搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料体光伏效应研究进展

陈晓娟 徐康 张秀 刘海云 熊启华

引用本文:
Citation:

二维材料体光伏效应研究进展

陈晓娟, 徐康, 张秀, 刘海云, 熊启华

Research progress of bulk photovoltaic effect in two-dimensional materials

Chen Xiao-Juan, Xu Kang, Zhang Xiu, Liu Hai-Yun, Xiong Qi-Hua
PDF
HTML
导出引用
  • 体光伏效应是一种二阶非线性光电响应, 指非中心对称结构材料在均匀光辐照下产生稳态的光电流. 体光伏效应由于开路电压不受半导体能隙限制, 并且功率转换效率可以突破Shockley-Queisser极限, 因此引发广泛关注. 此外, 体光伏效应与固体的量子几何性质(如Berry曲率和量子度规)密切相关, 是一种研究晶体电极化、轨道磁化和量子霍尔效应的有效手段. 二维材料具有丰富的电、光、磁、拓扑性质及相互作用机制, 可有效提高体光伏器件性能(如拓展体光伏效应响应范围等), 对探索基础物理问题亦具有重要的研究价值. 本文概述了体光伏效应的发展历程及其几种物理机制, 重点讨论了二维材料中体光伏效应取得的研究进展, 包括单一成分二维材料、二维材料堆垛工程(如二维材料同质结和异质结), 以及在此基础上通过外界作用(如磁场、应变工程)实现产生或调控体光伏效应响应. 最后对二维体光伏效应的发展前景进行了展望.
    The bulk photovoltaic effect is a second-order nonlinear photoelectric response, which refers to a phenomenon that non-centrosymmetric structural material generates a steady-state photocurrent under uniform light irradiation. The bulk photovoltaic effect has attracted widespread attention due to its open-circuit voltage is not limited by the semiconductor bandgap and power conversion efficiency breaks through the Shockley-Queisser limit. In addition, the bulk photovoltaic effect is closely related to the quantum geometric properties (such as Berry curvature and quantum metric) of solids, thus making it an effective means to study crystal polarization, orbital magnetization, and quantum Hall effects. Two-dimensional (2D) materials are rich in electrical, optical, magnetic, topological properties and their interactions, which can effectively improve the performances of bulk photovoltaic devices (such as expanding response range of bulk photovoltaic effect) and have important research value for exploring basic physical problems. This paper reviews the development process of bulk photovoltaic effect and its physical mechanism. The research progress of bulk photovoltaic effect in 2D materials is discussed in detail, including single component 2D materials, 2D material stacking engineering (such as 2D material homojunctions and heterojunctions), and other factors (such as magnetic field, strain engineering) to generate or regulate the bulk photovoltaic effect response. Finally, the development prospect of two-dimensional bulk photovoltaic effect is prospected.
      通信作者: 刘海云, liuhy@baqis.ac.cn ; 熊启华, qihua_xiong@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12250710126, 92056204)、低维量子物理国家重点实验室、清华大学自主科研计划和清华大学启动基金资助的课题.
      Corresponding author: Liu Hai-Yun, liuhy@baqis.ac.cn ; Xiong Qi-Hua, qihua_xiong@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12250710126, 92056204), the State Key Laboratory of Low-Dimensional Quantum Physics, China, the Tsinghua University Initiative Scientific Research Program, China, and the Startup Grant from Tsinghua University, China.
    [1]

    Nayak P K, Mahesh S, Snaith H J, Cahen D 2019 Nat. Rev. Mater. 4 269Google Scholar

    [2]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [3]

    Lopez-Varo P, Bertoluzzi L, Bisquert J, Alexe M, Coll M, Huang J, Jimenez-Tejada J A, Kirchartz T, Nechache R, Rosei F, Yuan Y 2016 Physics Reports 653 1Google Scholar

    [4]

    Ballif C, Haug F J, Boccard M, Verlinden P J, Hahn G 2022 Nat. Rev. Mater. 7 597Google Scholar

    [5]

    Yu C, Zou Q, Wang Q, Zhao Y, Ran X, Dong G, Peng C W, Allen V, Cao X, Zhou J, Zhao Y, Zhang X 2023 Nat. Energy 8 1119Google Scholar

    [6]

