131 050401Google Scholar

  • 图 1  两种不同拓扑的可观测量的轨迹, “缠绕数”分别是0 (a)和1(b), 分别对应平庸和非平庸的哈密顿量拓扑[8]; (c) 汉堡大学实验测量的动力学轨迹, 以及对应的拓扑数和相应的平衡态能带[9]

    Fig. 1.  Trajectories of a physics observable during unitary evolution under two topologically difference Hamiltonians, the linking numbers are zero (a) or one (b), corresponding to topologically trivial and nontrivial Hamiltonians, respectively[8]; (c) the dynamical trajectories measured by the Hamburg University group, and the corresponding topological number and equilibrium band structure of the Hamiltonian[9].

    图 2  (a) 理论预言在一维玻色气体中, 加入耗散以后, 粒子数的损失随着时间增长, 服从亚指数函数的形式, 插图是亚指数函数的指数随着相互作用的变化, 可以体现系统的“反常维度”[10]; (b) 清华实验组测量的一维玻色气体中, 加入耗散以后粒子数的减少, 满足亚指数函数形式. 不同曲线是不同的相互作用参数, 其给出的拟合指数是不一样的, 可以从中测得系统的“反常维度”及其随相互作用的强度的变化[11]

    Fig. 2.  (a) Theoretical predication for one-dimensional Bose gas, the decay of particle number obeys a stretched exponential behavior when adding dissipation. The inset shows how the exponent of the stretched exponential function changes as the interaction parameter varies, revealing the anomalous dimension of the system[10]. (b) The experimental results from the Tsinghua University group, the observed atom number obeys a stretched exponential form. Different curves correspond to different interaction parameters and the fitting yields different exponents, from which one can measure how the anomalous dimension changes as the interaction parameter varies [11].

    图 3  (a) 理论预言在一维U(1)格点规范模型中, 可观测量对热化的偏离和系统中物质场质量m之间的关系, 只有在m = 0.655附近的相变点, 才出现完全的热化[16]; (b) 实验结合有限尺度变换得到的平衡态相变点的位置[17]; (c)实验测量动力学过程中长时间物理量的值(数据点), 和预期的热化值(实线)的比较[17]; (b)和(c)的对比验证了完全热化只在相变点附近发生

    Fig. 3.  (a) Theoretical prediction for one-dimensional U(1) lattice gauge theory, the deviation from thermalization and the mass of matter field are related, the system fully thermalizes only around m=0.655 at the phase transition point[16]; (b) experimental determination of the phase transition point with the help of finite size scaling[17]; (c) experimental measurement of long time saturation value (data points) of the physical observable, compared with the expected thermalization value (solid line) [17]; the comparison between (b) and (c) show full thermalization takes place only around the quantum critical point.

  • [1]

    Abanin D A, Altman E, Bloch I, Serbyn M 2019 Rev. Mod. Phys. 91 021001Google Scholar

    [2]

    Altman E 2018 Nat. Phys. 14 979Google Scholar

    [3]

    Serbyn M, Abanin D A, Papić Z 2021 Nat. Phys. 17 675Google Scholar

    [4]

    Yao N, Nayak C 2018 Phys. Today 71 40Google Scholar

    [5]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [6]

    Zheng W, Zhai H 2014 Phys. Rev. A 89 061603(RGoogle Scholar

    [7]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237Google Scholar

    [8]

    Wang C, Zhang P, Chen X, Yu J, Zhai H 2017 Phys. Rev. Lett 118 185701Google Scholar

    [9]

    Tarnowshi M, Unal F N, Flaschner N, Rem B S, Eckardt A, Sengstock K, Weitenberg C 2019 Nat. Commun. 10 1728Google Scholar

    [10]

    Pan L, Chen X, Chen Y, Zhai H 2020 Nat. Phys. 16 767Google Scholar

    [11]

    Zhao Y J, Tian Y, Ye J L, Wu Y, Zhao Z H, Chi Z H, Tian T, Yao H P, Hu J Z, Chen Y, Chen W L 2023 arXiv: 2309.10257v1 [cond-mat. quant-gas

    [12]

    Liang L, Zheng W, Yao R, Zheng Q, Yao Z, Zhou T G, Huang Q, Zhang Z, Ye J, Zhou X, Chen X, Chen W L, Zhai H, J. Hu J Z 2022 Sci. Bull. 67 2550Google Scholar

    [13]

    Bernein H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuletic V, Lukin M D 2017 Nature 551 579Google Scholar

    [14]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [15]

    Cheng Y, Liu S, Zheng W, Zhang P, Zhai H 2022 PRX Quantum 3 040317Google Scholar

    [16]

    Yao Z Y, Pan L, Liu S, Zhai H 2022 Phys. Rev. B 105 125123Google Scholar

    [17]

    Wang H Y, Zhang W Y, Yao Z, Liu Y, Zhu Z H, Zheng Y G, Wang X K, Zhai H, Yuan Z S, Pan J W 2023 Phys. Rev. Lett. 131 050401Google Scholar

  • [1] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 光学阱中Λ增强型灰色黏团冷却辅助原子装载. 物理学报, 2024, 73(11): 113701. doi: 10.7498/aps.73.20240182
    [2] 成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳. 基于7Li冷原子操控的超高真空测量. 物理学报, 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [3] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析. 物理学报, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [4] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [5] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [6] 李沫, 陈飞良, 罗小嘉, 杨丽君, 张健. 原子芯片的基本原理、关键技术及研究进展. 物理学报, 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [7] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [8] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [9] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [10] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [11] 魏春华, 颜树华, 杨俊, 王国超, 贾爱爱, 罗玉昆, 胡青青. 基于87Rb原子的大失谐光晶格的设计与操控. 物理学报, 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [12] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格. 物理学报, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [13] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [14] 王强, 叶冲. 人工规范势下三阱玻色-爱因斯坦凝聚系统的动力学研究. 物理学报, 2012, 61(23): 230304. doi: 10.7498/aps.61.230304
    [15] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制. 物理学报, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [16] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却. 物理学报, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [17] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 物理学报, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应. 物理学报, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  3609
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-24
  • 修回日期:  2023-10-01
  • 上网日期:  2023-11-01
  • 刊出日期:  2023-12-05

/

返回文章
返回