搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海粗糙海底声散射建模及声场特性

汪磊 黄益旺 郭霖 任超

引用本文:
Citation:

浅海粗糙海底声散射建模及声场特性

汪磊, 黄益旺, 郭霖, 任超

Acoustic scattering modeling and sound field characteristics of rough seafloor in shallow sea

Wang Lei, Huang Yi-Wang, Guo Lin, Ren Chao
PDF
HTML
导出引用
  • 声散射是海洋声学的重要内容, 海底表面的不平整性形成的声散射是海洋中引起声传播起伏的原因之一. 针对海底表面粗糙度声散射问题, 建立了水平分层浅海波导中海底散射声场模型. 该模型将简正波理论与Lambert定律相结合. 基于该模型获得了散射声场声压的振幅与相位的统计分布, 并数值模拟了海底散射声场的强度及其空间相关系数, 实现了粗糙界面条件下海底散射声场预报, 揭示了散射声场空间特性随海底粗糙度的变化规律. 结果表明, 使用Lambert定律描述粗糙界面声散射时, 在海底粗糙度小于波长情况下, 随着空间距离的增大, 空间两个不同位置的散射声场的空间相关系数具有周期性振荡衰减的变化规律, 并且在垂直方向上, 振荡周期更大, 衰减更慢. 当粗糙度增大时, 水平和垂直相关系数振荡幅度逐渐增大, 水平相关系数振荡周期数逐渐减少, 在接收点逐渐靠近海底时, 垂直相关系数不再发生衰减, 这是海底声散射减弱的结果. 本文模型理论亦可推广到粗糙海面的声散射建模中. 对于非水平海底情况, 采用耦合简正波或绝热简正波理论进行声传播建模, 可以得到距离有关波导中粗糙界面的散射声场.
    Acoustic scattering is an important part of ocean acoustics, and the acoustic scattering caused by the unevenness of the seafloor surface is one of the reasons for the fluctuation of acoustic propagation in the ocean. In order to solve the acoustic scattering problem of sea bottom surface roughness, normal wave theory is used to model the acoustic field. To simplify the problem, Lambert’s law is used to establish the seafloor rough scattering model in horizontal layered shallow sea waveguides, and the scattering field is assumed to be isotropic in the horizontal direction. Based on this model, the amplitude distribution and the phase distribution of the scattered sound pressure are obtained, and the intensity of the scattered sound field and its spatial correlation coefficient are simulated numerically. The prediction of the scattered sound field under rough interface conditions is realized, and the variation of the spatial characteristics of the scattered sound field with the roughness of the seafloor is revealed. The results show that when Lambert’s law is used to describe the rough interface acoustic scattering and when the seafloor roughness is smaller than the wavelength, the spatial correlation coefficient of the scattered sound field at two different positions in space has a change rule of periodic oscillation attenuation with the increase of spatial distance, and in the vertical direction, the oscillation period is larger and the attenuation is slower. When the roughness increases, the oscillation amplitude of the horizontal and the vertical correlation coefficient gradually increase, the oscillation period of the horizontal correlation coefficient gradually decreases, and the vertical correlation coefficient no longer attenuates in the direction near the seafloor, which is the result of the weakening of the seafloor acoustic scattering. The model theory in this paper can also be extended to the acoustic scattering modeling of rough sea surface. For the case of non-horizontal seabed, the scattered sound field of the rough interface in the waveguide can be obtained by using coupled normal wave or adiabatic normal wave theory.
      通信作者: 黄益旺, huangyiwang@hrbeu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074088)资助的课题.
      Corresponding author: Huang Yi-Wang, huangyiwang@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074088).
    [1]

    刘伯胜, 黄益旺, 陈文剑, 雷家煜 2019 水声学原理 (第三版) (北京: 科学出版社) 第341页

    Liu B S, Huang Y W, Chen W J, Lei J Y 2019 Principles of Underwater Acoustics (3rd Ed.) (Beijing: Science Press) p341

    [2]

    Urick R J 1954 J. Acoust. Soc. Am. 26 231Google Scholar

    [3]

    Urick R J, Saling D S 1962 J. Acoust. Soc. Am. 34 1721Google Scholar

    [4]