    Han X, Ji Y, Yang Y 2021 Adv. Funct. Mater. 32 2109625

    [7]

    Li H, Bowen C R, Yang Y 2021 Adv. Funct. Mater. 31 2100905Google Scholar

    [8]

    Paillard C, Bai X, Infante I C, Guennou M, Geneste G, Alexe M, Kreisel J, Dkhil B 2016 Adv. Mater. 28 5153Google Scholar

    [9]

    Wei X K, Domingo N, Sun Y, Balke N, Dunin Borkowski R E, Mayer J 2022 Adv. Energy Mater. 12 22001199

    [10]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar

    [11]

    Hatada H, Nakamura M, Sotome M, Kaneko Y, Ogawa N, Morimoto T, Tokura Y, Kawasaki M 2020 Proc. Natl. Acad. Sci. 117 20411Google Scholar

    [12]

    Wu J, Yang D, Liang J, Werner M, Ostroumov E, Xiao Y, Watanabe K, Taniguchi T, Dadap J I, Jones D, Ye Z 2022 Sci. Adv. 8 3759

    [13]

    Chynoweth A G 1956 Phys. Rev. 102 705Google Scholar

    [14]

    Fridkin V M, Grekov A A, Kosonogov N A, Volk T R 2011 Ferroelectrics 4 169

    [15]

    Dubovik E, Fridkin V, Dimos D 2006 Integr. Ferroelectr. 8 285

    [16]

    Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233Google Scholar

    [17]

    Ichiki M, Maeda R, Morikawa Y, Mabune Y, Nakada T, Nonaka K 2004 Appl. Phys. Lett. 84 395Google Scholar

    [18]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar

    [19]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763Google Scholar

    [20]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [21]

    Wu L, Yang Y 2022 Adv. Mater. Interfaces 9 2201415Google Scholar

    [22]

    Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar

    [23]

    Kim D, Han H, Lee J H, Choi J W, Grossman J C, Jang H M, Kim D 2018 Proc. Natl. Acad. Sci. 115 6566Google Scholar

    [24]

    Huang P J, Taniguchi K, Miyasaka H 2019 J. Am. Chem. Soc. 141 14520Google Scholar

    [25]

    Nakamura M, Horiuchi S, Kagawa F, Ogawa N, Kurumaji T, Tokura Y, Kawasaki M 2017 Nat. Commun. 8 281Google Scholar

    [26]

    Sun Z H, Liu X T, Khan T, Ji C M, Asghar M A, Zhao S G, Li L N, Hong M C, Luo J H 2016 Angew. Chem. Int. Ed. 55 6545Google Scholar

    [27]

    Xiao Z G, Yuan Y B, Shao Y C, Wang Q, Dong Q F, Bi C, Sharma P, Gruverman A, Huang J S 2014 Nat. Mater. 14 193

    [28]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [29]

    Cheng J B, Wang C L, Zou X M, Liao L 2019 Adv. Opt. Mater. 7 1800441Google Scholar

    [30]

    Paul J T, Singh A K, Dong Z, Zhuang H, Revard B C, Rijal B, Ashton M, Linscheid A, Blonsky M, Gluhovic D, Guo J, Hennig R G 2017 J. Phys. Condens. Matter 29 473001Google Scholar

    [31]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [32]

    Qiu Q X, Huang Z M 2021 Adv. Mater. 33 2008126Google Scholar

    [33]

    Dai Z H, Liu L Q, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [34]

    Wang Y M, Ding K, Sun B Q, Lee S T, Jie J S 2016 Nano Res. 9 72Google Scholar

    [35]

    Ahn E C 2020 Npj 2d Mater. Appli. 4 17Google Scholar

    [36]

    von Baltz R, Kraut W 1981 Phys. Rev. B 23 5590Google Scholar

    [37]

    Fridkin V M 2001 Crystallogr. Rep. 46 654Google Scholar

    [38]

    Glass A M, von der Linde D, Auston D H, Negran T J 1975 J. Electron. Mater. 4 915Google Scholar

    [39]

    Dai Z, Rappe A M 2023 Chem. Soc. Rev. 4 011303

    [40]

    Dang Y, Tao X 2022 Matter 5 2659Google Scholar

    [41]

