搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双振荡场产生正负电子对的理论研究

李传可 林南省 周鲜鲜 江淼 李英骏

引用本文:
Citation:

双振荡场产生正负电子对的理论研究

李传可, 林南省, 周鲜鲜, 江淼, 李英骏

Theoretical study of double oscillating fields induced electron-positron pairs creation process

Li Chuan-Ke, Lin Nan-Sheng, Zhou Xian-Xian, Jiang Miao, Li Ying-Jun
PDF
HTML
导出引用
  • 在强电磁场下真空产生正负电子对的研究中, 多场的组合扮演重要的角色. 本文运用计算量子场论方法在全时空数值求解狄拉克方程, 研究了两个空间分离的局域化振荡电场击穿真空产生正负电子对的过程. 结果表明通过选取合适的场参数, 两场的相互作用可以显著增强正负电子对的产生. 两场的相互作用使产生正负电子对的动量分布曲线出现了周期性的振荡, 并导致了非对称的多光子跃迁过程. 通过含时微扰理论分析得出, 正负电子对的动量分布的周期性振荡可由电场宽度、电场频率和两场间距共同决定. 两场间距能够改变正负电子对动量分布的变化周期, 随着两场间距的增大, 产生正负电子对的动量(能量)的单一性得到优化; 电场宽度不仅影响正负电子对动量分布的峰谷高度差, 还会改变其在动量空间峰值的展宽; 根据能量守恒定律, 电场频率的增大使得产生粒子对的动量随之变大. 因此, 通过选择合适电场参数可以抑制或加强特定动量分布的正负电子对, 这为今后的实验设计提供了重要的理论指导.
    We investigate an important aspect of electron-positron pair creation from vacuum in the presence of a strong background field, where the combined field plays a key role in the pair creation process. By utilizing computational quantum field theory, we explore electron-positron pair creation induced by double-located oscillating electric fields by numerically solving the Dirac equation in full spacetime dimensions. We demonstrate theoretically that computational quantum field theory is equivalent to the first-order time-dependent perturbation theory for single-photon transition pair creation in a spatially inhomogeneous and time-dependent electric field, and verify their equivalence through numerical simulations of pair creation in double-located oscillating fields. We show some interesting results about the periodic oscillation of the momentum spectrum structure of the created particle and the asymmetric multi-photon pair creation process due to the interference between two fields. By using first-order time-dependent perturbation theory, we find that the periodic oscillation in the momentum distribution of the created particle is affected by the field width, the field frequency and the distance between two fields. The period of the oscillation of momentum spectrum structure is changed by the distance between two fields, while the field width has an influence on both the difference between the peak and valley of the momentum spectra and the width of the momentum space available to the created particle. Increasing the frequency of the electric field results in larger momentum for the created particle pairs, while correspondingly reducing the coupling matrix element $ \langle p|V|n \rangle $ and diminishing the probability of electron-positron pair creation.The interference between two fields significantly enhances the yield of pair numbers for small distances between two fields. When the distance is too large, the number of pairs created by double oscillating fields is twice that created by a single field, and the enhancement is vanished. When the distance between two fields increases, the period of oscillation decreases. In turn, the creation of electron-positron pairs can become more monochromatic in momentum (energy), while the number of pairs created remains almost constant. As the electric field broadens, the yield of the created pairs decreases for constant potential height. Increasing the field width will reduce the number of particles for each momentum and narrow the momentum space of the created particle. Increasing the field frequency leads to the reduction of the coupling matrix element $ \langle p|V|n \rangle $ and subsequently reduces the total number of electron-positron pairs created. The field profile parameters such as frequency, width, and distance between two fields can be utilized to select a specific momentum (energy) of particles in future electron-positron pair creation experiments.
      通信作者: 林南省, phy.nslin@gmail.com ; 李英骏, lyj@aphy.iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11974419, 11605286, 12204001)和国家重点研发计划(批准号: 2018YFA0404802)资助的课题.
      Corresponding author: Lin Nan-Sheng, phy.nslin@gmail.com ; Li Ying-Jun, lyj@aphy.iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974419, 11605286, 12204001) and the National Key R&D Program of China (Grants No. 2018YFA0404802).
    [1]