    Barry W, Jackson D, Schultz J 1978 Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing Tulsa, USA, April 10–12, 1978 p152

    [5]

    Jackson D R, Baird A M, Crisp J J 1986 J. Acoust. Soc. Am. 80 1188Google Scholar

    [6]

    Greaves R J, Stephen R A 1997 J. Acoust. Soc. Am. 101 193Google Scholar

    [7]

    Tang D, Jin G, Jackson D R 1994 J. Acoust. Soc. Am. 96 2930Google Scholar

    [8]

    Tang D, Frisk G V, Sellers C J 1995 J. Acoust. Soc. Am. 98 508Google Scholar

    [9]

    Thorsos E I, Williams K L 2001 IEEE J. Oceanic. Eng. 26 4Google Scholar

    [10]

    Thorsos E I, Williams K L, Tang D 2006 J. Acoust. Soc. Am. 120 3096Google Scholar

    [11]

    Williams K L, Jackson D R, Tang D 2000 J. Acoust. Soc. Am. 108 2511Google Scholar

    [12]

    Holland C W, Hollett R, Troiano L 2000 J. Acoust. Soc. Am. 108 997Google Scholar

    [13]

    Williams K L, Jackson D R, Tang D 2009 IEEE. J. Oceanic. Eng. 34 388Google Scholar

    [14]

    Pecknold S, Binder C M, Badiey M 2019 J. Acoust. Soc. Am. 146 2796Google Scholar

    [15]

    Yu S, Liu B, Yu K 2021 Proceedings of IEEE/OES China Ocean Acoustics (COA) Harbin, China, July 14–17, 2021 p86

    [16]

    Hines P C, Osler J C, MacDougald D J 2005 J. Acoust. Soc. Am. 117 3504Google Scholar

    [17]

    La H, Choi J W 2010 J. Acoust. Soc. Am. 127 160Google Scholar

    [18]

    Hefner B T, Hodgkiss W S 2018 J. Acoust. Soc. Am. 144 1948Google Scholar

    [19]

    布列霍夫斯基Л М 著 (山东省 海洋学院海洋物理系, 中国科学院声学研究所水声研究室 译) 1983 海洋声学 (北京: 科学出版社) 第365—367页

    Бреховских Л М (translated by Department of Oceanophysics Shandong College of Oceanology, Laboratory of Underwater Acoustic Institute of Acoustics Chinese Academy of Science) 1983 Fundamentals of Ocean acoustics (Beijing: Science Press) pp365–367

    [20]

    Schmidt P B 1971 J. Acoust. Soc. Am. 50 326Google Scholar

    [21]

    Ellis D D, Crowe D V 1991 J. Acoust. Soc. Am. 89 2207Google Scholar

    [22]

    Caruthers J W, Novarini J C 1993 IEEE. J. Oceanic. Eng. 18 100Google Scholar

    [23]

    侯倩男, 吴金荣 2019 物理学报 68 044301Google Scholar

    Hou Q N, Wu J R 2019 Acta Phys. Sin. 68 044301Google Scholar

    [24]

    Jackson D R, Winebrenner D P, Ishimaru A 1986 J. Acoust. Soc. Am. 79 1410Google Scholar

    [25]

    Kuo E Y T 1964 J. Acoust. Soc. Am. 36 2135Google Scholar

    [26]

    Kuperman W A, Schmidt H 1986 J. Acoust. Soc. Am. 79 1967Google Scholar

    [27]

    Kuo E Y T 1992 IEEE J. Oceanic. Eng. 17 159Google Scholar

    [28]

    Essen H H 1994 J. Acoust. Soc. Am. 95 1299Google Scholar

    [29]

    Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar

    [30]

    Gragg R F, Wurmser D, Gauss R C 2001 J. Acoust. Soc. Am. 110 2878Google Scholar

    [31]

    Soukup R J, Canepa G, Simpson H J 2007 J. Acoust. Soc. Am. 122 2551Google Scholar

    [32]

    Jackson D 2013 Proceedings of Meetings on Acoustics Montreal, Canada, June 2−7, 2013 p070001

    [33]

    Jackson D, Olson D R 2020 J. Acoust. Soc. Am. 147 56Google Scholar

    [34]

