搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究

方振 余游 赵秋烨 张昱冬 王治强 张祖兴

引用本文:
Citation:

基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究

方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴

Spectral pulsation dynamics of soliton molecules in ultrafast fiber lasers based on pump intensity modulation

Fang Zhen, Yu You, Zhao Qiu-Ye, Zhang Yu-Dong, Wang Zhi-Qiang, Zhang Zu-Xing
PDF
HTML
导出引用
  • 采用实时傅里叶变换光谱探测技术, 研究了基于泵浦强度调制的超快掺铒光纤锁模激光器中孤子分子光谱的脉动动力学. 结果表明, 在一定的泵浦强度调制情况下, 孤子分子光谱的脉动周期可由泵浦调制频率进行调控. 同时, 孤子分子脉动幅度以及孤子间相对相位的演化与泵浦调制频率有关. 在较低的调制频率(如1 kHz)下, 光谱脉动的孤子分子内脉冲间的相对相位随传播时间呈现滑动型动力学. 随着调制频率逐渐加大(如20 kHz), 孤子分子内脉冲间的相对相位演化逐渐趋于混乱, 表明脉动孤子分子可能存在固有的共振频率, 与孤子分子的稳定性有关. 研究结果对于深入理解孤子分子的产生与稳定性提升、孤子分子的全光操作及应用具有重要的指导意义.
    This study employs real-time Fourier transform spectroscopy to investigate the pulsation dynamics of soliton molecules in a mode-locked erbium-doped fiber laser, by modulating pump intensity. By controlling the driving voltage of the pump source, we systematically observe and characterize the influence of external modulation signals on the amplitude, period, pulsation frequency, and the relative phase evolution among the pulsating soliton molecules in their spectra.The results demonstrate that under specific conditions of pump intensity modulation, the pulsation period of soliton molecule spectra can be precisely regulated by the pump modulation frequency. At the same time, the amplitude of soliton molecule pulsations and the evolution of relative phase among the solitons are intricately tied to the pump modulation frequency. At lower modulation frequencies, such as 1 kHz, the relative phase among the pulses in the soliton molecule exhibits a sliding-type dynamics as a function of propagation time.As the modulation frequency gradually increases to 5 kHz, a scenario emerges where three soliton molecules are generated. Notably, both the soliton spacing and relative phase undergo synchronous adjustments influenced by the pump modulation. With the modulation frequency further increasing, say, to 20 kHz, the relative phase evolution among the pulses within the soliton molecule gradually descends into chaos. This observation suggests the plausible existence of an inherent resonant frequency associated with pulsating soliton molecules, which has direct implications for their stability.The findings of this research are of significance in advancing our comprehension of soliton molecule generation and enhancing their stability. In addition, they provide valuable insights into the broader domain of all-optical manipulation and applications of soliton molecules, and their application in pulse encoding in mode-locked laser systems.
      通信作者: 王治强, zhiqiangwang@ahu.edu.cn ; 张祖兴, zxzhang@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62175116, 62375001)和南京邮电大学1311人才计划资助的课题.
      Corresponding author: Wang Zhi-Qiang, zhiqiangwang@ahu.edu.cn ; Zhang Zu-Xing, zxzhang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175116, 62375001) and the 1311 Talent Program Project of Nanjing University of Posts and Telecommunications, China.
    [1]

    Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 043816Google Scholar

    [2]

    Dallaire M, McCarthy N, Piché M 2009 Opt. Express 17 18148Google Scholar

    [3]

    Zhou M, He J, Li C, Liu Y G, Yue Y, He R, Chen S Y, Zhang L H, Zhu L F, Zhu K Y, Chang K, Wang Z 2021 Opt. Express 29 16362Google Scholar

    [4]

    Wang Z Q, Zhan L, Majeed A, Zhou Z X 2015 Opt. Lett. 40 1065Google Scholar

    [5]

    Wang Z Q, Nithyanandan K, Coillet A, Tchofo-Dinda P, Grelu P 2019 Nat. Commun. 10 830Google Scholar

    [6]