    Kim D J, Jo J Y, Kim Y S, Chang Y J, Lee J S, Yoon J G, Song T K, Noh T W 2005 Phys. Rev. Lett. 95 237602Google Scholar

    [42]

    Mehta R R, Silverman B D, Jacobs J T 1973 J. Appl. Phys. 44 3379Google Scholar

    [43]

    Belinicher V I, Ivchenko E L, Sturman B I 1982 Physics T 56 359

    [44]

    Jiang J, Chen Z H, Hu Y, Xiang Y, Zhang L F, Wang Y P, Wang G C, Shi J 2021 Nat. Nanotechnol. 16 894Google Scholar

    [45]

    Hornung D, von Baltz R 2021 Phys. Rev. B 103 195203Google Scholar

    [46]

    Koch W T H, Munser R, Ruppel W, Würfel P 1975 Solid State Commun. 17 847Google Scholar

    [47]

    Young S M, Rappe A M 2012 Phys. Rev. Lett. 109 116601Google Scholar

    [48]

    Young S M, Zheng F, Rappe A M 2012 Phys. Rev. Lett. 109 236601Google Scholar

    [49]

    Xu H W, Wang H, Zhou J, Li J 2021 Nat. Commun. 12 4330Google Scholar

    [50]

    Zhang Y, Holder T, Ishizuka H, de Juan F, Nagaosa N, Felser C, Yan B 2019 Nat. Commun. 10 3783Google Scholar

    [51]

    苏欣, 黄天烨, 王军转, 刘媛, 郑有炓, 施毅, 王肖沐 2021 物理学报 70 138501Google Scholar

    Su X, Huang T Y, Wang J Z, Liu Y, Zheng Y L, Shi Y, Wang X M 2021 Acta Phys. Sin. 70 138501Google Scholar

    [52]

    Du L, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y, Lau C N, Sun Z 2021 Nat. Rev. Phys. 3 193Google Scholar

    [53]

    Kaner N T, Wei Y D, Jiang Y J, Li W Q, Xu X D, Pang K J, Li X J, Yang J Q, Jiang Y Y, Zhang G L, Tian W Q 2020 ACS Omega 5 17207Google Scholar

    [54]

    Rangel T, Fregoso B M, Mendoza B S, Morimoto T, Moore J E, Neaton J B 2017 Phys. Rev. Lett. 119 067402Google Scholar

    [55]

    Tiwari R P, Birajdar B, Ghosh R K 2020 Phys. Rev. B 101 235448Google Scholar

    [56]

    Zhang Y J, Ideue T, Onga M, Qin F, Suzuki R, Zak A, Tenne R, Smet J H, Iwasa Y 2019 Nature 570 349Google Scholar

    [57]

    Li Y, Fu J, Mao X Y, Chen C, Liu H, Gong M, Zeng H L 2021 Nat. Commun. 12 5896Google Scholar

    [58]

    Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan CK, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900Google Scholar

    [59]

    Li L N, Liu X T, Li Y B, Xu Z Y, Wu Z Y, Han S G, Tao K W, Hong M C, Luo J H, Sun Z H 2019 J. Am. Chem. Soc. 141 2623Google Scholar

    [60]

    Yang L, Ding S P, Gao J H, Wu M H 2023 Phys. Rev. Lett. 131 096801Google Scholar

    [61]

    Deng B C, Ma C, Wang Q Y, Yuan S F, Watanabe K, Taniguchi T, Zhang F, Xia F N 2020 Nat. Photonics 14 549Google Scholar

    [62]

    Ma C, Yuan S, Cheung P, Watanabe K, Taniguchi T, Zhang F, Xia F N 2022 Nature 604 266Google Scholar

    [63]

    Yang D Y, Wu J D, Zhou B T, Liang J, Ideue T, Siu T, Awan K M, Watanabe K, Taniguchi T, Iwasa Y, Franz M, Ye Z L 2022 Nat. Photonics 16 469Google Scholar

    [64]

    Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S, Yoshii M, Yang D, Onga M, Nakagawa Y, Watanabe K, Taniguchi T, Laurienzo J, Huang J, Ye Z L, Morimoto T, Yuan H, Iwasa Y 2021 Science 372 68Google Scholar

    [65]

    Song T, Anderson E, Tu M W Y, Seyler K, Taniguchi T, Watanabe K, McGuire M A, Li X, Cao T, Xiao D, Yao W, Xu X D 2021 Sci. Adv. 7 8094Google Scholar

    [66]

    Yang M M, Kim D J, Alexe M 2018 Science 360 904Google Scholar

    [67]

    Liu Y C, Chen J D, Wang C, Deng H Y, Zhu D M, Hu G J, Chen X S, Dai N 2016 APL Mater. 4 126104Google Scholar

  • 图 1  体光伏效应发展历程

    Fig. 1.  History of bulk photovoltaic effect.