    Xie B S, Li Z L, Tang S 2017 Matter Radiat. Extremes 2 225Google Scholar

    [2]

    Fedotov A, Ilderton A, Karbstein F, King B, Seipt D, Taya H, Torgrimsson G 2023 Phys. Rep. 1010 1Google Scholar

    [3]

    Sauter F 1931 Z. Physik 69 742Google Scholar

    [4]

    Heisenberg W, Euler H 1936 Z. Physik 98 714Google Scholar

    [5]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

    [6]

    Brezin E, Itzykson C 1970 Phys. Rev. D 2 1191Google Scholar

    [7]

    Kim S P, Page D N 2002 Phys. Rev. D 65 105002Google Scholar

    [8]

    Schützhold R, Gies H, Dunne G V 2008 Phys. Rev. Lett. 101 130404Google Scholar

    [9]

    Schneider C, Torgrimsson G, Schützhold R 2018 Phys. Rev. D 98 085009Google Scholar

    [10]

    Abdukerim N, Li Z L, Xie B S 2013 Phys. Lett. B 726 820Google Scholar

    [11]

    Li Z L, Lu D, Xie B S, Fu L B, Liu J, Shen B F 2014 Phys. Rev. D 89 093011Google Scholar

    [12]

    Kohlfürst C, Gies H, Alkofer R 2014 Phys. Rev. Lett. 112 050402Google Scholar

    [13]

    Gong C, Li Z L, Xie B S, Li Y J 2020 Phys. Rev. D 101 016008Google Scholar

    [14]

    Hebenstreit F, Alkofer R, Gies H 2010 Phys. Rev. D 82 105026Google Scholar

    [15]

    Hebenstreit F, Alkofer R, Gies H 2011 Phys. Rev. Lett. 107 180403Google Scholar

    [16]

    Li Z L, Lu D, Xie B S 2015 Phys. Rev. D 92 085001Google Scholar

    [17]

    Li Z L, Li Y J, Xie B S 2017 Phys. Rev. D 96 076010Google Scholar

    [18]

    Kohlfürst C, Alkofer R 2018 Phys. Rev. D 97 036026Google Scholar

    [19]

    Kohlfürst C 2019 Phys. Rev. D 99 096017Google Scholar

    [20]

    Cheng T, Su Q C, Grobe R 2010 Contemp. Phys. 51 315Google Scholar

    [21]

    Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R, Su Q C 2011 Phys. Rev. A 83 053402Google Scholar

    [22]

    Su Q C, Su W, Lü Q Z, Jiang M, Lu X, Sheng Z M, Grobe R 2012 Phys. Rev. Lett. 109 253202Google Scholar

    [23]

    Jiang M, Lü Q Z, Sheng Z M, Grobe R, Su Q C 2013 Phys. Rev. A 87 042503Google Scholar

    [24]

    Lü Q Z, Li Y J, Grobe R, Su Q C 2013 Phys. Rev. A 88 033403Google Scholar

    [25]

    林南省, 韩禄雪, 江淼, 李英骏 2018 物理学报 67 133401Google Scholar

    Lin N S, Han L X, Jiang M, Li Y J 2018 Acta Phys. Sin. 67 133401Google Scholar

    [26]

    Lü Q Z, Su Q C, Grobe R 2018 Phys. Rev. Lett. 121 183606Google Scholar

    [27]

    Su Q C, Grobe R 2019 Phys. Rev. Lett. 122 023603Google Scholar

    [28]

    Zhou X X, Li C K, Jiang M, Lin N S, Li Y J 2019 EPL 128 10001Google Scholar

    [29]

    Su D D, Li Y T, Lü Q Z, Zhang J 2020 Phys. Rev. D 101 054501Google Scholar

    [30]