    Goda K, Tsia K, Jalali B 2009 Nature 458 1145Google Scholar

    [7]

    Xu Y Q, Wei X M, Ren Z B, Wong K K, Tsia K K 2016 Sci. Rep. 6 27937Google Scholar

    [8]

    Mahjoubfar A, Churkin D V, Barland S, Broderick N, Turitsyn S K, Jalali B 2017 Nat. Photonics 11 341Google Scholar

    [9]

    Liu M, Luo A P, Yan Y R, Hu S, Liu Y C, Cui H, Luo Z C, Xu W C 2016 Opt. Lett. 41 1181Google Scholar

    [10]

    Liu X M, Yao X K, Cui Y D 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [11]

    Herink G, Kurtz F, Jalali B, Solli D R, Ropers C 2017 Science 356 50Google Scholar

    [12]

    Wei Z W, Liu M, Ming S X, Luo A P, Xu W C, Luo Z C 2018 Opt. Lett. 43 5965Google Scholar

    [13]

    Zhou Y, Ren Y X, Shi J W, Wong K K 2022 Commun. Phys. 5 302Google Scholar

    [14]

    Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P, Grelu P 2017 Phys. Rev. Lett. 118 243901Google Scholar

    [15]

    Liu S, Cui Y, Karimi E, Malomed B A 2022 Optica 9 240Google Scholar

    [16]

    Li J, Li H, Wang Z, Du W, Zhang Z, Liu Y 2022 Opt. Laser Technol. 155 108429Google Scholar

    [17]

    Du Y, Zeng C, He Z, Gao Q, Mao D 2022 Chin. Opt. Lett. 20 011401Google Scholar

    [18]

    张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴 2022 物理学报 71 194204Google Scholar

    Zhang W R, Chen S Y, Li R T, Jiang M, Li C, Ma Y X, Zhou P 2022 Acta Phys. Sin. 71 194204Google Scholar

    [19]

    Peng J S, Zeng H 2018 Laser Photon. Rev. 12 1800009Google Scholar

    [20]

    Gui L, Wang P, Ding Y H, Zhao K J, Bao C Y, Xiao X S, Yang C X 2018 Appl. Sci. 8 201Google Scholar

    [21]

    Liu Y S, Huang S Y, Li Z L, Liu H G, Sun Y X, Xia R, Yan L S, Luo Y Y, Liu H H, Sun Q Z, Tang X H, Shum P P 2023 Light Sci. Appl. 12 123Google Scholar

  • 图 1  实验装置图. SESAM, 可饱和吸收镜; SG, 信号发生器; LD, 半导体光源; WDM, 波分复用器; EDF, 掺饵光纤; PC, 偏振控制器; OC, 90∶10耦合器; DCF, 色散补偿光纤; OSA, 光谱分析仪; OSC, 实时示波器

    Fig. 1.  Diagram of experimental setup. SESAM, saturable absorber; SG, signal generator; LD, semiconductor light source, WDM, wavelength division multiplexer; EDF, erbium-doped fiber; PC, polarization controller; OC, 90∶10 coupler; DCF, dispersion compensation fiber; OSA, optical spectrum analyzer; OSC, oscilloscope.

    图 2  (a) 输入泵浦脉冲波形(实线)和载波信号波形(虚线); (b) 调制电平和泵浦功率关系图

    Fig. 2.  (a) Input pump pulse waveform (solid line) and carrier signal waveform (dashed line); (b) modulation level and pump power relationship diagram.

    图 3  当泵浦调制频率为1 kHz时, 孤子分子演化实验结果 (a) DFT光谱随运行圈数的演化; (b) 对应的一阶自相关演化; (c) 脉冲能量演化; (d) 光谱中心波长的脉动演化; (e) 第15970圈的DFT光谱和第22220圈的单次DFT光谱

    Fig. 3.  Output characteristics of bound solitons at 1 kHz pump modulation frequency: (a) Evolution of DFT spectra with the number of cycles in operation; (b) corresponding first-order autocorrelation evolution; (c) pulse energy evolution; (d) pulsation evolution of spectral center wavelength; (e) DFT spectrum of lap 15970 and the single DFT spectrum of lap 22220.