    图 2  体光伏效应的几种介观模型 (a) 楔形反对称散射中心[40]; (b) 光激发载流子在非对称势阱中的不对称散射[40]; (c) Rashba自旋轨道耦合[40]; (d) 金属/铁电体/金属结构中的退极化场机理示意图[41,42]

    Fig. 2.  Several mesoscopic models for the bulk photovoltaic effect: (a) Asymmetric carrier scattering centers[40]; (b) asymmetric potential well at a carrier generation center[40]; (c) the minimum band splitting arising from spin-orbit coupling[40]; (d) schematic diagram of depolarization field in a metal/ferroelectric/metal structure[41,42].

    图 3  (a) 位移电流微观机理示意图; (b) 体光伏效应电流(含位移电流jsh和弹道电流jb)微观示意图[44]

    Fig. 3.  (a) Schematic of mechanism of shift current; (b) schematic of mechanism of BPVE current (including shift and ballistic currents) during the excitation (ex), scattering, and recombination (rec) process[44].

    图 4  WS2 纳米管体光伏响应 (a) 单层WS2和(b) WS2 纳米管器件的短路电流与激光光斑在器件不同位置的依赖关系; (c) 不同辐照强度条件下WS2纳米管的I-V变化曲线; (d)不同激发波长下短路电流随激光功率密度变化关系, 插图为不同波长激发的可能跃迁路径[56]

    Fig. 4.  Bulkphotovoltaic response for WS2 nanotubes: The dependence of Isc on the position of the laser spot in a WS2 monolayer device (a) and WS2 nanotube device (b); (c) I–V characteristics recorded at different illumination intensities; (d) dependence of Isc on Plaser for three different wavelengths. The bottom right inset illustrates possible excitation paths from the valence band (VB) to the conduction band (CB) for each wavelength[56].

    图 5  (a) 二维CuInP2S6 BPVE器件图像及器件表面短路电流分布图; (b) 二维CuInP2S6 BPVE器件在明暗条件下的J-V输出曲线; (c) 二维CuInP2S6器件分别在经过正向极化、 无极化和反向极化后的J-V输出曲线; (d) BPVE性能随CuInP2S6厚度的变化关系; (e) 开路电压随温度的变化关系[57]

    Fig. 5.  (a) The optical image and corresponding short-circuit photocurrent density mapping of the two dimensional CuInP2S6 BPVE device; (b) the characteristic output I-V curves of the two dimensional CuInP2S6 BPVE device at dark and bright conditions; (c) output J-V curves at specific poling voltages with the positively, zero voltage, and negatively poled respectively; (d) the thickness dependent BPVE in CuInP2S6; (e) the open-circuit voltage as a function of the temperature, the Voc vanishes when the temperature increases to the phase transition temperature at about 315 K[57].

    图 6  (a) 单层1Td WTe2晶体结构示意图及对称性分析; (b) 双栅极单层WTe2器件的结构示意图及光学图像; (c) 红、黑和蓝3个位置处, 光电流$I_{\hat{a}} $随激光偏振态的依赖关系, 插图分别为光电流$I_{\hat{a}} $与${\hat{a}}\text{-}{\hat{b}} $平面内位置关系; (d) 不同位移场极化下的圆偏振光伏效应电流, T = 20 K[58]

    Fig. 6.  (a) Crystal structure monolayer 1Td WTe2; (b) schematic and optical image of a dual-gated monolayer WTe2 device; (c) polarization-dependent $I_{\hat{a}} $ with the light spot fixed at the red, black, and blue dots shown in the inset, inset depicts the photocurrent along ${\hat{b}} $ with linear polarized light as a function of the beam spot location in the ${\hat{a}}\text{-}{\hat{b}} $ plane; (d) polarization-dependent circular photo galvanic effect currents for different displacement fields at T = 20 K[58].