    Gong C, Li Z L, Li Y J, Xie B S 2020 Phys. Rev. A 101 063405Google Scholar

    [31]

    Zhou X X, Li C K, Lin N S, Li Y J 2021 Phys. Rev. A 103 012229Google Scholar

    [32]

    Su D D, Li Y T, Su Q C, Grobe R 2021 Phys. Rev. D 103 074513Google Scholar

    [33]

    Li C K, Su D D, Li Y J, Su Q C, Grobe R 2023 EPL 141 55001Google Scholar

    [34]

    Dumlu C K 2009 Phys. Rev. D 79 065027Google Scholar

    [35]

    Li Z L, Xie B S, Li Y J 2019 Phys. Rev. D 100 076018Google Scholar

    [36]

    Li Z L, Gong C, Li Y J 2021 Phys. Rev. D 103 116018Google Scholar

    [37]

    Yoon J W, Kim Y G, Choi I W, Sung J H, Lee H W, Lee S K, Nam C H 2021 Optica 8 630Google Scholar

    [38]

    ELI BEAMLINES FACILITY, http://www.extreme-light-infrastructure.eu/

    [39]

    Burke D L, Field R C, Smith G H, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C, McDonald K T, Prebys E J, Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [40]

    Pike O, Mackenroth F, Hill E, Rose S J 2014 Nat. Photon. 8 434Google Scholar

    [41]

    Blackburn T G, Marklund M 2018 Plasma Phys. Contr. F. 60 054009Google Scholar

    [42]

    Yu J Q, Lu H Y, Takahashi T, Hu R H, Gong Z, Ma W J, Huang Y S, Chen C E, Yan X Q 2019 Phys. Rev. Lett. 122 014802Google Scholar

    [43]

    Golub A, Chávez S V, Ruhl H, Müller C 2021 Phys. Rev. D 103 016009Google Scholar

    [44]

    MacLeod A J, Hadjisolomou P, Jeong T M, Bulanov S V 2023 Phys. Rev. A 107 012215Google Scholar

    [45]

    Narozhny N B, Bulanov S S, Mur V D, Popov V S 2004 Phys. Lett. A 330 1

    [46]

    Dunne G V, Gies H, Schüzhold R 2009 Phys. Rev. D 80 111301Google Scholar

    [47]

    Bulanov S S, Mur V D, Narozhny N B, Nees J, Popov V S 2010 Phys. Rev. Lett. 104 220404Google Scholar

    [48]

    Aleksandrov I A, Plunien G, Shabaev V M 2017 Phys. Rev. D 96 076006Google Scholar

    [49]

    Jiang M, Grobe R, Su Q C 2023 Phys. Rev. A 108 022813Google Scholar

  • 图 1  正负电子对数量随时间的变化, 实线和虚线分别表示计算量子场论的结果和一阶含时微扰理论的结果, 蓝色线表示双振荡场产生的粒子对数量, 黑色线表示单振荡场产生的粒子对数量, 红色点线表示单振荡场产生的粒子对数量的2倍, 其中V1 = V2 = 0.75c2, W1= W2 = 3/c, d = 8/c, ω = 2.5c2, T = 2π/ω

    Fig. 1.  Time evolution of the electron-positron pairs, the results calculated by the computational quantum field theory and the first-order time-dependent perturbation theory are represented by the solid line and the dashed line, respectively. The electron-positron pairs created by double oscillating filed is represented by blue line, the electron-positron pairs created by single oscillating field is represented by black line, and the twice of the pairs created by single oscillating field is represented by the red dotted line. Here, V1 = V2 = 0.75c2, W1 = W2 = 3/c, d = 8/c, ω = 2.5c2, T = 2π/ω.

    图 2  正负电子对的动量分布, 实线和虚线分别表示计算量子场论的数值结果和一阶含时微扰理论的结果. 其中V1 = V2 = 0.75c2, W1 = W2 = 3/c, d = 8/c, ω = 2.5c2, t = 20T = 40π/ω

    Fig. 2.  Momentum spectra of the created electron-positron pairs, the results calculated by CQFT and the first-order time-dependent perturbation theory are represented by the solid line and the dashed line, respectively. Here, V1 = V2 = 0.75c2, W1 = W2 = 3/c, d = 8/c, ω = 2.5c2, t = 20T = 40π/ω.