    图 4  5 kHz泵浦调制频率时孤子分子输出特性 (a) DFT光谱随运行圈数的演化; (b) 对应的一阶自相关演化; (c) 脉冲能量演化; (d) 光谱中心波长的脉动演化; (e) 相对相位演化图; (f) 脉冲间距; (g) 10290圈单次光谱和10910圈单次光谱

    Fig. 4.  Output characteristics of bound solitons at 5 kHz pump modulation frequency: (a) Evolution of DFT spectra with the number of cycles in operation; (b) corresponding first-order autocorrelation evolution; (c) pulse energy evolution; (d) pulsation evolution of spectral center wavelength; (e) relative phase evolution diagram; (f) pulse spacing; (g) 10290 cycles and 10910 cycles of single spectrum.

    图 5  20 kHz泵浦调制频率时孤子分子输出特性 (a) DFT光谱随运行圈数的演化; (b) 对应的一阶自相关演化; (c) 脉冲能量演化; (d) 光谱中心波长的脉动演化; (e) 相对相位演化; (f) 脉冲间距; (g) 2850圈单次光谱和3076圈单次光谱

    Fig. 5.  Output characteristics of bound solitons at 20 kHz pump modulation frequency: (a) Evolution of DFT spectra with the number of running cycles; (b) corresponding first-order autocorrelation evolution; (c) pulse energy evolution; (d) pulsation evolution of spectral center wavelength; (e) relative phase evolution diagram; (f) pulse spacing; (g) 2850 cycles and 3076 cycles of single spectrum.

  • [1]

    Tang D Y, Zhao L M, Zhao B, Liu A Q 2005 Phys. Rev. A 72 043816Google Scholar

    [2]

    Dallaire M, McCarthy N, Piché M 2009 Opt. Express 17 18148Google Scholar

    [3]

    Zhou M, He J, Li C, Liu Y G, Yue Y, He R, Chen S Y, Zhang L H, Zhu L F, Zhu K Y, Chang K, Wang Z 2021 Opt. Express 29 16362Google Scholar

    [4]

    Wang Z Q, Zhan L, Majeed A, Zhou Z X 2015 Opt. Lett. 40 1065Google Scholar

    [5]

    Wang Z Q, Nithyanandan K, Coillet A, Tchofo-Dinda P, Grelu P 2019 Nat. Commun. 10 830Google Scholar

    [6]

    Goda K, Tsia K, Jalali B 2009 Nature 458 1145Google Scholar

    [7]

    Xu Y Q, Wei X M, Ren Z B, Wong K K, Tsia K K 2016 Sci. Rep. 6 27937Google Scholar

    [8]

    Mahjoubfar A, Churkin D V, Barland S, Broderick N, Turitsyn S K, Jalali B 2017 Nat. Photonics 11 341Google Scholar

    [9]

    Liu M, Luo A P, Yan Y R, Hu S, Liu Y C, Cui H, Luo Z C, Xu W C 2016 Opt. Lett. 41 1181Google Scholar

    [10]

    Liu X M, Yao X K, Cui Y D 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [11]

    Herink G, Kurtz F, Jalali B, Solli D R, Ropers C 2017 Science 356 50Google Scholar

    [12]

    Wei Z W, Liu M, Ming S X, Luo A P, Xu W C, Luo Z C 2018 Opt. Lett. 43 5965Google Scholar

    [13]

    Zhou Y, Ren Y X, Shi J W, Wong K K 2022 Commun. Phys. 5 302Google Scholar

    [14]

    Krupa K, Nithyanandan K, Andral U, Tchofo-Dinda P, Grelu P 2017 Phys. Rev. Lett. 118 243901Google Scholar

    [15]

    Liu S, Cui Y, Karimi E, Malomed B A 2022 Optica 9 240Google Scholar

    [16]

    Li J, Li H, Wang Z, Du W, Zhang Z, Liu Y 2022 Opt. Laser Technol. 155 108429Google Scholar

    [17]