    图 7  TDBG光探测器输运特性 (a) TDBG光探测器示意图; (b) 在不同栅极偏置电压(VBG, VTG)条件下线性BPVE光伏电压随激发光源偏振角度依赖关系; (c) T = 79 K, λ = 5 μm时, 不同栅极偏置电压下TDBG中的可调谐圆偏振BPVE; (d) 5 μm椭圆偏振光(χ = 36.5°, ψ = 110°)激发产生光电压(Vph)分布图, 插图中χψ分别为偏振椭圆的椭圆率和方位角[62]

    Fig. 7.  Transport properties of the TDBG photodetector: (a) Schematic of the TDBG photo detector; (b) linear BPVE voltage(Vph) as a function of polarization angle at a set of fixed gate voltage biases (VBG, VTG), the data are fitted by using Vph=VCcos(2ψ)+VS sin(22ψ)+Vconst; (c) circular BPVE photovoltage (Vph) as a function of the angle of the quarter-wave plate (θ) at different gate voltage biases(VBG, VTG), measured at T = 79 K and λ = 5 μm; (d) photovoltage mapping excited by elliptically polarized light at 5 μm, with χ = 36.5° and ψ = 110°. χ and ψ are the ellipticity and orientation angles of the polarization ellipse in the inset, respectively[62]

    图 8  (a) 双层MoS2的不同堆叠方式(2H和3R)晶体结构及石墨烯/3R-MoS2/石墨烯异质结隧道结器件结构示意图; (b) 双层3R-MoS2器件图片及光电流分布图像(白色虚线内部); (c) 双层3R-MoS2的两种可能堆叠畴结构(左)及器件中不同畴位置处光电流分布图像(右); (d) AB畴位光电流大小随着偏置电压及激光强度的依赖关系[63]

    Fig. 8.  (a) Schematic of H stacking (2H) and R stacking (3R) of bilayer MoS2 and the tunneling junction device (composed of graphene/3R-MoS2/graphene heterostructure); (b) optical image of the BPVE device and scanning photovoltaic current map of BPVE device (consisting of one, two and three layers); (c) schematic of two possible stacking domains (AB and BA) of a 3R bilayer MoS2 (left) and the scanning photo voltaic current map of device (right), the positive and negative photo response areas correspond to the AB and BA domains with almost symmetric responsivity; (d) bias voltage dependence of the photovoltaic current in the AB domain at different laser powers between 10 and 70 µW[63].

    图 9  (a)单层WSe2/BP异质结晶体结构示意图; WSe2/BP异质结器件图像(b)和沿着器件中ab直线的光电流分布关系(c); WSe2/BP异质结器件图像(d)与器件沿E1-E2光电流分布(e); (f) 线偏振体光伏光电流与激光功率的依赖关系[64]

    Fig. 9.  Schematic illustrations of hetero interface of WSe2/BP (the mirror planes of both WSe2 and BP are parallel); WSe2/BP device (b) and photocurrent mapping in device along ab direction (c); WSe2/BP device (d) and photocurrent mapping in device along the E1 and E2 electrodes (e); (f) laser power P dependence of the photocurrent I for two different wavelengths of 632.8 nm and 532 nm[64].

    图 10  CrI3器件的光伏响应 (a) 4层CrI3(AFM基态)异质结器件示意图; (b) 4层CrI3异质结器件的光电流随外磁场强度的变化曲线; (c) 3层CrI3异质结器件中光电流随1/4玻片角度变化曲线; (d) 差分光电流$I_{\rm ph}(\sigma^+) - I_{\rm ph} (\sigma^-) $随外磁场的变化曲线[65]

    Fig. 10.  Photocurrent response of CrI3 junction device: (a) Schematic of a four layer CrI3 junction device in AFM ground state (↑↓↑↓); (b) photocurrent as a function of external magnetic field (H) measured from the four layer CrI3 junction device; (c) photocurrent as a function of quarter-wave plate angle for ↑↑↑ state (2 T) and ↓↓↓ state (–2 T) measured from the trilayer CrI3 junction device; (d) the change in photocurrent $I_{\rm ph}(\sigma^+) - I_{\rm ph} (\sigma^-) $as a function of μ0H measured from the same device[65].