    图 3  不同场间距d下正负电子对数量随时间的变化, 实线和虚线分别表示计算量子场论的结果和一阶含时微扰理论的结果. 其中V1 = V2 = 0.75c2, W1 = W2 = 3/c, ω = 2.5c2, T = 2π/ω

    Fig. 3.  Time evolution of the created electron-positron pairs for different distances between the two fields (d), the results calculated by CQFT and the first-order time-dependent perturbation theory are represented by the solid line and the dashed line, respectively. Here, V1 = V2 = 0.75c2, W1 = W2 = 3/c, ω = 2.5c2, T = 2π/ω.

    图 4  不同场间距d下正负电子对产生的动量分布, 实线和虚线分别表示计算量子场论的结果和一阶含时微扰理论的结果. 其中V1 = V2 = 0.75c2, W1 = W2 = 3/c, ω = 2.5c2, t = 20T = 40π/ω

    Fig. 4.  Momentum spectra of the electron-positron pairs for different distances between the two fields (d), the results calculated by CQFT and the first-order time-dependent perturbation theory are represented by the solid line and the dashed line, respectively. Here, V1 = V2 = 0.75c2, W1 = W2 = 3/c, ω = 2.5c2, t = 20T = 40π/ω.

    图 5  不同电场宽度W下正负电子对数量随时间的变化, 实线和虚线分别表示计算量子场论的结果和一阶含时微扰理论的结果. 其中V1 = V2 = 0.75c2, d = 14/c, ω = 2.5c2, T = 2π/ω

    Fig. 5.  Time evolution of the created electron-positron pairs for different widths of electric field (W), the electron-positron pairs calculated by CQFT and first-order time-dependent perturbation theory are represented by the solid line and the dashed line, respectively. Here, V1 = V2 = 0.75c2, d = 14/c, ω = 2.5c2, T = 2π/ω.

    图 6  不同电场宽度(W)下正负电子对的动量分布, 实线和虚线分别表示计算量子场论的结果和一阶含时微扰理论的结果. 其中V1 = V2 = 0.75c2, d = 14/c, ω = 2.5c2, t = 20T = 40π/ω

    Fig. 6.  Momentum spectra of the created electron-positron pairs for different widths of electric field (W), the results calculated by CQFT and the first-order time-dependent perturbation theory are represented by the solid line and the dashed line, respectively. Here, V1 = V2 = 0.75c2, d = 14/c, ω = 2.5c2, t = 20T = 40π/ω.

    图 7  正负电子对数量随时间的变化, 实线和虚线分别表示计算量子场论的结果和一阶含时微扰理论的结果. 这里, V1 = V2 = 0.75c2, W1 = W2 = 3/c, d = 8/c, T = 2π/ω

    Fig. 7.  Time evolution of the electron-positron pairs, the results calculated by the computational quantum field theory and the first-order time-dependent perturbation theory are represented by the solid line and the dashed line, respectively. Here, V1 = V2 = 0.75c2, W1 = W2 = 3/c, d = 8/c, T = 2π/ω.

    图 8  不同电场频率下正负电子对的动量分布, 实线和虚线分别表示计算量子场论的结果和一阶含时微扰理论的结果. 其中V1= V2 = 0.75c2, W1 = W2 = 3/c, d = 8/c, T = 2π/ω

    Fig. 8.  Momentum spectra of the created electron-positron pairs for different frequencies of electric field. The results calculated by the computational quantum field theory and the first-order time-dependent perturbation theory are represented by the solid line and the dashed line, respectively. Here, V1 = V2 = 0.75c2, W1 = W2 = 3/c, d = 8/c, T = 2π/ω.

    表 1  计算量子场论与一阶含时微扰理论的动量峰值强度误差

    Table 1.  Error of momentum peaks probability with the CQFT and the first-order time-dependent perturbation theory.