    Du Y, Zeng C, He Z, Gao Q, Mao D 2022 Chin. Opt. Lett. 20 011401Google Scholar

    [18]

    张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴 2022 物理学报 71 194204Google Scholar

    Zhang W R, Chen S Y, Li R T, Jiang M, Li C, Ma Y X, Zhou P 2022 Acta Phys. Sin. 71 194204Google Scholar

    [19]

    Peng J S, Zeng H 2018 Laser Photon. Rev. 12 1800009Google Scholar

    [20]

    Gui L, Wang P, Ding Y H, Zhao K J, Bao C Y, Xiao X S, Yang C X 2018 Appl. Sci. 8 201Google Scholar

    [21]

    Liu Y S, Huang S Y, Li Z L, Liu H G, Sun Y X, Xia R, Yan L S, Luo Y Y, Liu H H, Sun Q Z, Tang X H, Shum P P 2023 Light Sci. Appl. 12 123Google Scholar

  • [1] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计. 物理学报, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器. 物理学报, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [3] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, 69(8): 084202. doi: 10.7498/aps.69.20191989
    [4] 王振, 杜艳君, 丁艳军, 彭志敏. 基于傅里叶变换的波长扫描腔衰荡光谱. 物理学报, 2019, 68(20): 204204. doi: 10.7498/aps.68.20191062
    [5] 王洪亮, 吕金光, 梁静秋, 梁中翥, 秦余欣, 王维彪. 中波红外微型静态傅里叶变换光谱仪的设计与分析. 物理学报, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [6] 于慧, 张瑞, 李克武, 薛锐, 王志斌. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真. 物理学报, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [7] 田园, 孙友文, 谢品华, 刘诚, 刘文清, 刘建国, 李昂, 胡仁志, 王薇, 曾议. 地基高分辨率傅里叶变换红外光谱反演环境大气中的CH4浓度变化. 物理学报, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [8] 陈成, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪. 准直系统热光学效应对静态傅里叶变换红外光谱仪光谱复原的影响研究. 物理学报, 2015, 64(13): 130703. doi: 10.7498/aps.64.130703
    [9] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [10] 李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国. 基于傅里叶变换红外光谱法CO2气体碳同位素比检测研究. 物理学报, 2013, 62(3): 030202. doi: 10.7498/aps.62.030202
    [11] 李杰, 朱京平, 齐春, 郑传林, 高博, 张云尧, 侯洵. 静态傅里叶变换超光谱全偏振成像技术. 物理学报, 2013, 62(4): 044206. doi: 10.7498/aps.62.044206
    [12] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, 2013, 62(10): 104210. doi: 10.7498/aps.62.104210
    [13] 吕金光, 梁静秋, 梁中翥. 窄带傅里叶变换光谱仪中平稳高斯噪声的理论分析. 物理学报, 2012, 61(7): 070704. doi: 10.7498/aps.61.070704
    [14] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [15] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [16] 相里斌, 袁艳, 吕群波. 傅里叶变换光谱成像仪光谱传递函数研究. 物理学报, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [17] 胡水明, 何圣贵, 林 海, 程继新, 王湘淮, 郑晶晶, 成国胜, 朱清时. 高分辨傅里叶变换激光腔内吸收光谱方法:原理和应用. 物理学报, 2000, 49(8): 1435-1440. doi: 10.7498/aps.49.1435
    [18] 赵阳, 杨淑雯. Er3+掺杂光纤孤子放大器(Ⅱ)——最佳泵浦. 物理学报, 1994, 43(8): 1281-1288. doi: 10.7498/aps.43.1281
    [19] 半导体中浅杂质的傅里叶变换光热电离光谱. 物理学报, 1989, 38(11): 1869-1873. doi: 10.7498/aps.38.1869
    [20] 王祖赓, 李敏. 光学泵浦的锂分子激光. 物理学报, 1988, 37(10): 1640-1645. doi: 10.7498/aps.37.1640
计量
  • 文章访问数:  1021
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-23
  • 修回日期:  2023-09-22
  • 上网日期:  2023-10-08
  • 刊出日期:  2024-01-05

/

返回文章
返回