    图 11  (a) 相变材料混合系统中二维材料应变梯度工程示意图及二维材料中的应变梯度曲线; (b) VO2/MoS2异质结中MoS2拉曼$ {\text{E}}_{{\text{2g}}}^{1} $模式映射图; (c) VO2/MoS2异质结器件结构示意图及器件在激光照射下光斑1 (Laser@1)和光斑2 (Laser@2)及暗态时的I-V曲线; (d) 405 nm激光照射下器件中 3 (Laser@3)和4 (Laser@4)处短路电流的偏振依赖性[44]

    Fig. 11.  (a) Strain-gradient engineering of a 2D material by using a phase-change material in a hybrid system, on a reversible structural phase transition between phase I and phase II, strain gradients are generated in the 2D material at the edge of the phase-change material, inducing shifts of electron charge centers (dipole moments), the strain plot illustrates strain gradients in the 2D material(bottom panel); (b) Raman mapping of $ {\text{E}}_{{\text{2g}}}^{1} $ mode of MoS2 on a VO2/MoS2 device; (c) the schematic diagram of VO2/MoS2 device and current-voltage curves of the device under laser illumination at spot 1 (Laser@1) and 2 (Laser@2) and dark conditions; (d) light polarization dependence of the short-circuit current under laser (405 nm) illumination at spots 3 (Laser@3) and 4 (Laser@4) in a device[44].

  • [1]

    Nayak P K, Mahesh S, Snaith H J, Cahen D 2019 Nat. Rev. Mater. 4 269Google Scholar

    [2]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [3]

    Lopez-Varo P, Bertoluzzi L, Bisquert J, Alexe M, Coll M, Huang J, Jimenez-Tejada J A, Kirchartz T, Nechache R, Rosei F, Yuan Y 2016 Physics Reports 653 1Google Scholar

    [4]

    Ballif C, Haug F J, Boccard M, Verlinden P J, Hahn G 2022 Nat. Rev. Mater. 7 597Google Scholar

    [5]

    Yu C, Zou Q, Wang Q, Zhao Y, Ran X, Dong G, Peng C W, Allen V, Cao X, Zhou J, Zhao Y, Zhang X 2023 Nat. Energy 8 1119Google Scholar

    [6]

    Han X, Ji Y, Yang Y 2021 Adv. Funct. Mater. 32 2109625

    [7]

    Li H, Bowen C R, Yang Y 2021 Adv. Funct. Mater. 31 2100905Google Scholar

    [8]

    Paillard C, Bai X, Infante I C, Guennou M, Geneste G, Alexe M, Kreisel J, Dkhil B 2016 Adv. Mater. 28 5153Google Scholar

    [9]

    Wei X K, Domingo N, Sun Y, Balke N, Dunin Borkowski R E, Mayer J 2022 Adv. Energy Mater. 12 22001199

    [10]

    Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar

    [11]

    Hatada H, Nakamura M, Sotome M, Kaneko Y, Ogawa N, Morimoto T, Tokura Y, Kawasaki M 2020 Proc. Natl. Acad. Sci. 117 20411Google Scholar

    [12]

    Wu J, Yang D, Liang J, Werner M, Ostroumov E, Xiao Y, Watanabe K, Taniguchi T, Dadap J I, Jones D, Ye Z 2022 Sci. Adv. 8 3759

    [13]

    Chynoweth A G 1956 Phys. Rev. 102 705Google Scholar

    [14]

    Fridkin V M, Grekov A A, Kosonogov N A, Volk T R 2011 Ferroelectrics 4 169

    [15]

    Dubovik E, Fridkin V, Dimos D 2006 Integr. Ferroelectr. 8 285

    [16]

    Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233Google Scholar

    [17]

    Ichiki M, Maeda R, Morikawa Y, Mabune Y, Nakada T, Nonaka K 2004 Appl. Phys. Lett. 84 395Google Scholar

    [18]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar

    [19]

    Ji W, Yao K, Liang Y C 2010 Adv. Mater. 22 1763Google Scholar

    [20]

    蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar

    Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar

    [21]

    Wu L, Yang Y 2022 Adv. Mater. Interfaces 9 2201415Google Scholar

    [22]