    峰值强度 峰值位置/arb.units
    53.4(–53.4) 103.7(–103.7) 138.2(–138.2)
    计算量子场论 0.0024 0.0270 0.0030
    含时微扰理论 0.0025 0.0290 0.0031
    相对误差/% 4.17 7.41 3.33
    下载: 导出CSV

    表 A1  计算量子场论与一阶含时微扰理论的产生粒子对数量的平均相对误差

    Table A1.  Mean relative error of the particle number created by the CQFT and the first-order time-dependent perturbation theory.

    电场频率
    (c2)
    平均相对
    误差/%
    电场宽度
    (c–1)
    平均相对
    误差/%
    电场势高
    (c2)
    平均相对
    误差/%
    1.6 6.04 0.5 12.54 0.5 5.32
    1.7 674 0.6 11.52 0.6 5.79
    1.8 8.76 0.7 10.56 0.7 6.33
    1.9 18.11 0.8 9.71 0.8 6.96
    2.0 27.41 0.9 8.95 0.9 7.68
    2.1 19.24 1.0 8.30 1.0 8.48
    2.2 11.29 1.1 7.76 1.1 9.36
    2.3 8.07 1.2 7.31 1.2 10.33
    2.4 6.97 1.3 6.94 1.3 11.38
    2.5 6.64 1.4 6.66 1.4 12.51
    下载: 导出CSV
  • [1]

    Xie B S, Li Z L, Tang S 2017 Matter Radiat. Extremes 2 225Google Scholar

    [2]

    Fedotov A, Ilderton A, Karbstein F, King B, Seipt D, Taya H, Torgrimsson G 2023 Phys. Rep. 1010 1Google Scholar

    [3]

    Sauter F 1931 Z. Physik 69 742Google Scholar

    [4]

    Heisenberg W, Euler H 1936 Z. Physik 98 714Google Scholar

    [5]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

    [6]

    Brezin E, Itzykson C 1970 Phys. Rev. D 2 1191Google Scholar

    [7]

    Kim S P, Page D N 2002 Phys. Rev. D 65 105002Google Scholar

    [8]

    Schützhold R, Gies H, Dunne G V 2008 Phys. Rev. Lett. 101 130404Google Scholar

    [9]

    Schneider C, Torgrimsson G, Schützhold R 2018 Phys. Rev. D 98 085009Google Scholar

    [10]

    Abdukerim N, Li Z L, Xie B S 2013 Phys. Lett. B 726 820Google Scholar

    [11]

    Li Z L, Lu D, Xie B S, Fu L B, Liu J, Shen B F 2014 Phys. Rev. D 89 093011Google Scholar

    [12]

    Kohlfürst C, Gies H, Alkofer R 2014 Phys. Rev. Lett. 112 050402Google Scholar

    [13]

    Gong C, Li Z L, Xie B S, Li Y J 2020 Phys. Rev. D 101 016008Google Scholar

    [14]

    Hebenstreit F, Alkofer R, Gies H 2010 Phys. Rev. D 82 105026Google Scholar

    [15]

    Hebenstreit F, Alkofer R, Gies H 2011 Phys. Rev. Lett. 107 180403Google Scholar

    [16]

    Li Z L, Lu D, Xie B S 2015 Phys. Rev. D 92 085001Google Scholar

    [17]

    Li Z L, Li Y J, Xie B S 2017 Phys. Rev. D 96 076010Google Scholar

    [18]

    Kohlfürst C, Alkofer R 2018 Phys. Rev. D 97 036026Google Scholar

    [19]

    Kohlfürst C 2019 Phys. Rev. D 99 096017Google Scholar

    [20]

    Cheng T, Su Q C, Grobe R 2010 Contemp. Phys. 51 315Google Scholar

    [21]

    Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R, Su Q C 2011 Phys. Rev. A 83 053402Google Scholar

    [22]

    Su Q C, Su W, Lü Q Z, Jiang M, Lu X, Sheng Z M, Grobe R 2012 Phys. Rev. Lett. 109 253202Google Scholar

    [23]

    Jiang M, Lü Q Z, Sheng Z M, Grobe R, Su Q C 2013 Phys. Rev. A 87 042503Google Scholar

    [24]

    Lü Q Z, Li Y J, Grobe R, Su Q C 2013 Phys. Rev. A 88 033403Google Scholar

    [25]

    林南省, 韩禄雪, 江淼, 李英骏 2018 物理学报 67 133401Google Scholar

    Lin N S, Han L X, Jiang M, Li Y J 2018 Acta Phys. Sin. 67 133401Google Scholar

    [26]

    Lü Q Z, Su Q C, Grobe R 2018 Phys. Rev. Lett. 121 183606Google Scholar

    [27]

    Su Q C, Grobe R 2019 Phys. Rev. Lett. 122 023603Google Scholar

    [28]

    Zhou X X, Li C K, Jiang M, Lin N S, Li Y J 2019 EPL 128 10001Google Scholar

    [29]

    Su D D, Li Y T, Lü Q Z, Zhang J 2020 Phys. Rev. D 101 054501Google Scholar

    [30]

    Gong C, Li Z L, Li Y J, Xie B S 2020 Phys. Rev. A 101 063405Google Scholar

    [31]

    Zhou X X, Li C K, Lin N S, Li Y J 2021 Phys. Rev. A 103 012229Google Scholar

    [32]

    Su D D, Li Y T, Su Q C, Grobe R 2021 Phys. Rev. D 103 074513Google Scholar

    [33]

    Li C K, Su D D, Li Y J, Su Q C, Grobe R 2023 EPL 141 55001Google Scholar

    [34]

    Dumlu C K 2009 Phys. Rev. D 79 065027Google Scholar

    [35]

    Li Z L, Xie B S, Li Y J 2019 Phys. Rev. D 100 076018Google Scholar

    [36]

    Li Z L, Gong C, Li Y J 2021 Phys. Rev. D 103 116018Google Scholar

    [37]

    Yoon J W, Kim Y G, Choi I W, Sung J H, Lee H W, Lee S K, Nam C H 2021 Optica 8 630Google Scholar

    [38]

    ELI BEAMLINES FACILITY, http://www.extreme-light-infrastructure.eu/

    [39]

    Burke D L, Field R C, Smith G H, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W, Bula C, McDonald K T, Prebys E J, Bamber C, Boege S J, Koffas T, Kotseroglou T, Melissinos A C, Meyerhofer D D, Reis D A, Ragg W 1997 Phys. Rev. Lett. 79 1626Google Scholar

    [40]

    Pike O, Mackenroth F, Hill E, Rose S J 2014 Nat. Photon. 8 434Google Scholar

    [41]

    Blackburn T G, Marklund M 2018 Plasma Phys. Contr. F. 60 054009Google Scholar

    [42]

    Yu J Q, Lu H Y, Takahashi T, Hu R H, Gong Z, Ma W J, Huang Y S, Chen C E, Yan X Q 2019 Phys. Rev. Lett. 122 014802Google Scholar

    [43]

    Golub A, Chávez S V, Ruhl H, Müller C 2021 Phys. Rev. D 103 016009Google Scholar

    [44]

    MacLeod A J, Hadjisolomou P, Jeong T M, Bulanov S V 2023 Phys. Rev. A 107 012215Google Scholar

    [45]

    Narozhny N B, Bulanov S S, Mur V D, Popov V S 2004 Phys. Lett. A 330 1

    [46]

    Dunne G V, Gies H, Schüzhold R 2009 Phys. Rev. D 80 111301Google Scholar

    [47]

    Bulanov S S, Mur V D, Narozhny N B, Nees J, Popov V S 2010 Phys. Rev. Lett. 104 220404Google Scholar

    [48]

    Aleksandrov I A, Plunien G, Shabaev V M 2017 Phys. Rev. D 96 076006Google Scholar