    Grinberg I, West D V, Torres M, Gou G, Stein D M, Wu L, Chen G, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar

    [23]

    Kim D, Han H, Lee J H, Choi J W, Grossman J C, Jang H M, Kim D 2018 Proc. Natl. Acad. Sci. 115 6566Google Scholar

    [24]

    Huang P J, Taniguchi K, Miyasaka H 2019 J. Am. Chem. Soc. 141 14520Google Scholar

    [25]

    Nakamura M, Horiuchi S, Kagawa F, Ogawa N, Kurumaji T, Tokura Y, Kawasaki M 2017 Nat. Commun. 8 281Google Scholar

    [26]

    Sun Z H, Liu X T, Khan T, Ji C M, Asghar M A, Zhao S G, Li L N, Hong M C, Luo J H 2016 Angew. Chem. Int. Ed. 55 6545Google Scholar

    [27]

    Xiao Z G, Yuan Y B, Shao Y C, Wang Q, Dong Q F, Bi C, Sharma P, Gruverman A, Huang J S 2014 Nat. Mater. 14 193

    [28]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [29]

    Cheng J B, Wang C L, Zou X M, Liao L 2019 Adv. Opt. Mater. 7 1800441Google Scholar

    [30]

    Paul J T, Singh A K, Dong Z, Zhuang H, Revard B C, Rijal B, Ashton M, Linscheid A, Blonsky M, Gluhovic D, Guo J, Hennig R G 2017 J. Phys. Condens. Matter 29 473001Google Scholar

    [31]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [32]

    Qiu Q X, Huang Z M 2021 Adv. Mater. 33 2008126Google Scholar

    [33]

    Dai Z H, Liu L Q, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [34]

    Wang Y M, Ding K, Sun B Q, Lee S T, Jie J S 2016 Nano Res. 9 72Google Scholar

    [35]

    Ahn E C 2020 Npj 2d Mater. Appli. 4 17Google Scholar

    [36]

    von Baltz R, Kraut W 1981 Phys. Rev. B 23 5590Google Scholar

    [37]

    Fridkin V M 2001 Crystallogr. Rep. 46 654Google Scholar

    [38]

    Glass A M, von der Linde D, Auston D H, Negran T J 1975 J. Electron. Mater. 4 915Google Scholar

    [39]

    Dai Z, Rappe A M 2023 Chem. Soc. Rev. 4 011303

    [40]

    Dang Y, Tao X 2022 Matter 5 2659Google Scholar

    [41]

    Kim D J, Jo J Y, Kim Y S, Chang Y J, Lee J S, Yoon J G, Song T K, Noh T W 2005 Phys. Rev. Lett. 95 237602Google Scholar

    [42]

    Mehta R R, Silverman B D, Jacobs J T 1973 J. Appl. Phys. 44 3379Google Scholar

    [43]

    Belinicher V I, Ivchenko E L, Sturman B I 1982 Physics T 56 359

    [44]

    Jiang J, Chen Z H, Hu Y, Xiang Y, Zhang L F, Wang Y P, Wang G C, Shi J 2021 Nat. Nanotechnol. 16 894Google Scholar

    [45]

    Hornung D, von Baltz R 2021 Phys. Rev. B 103 195203Google Scholar

    [46]

    Koch W T H, Munser R, Ruppel W, Würfel P 1975 Solid State Commun. 17 847Google Scholar

    [47]

    Young S M, Rappe A M 2012 Phys. Rev. Lett. 109 116601Google Scholar

    [48]

    Young S M, Zheng F, Rappe A M 2012 Phys. Rev. Lett. 109 236601Google Scholar

    [49]

    Xu H W, Wang H, Zhou J, Li J 2021 Nat. Commun. 12 4330Google Scholar

    [50]

    Zhang Y, Holder T, Ishizuka H, de Juan F, Nagaosa N, Felser C, Yan B 2019 Nat. Commun. 10 3783Google Scholar

    [51]

    苏欣, 黄天烨, 王军转, 刘媛, 郑有炓, 施毅, 王肖沐 2021 物理学报 70 138501Google Scholar

    Su X, Huang T Y, Wang J Z, Liu Y, Zheng Y L, Shi Y, Wang X M 2021 Acta Phys. Sin. 70 138501Google Scholar

    [52]

    Du L, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y, Lau C N, Sun Z 2021 Nat. Rev. Phys. 3 193Google Scholar

    [53]

    Kaner N T, Wei Y D, Jiang Y J, Li W Q, Xu X D, Pang K J, Li X J, Yang J Q, Jiang Y Y, Zhang G L, Tian W Q 2020 ACS Omega 5 17207Google Scholar

    [54]

    Rangel T, Fregoso B M, Mendoza B S, Morimoto T, Moore J E, Neaton J B 2017 Phys. Rev. Lett. 119 067402Google Scholar

    [55]

    Tiwari R P, Birajdar B, Ghosh R K 2020 Phys. Rev. B 101 235448Google Scholar

    [56]

    Zhang Y J, Ideue T, Onga M, Qin F, Suzuki R, Zak A, Tenne R, Smet J H, Iwasa Y 2019 Nature 570 349Google Scholar

    [57]

    Li Y, Fu J, Mao X Y, Chen C, Liu H, Gong M, Zeng H L 2021 Nat. Commun. 12 5896Google Scholar

    [58]

    Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan CK, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, Jarillo-Herrero P 2018 Nat. Phys. 14 900Google Scholar

    [59]

    Li L N, Liu X T, Li Y B, Xu Z Y, Wu Z Y, Han S G, Tao K W, Hong M C, Luo J H, Sun Z H 2019 J. Am. Chem. Soc. 141 2623Google Scholar

    [60]

    Yang L, Ding S P, Gao J H, Wu M H 2023 Phys. Rev. Lett. 131 096801Google Scholar

    [61]

    Deng B C, Ma C, Wang Q Y, Yuan S F, Watanabe K, Taniguchi T, Zhang F, Xia F N 2020 Nat. Photonics 14 549Google Scholar

    [62]

    Ma C, Yuan S, Cheung P, Watanabe K, Taniguchi T, Zhang F, Xia F N 2022 Nature 604 266Google Scholar

    [63]

    Yang D Y, Wu J D, Zhou B T, Liang J, Ideue T, Siu T, Awan K M, Watanabe K, Taniguchi T, Iwasa Y, Franz M, Ye Z L 2022 Nat. Photonics 16 469Google Scholar

    [64]

    Akamatsu T, Ideue T, Zhou L, Dong Y, Kitamura S, Yoshii M, Yang D, Onga M, Nakagawa Y, Watanabe K, Taniguchi T, Laurienzo J, Huang J, Ye Z L, Morimoto T, Yuan H, Iwasa Y 2021 Science 372 68Google Scholar

    [65]

    Song T, Anderson E, Tu M W Y, Seyler K, Taniguchi T, Watanabe K, McGuire M A, Li X, Cao T, Xiao D, Yao W, Xu X D 2021 Sci. Adv. 7 8094Google Scholar

    [66]

    Yang M M, Kim D J, Alexe M 2018 Science 360 904Google Scholar

    [67]

    Liu Y C, Chen J D, Wang C, Deng H Y, Zhu D M, Hu G J, Chen X S, Dai N 2016 APL Mater. 4 126104Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [4] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [5] 薛文明, 李金, 何朝宇, 欧阳滔, 罗朝波, 唐超, 钟建新. H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应. 物理学报, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [6] 李策, 杨栋梁, 孙林锋. 基于二维层状材料的神经形态器件研究进展. 物理学报, 2022, 71(21): 218504. doi: 10.7498/aps.71.20221424
    [7] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [8] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [9] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应. 物理学报, 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [10] 廖俊懿, 吴娟霞, 党春鹤, 谢黎明. 二维材料的转移方法. 物理学报, 2021, 70(2): 028201. doi: 10.7498/aps.70.20201425
    [11] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [12] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [13] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [14] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [15] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [16] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [17] 魏钟鸣, 夏建白. 低维半导体偏振光探测器研究进展. 物理学报, 2019, 68(16): 163201. doi: 10.7498/aps.68.20191002
    [18] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [19] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用. 物理学报, 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [20] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
计量
  • 文章访问数:  6773
  • PDF下载量:  473
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-11
  • 修回日期:  2023-12-13
  • 上网日期:  2023-12-18
  • 刊出日期:  2023-12-05

/

返回文章
返回