    [49]

    Jiang M, Grobe R, Su Q C 2023 Phys. Rev. A 108 022813Google Scholar

  • [1] 赵文呈, 江淼, 徐妙华, 李英骏. 双振荡场空间分离对真空中电子-正电子对产生的影响研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241443
    [2] 牟家连, 吕军光, 孙希磊, 兰小飞, 黄永盛. 环形正负电子对撞机带电粒子鉴别的飞行时间探测器. 物理学报, 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
    [3] 叶全兴, 何广朝, 王倩. 正负电子对撞中类底夸克偶素的线形. 物理学报, 2023, 72(20): 201401. doi: 10.7498/aps.72.20230908
    [4] 罗蕙一, 江淼, 徐妙华, 李英骏. 不同频率的组合振荡场下产生正负电子对. 物理学报, 2023, 72(2): 021201. doi: 10.7498/aps.72.20221660
    [5] 张海粟, 乔玲玲, 程亚. 空气激光:面向大气遥感的高分辨光谱技术. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [6] 张海粟, 乔玲玲, 程亚. 空气激光: 面向大气遥感的高分辨光谱技术. 物理学报, 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
    [7] 汪洋, 刘煜, 吴成印. 固体高次谐波产生、调控及应用. 物理学报, 2022, 71(23): 234205. doi: 10.7498/aps.71.20221319
    [8] 谢柏松, 李烈娟, 麦丽开·麦提斯迪克, 王莉. 频率啁啾对强场下真空正负电子对产生的增强效应. 物理学报, 2022, 71(13): 131201. doi: 10.7498/aps.71.20220148
    [9] 沈百飞, 吉亮亮, 张晓梅, 步志刚, 徐建彩. 强场X射线激光物理. 物理学报, 2021, 70(8): 084101. doi: 10.7498/aps.70.20210096
    [10] 董旭, 黄永盛, 唐光毅, 陈姗红, 司梅雨, 张建勇. 基于微波-电子康普顿背散射的环形正负电子对撞机束流能量测量方案. 物理学报, 2021, 70(13): 131301. doi: 10.7498/aps.70.20202081
    [11] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展. 物理学报, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [12] 江淼, 郑晓冉, 林南省, 李英骏. 正负电子对产生过程中不同外场宽度下的多光子跃迁效应. 物理学报, 2021, 70(23): 231202. doi: 10.7498/aps.70.20202101
    [13] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展. 物理学报, 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [14] 李昂, 余金清, 陈玉清, 颜学庆. 光子对撞机产生正负电子对的数值方法. 物理学报, 2020, 69(1): 019501. doi: 10.7498/aps.69.20190729
    [15] 吴广智, 王强, 周沧涛, 傅立斌. 双势阱产生正负电子对过程中的正电子波干涉与克莱因隧穿现象. 物理学报, 2017, 66(7): 070301. doi: 10.7498/aps.66.070301
    [16] 杜晓晴, 常本康. 负电子亲和势光电阴极量子效率公式的修正. 物理学报, 2009, 58(12): 8643-8650. doi: 10.7498/aps.58.8643
    [17] 李富斌. 对非线性量子场论与激光理论中的微扰谐振梯度算子方法的改进. 物理学报, 1989, 38(6): 879-890. doi: 10.7498/aps.38.879
    [18] 何祚庥, 张肇西. 关于复合粒子量子场论的重整化理论和红外发散消去问题. 物理学报, 1977, 26(6): 540-543. doi: 10.7498/aps.26.540
    [19] 罗辽复, 陆埮. 高能正负电子对的湮没与超窄共振ψ粒子的作用. 物理学报, 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
    [20] 何祚庥, 黄涛. 一种新的可能的复合场的量子场论. 物理学报, 1974, 23(2): 33-72. doi: 10.7498/aps.23.33
计量
  • 文章访问数:  2287
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 修回日期:  2023-12-06
  • 上网日期:  2024-01-03
  • 刊出日期:  2024-02-20

/

返回文章
返回