    汪德昭, 尚尔昌2013 水声学 (第二版) (北京: 科学出版社) 第297页

    Wang D Z, Shang E C 2013 Hydroacoustics (2nd Ed.) (Beijing: Science Press) p297

    [35]

    Grigor’ev V A, Kuz’kin V M, Petnikov B G 2004 Acoust. Phys. 50 37Google Scholar

    [36]

    Grigor’ev V A, Katsnel’son B G, Kuz’kin V M 2001 Acoust. Phys. 47 35Google Scholar

    [37]

    McKinney C M, Anderson C D 1964 J. Acoust. Soc. Am. 36 158Google Scholar

    [38]

    任超, 黄益旺, 夏峙 2022 物理学报 71 024301Google Scholar

    Ren C, Huang Y W, Xia Z 2022 Acta Phys. Sin. 71 024301Google Scholar

  • 图 1  海底界面分解示意图

    Fig. 1.  Schematic diagram of submarine interface decomposition.

    图 2  海底散射角度关系图

    Fig. 2.  Angle relation diagram of seafloor scattering.

    图 3  海洋环境示意图

    Fig. 3.  Schematic diagram of marine environment.

    图 4  散射声场声压振幅与相位统计分布图 (a) 振幅; (b) 相位

    Fig. 4.  Statistical distribution of the sound pressure amplitude and phase of scattered sound field: (a) Amplitude; (b) phase.

    图 5  散射声场强度对比 (a) Monte Carlo方法; (b) 统计处理方法

    Fig. 5.  Comparison of scattered sound field intensity: (a) Monte Carlo method; (b) statistical averaging methods.

    图 6  不同海底粗糙度下散射声场空间相关系数 (a) 水平方向; (b) 垂直方向

    Fig. 6.  Spatial correlation coefficient of scattered sound field under different seafloor roughness: (a) Horizontal direction; (b) vertical direction.

  • [1]

    刘伯胜, 黄益旺, 陈文剑, 雷家煜 2019 水声学原理 (第三版) (北京: 科学出版社) 第341页

    Liu B S, Huang Y W, Chen W J, Lei J Y 2019 Principles of Underwater Acoustics (3rd Ed.) (Beijing: Science Press) p341

    [2]

    Urick R J 1954 J. Acoust. Soc. Am. 26 231Google Scholar

    [3]

    Urick R J, Saling D S 1962 J. Acoust. Soc. Am. 34 1721Google Scholar

    [4]

    Barry W, Jackson D, Schultz J 1978 Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing Tulsa, USA, April 10–12, 1978 p152

    [5]

    Jackson D R, Baird A M, Crisp J J 1986 J. Acoust. Soc. Am. 80 1188Google Scholar

    [6]

    Greaves R J, Stephen R A 1997 J. Acoust. Soc. Am. 101 193Google Scholar

    [7]

    Tang D, Jin G, Jackson D R 1994 J. Acoust. Soc. Am. 96 2930Google Scholar

    [8]

    Tang D, Frisk G V, Sellers C J 1995 J. Acoust. Soc. Am. 98 508Google Scholar

    [9]

    Thorsos E I, Williams K L 2001 IEEE J. Oceanic. Eng. 26 4Google Scholar

    [10]

    Thorsos E I, Williams K L, Tang D 2006 J. Acoust. Soc. Am. 120 3096Google Scholar

    [11]

    Williams K L, Jackson D R, Tang D 2000 J. Acoust. Soc. Am. 108 2511Google Scholar

    [12]

    Holland C W, Hollett R, Troiano L 2000 J. Acoust. Soc. Am. 108 997Google Scholar

    [13]

    Williams K L, Jackson D R, Tang D 2009 IEEE. J. Oceanic. Eng. 34 388Google Scholar

    [14]

    Pecknold S, Binder C M, Badiey M 2019 J. Acoust. Soc. Am. 146 2796Google Scholar

    [15]

    Yu S, Liu B, Yu K 2021 Proceedings of IEEE/OES China Ocean Acoustics (COA) Harbin, China, July 14–17, 2021 p86

    [16]

    Hines P C, Osler J C, MacDougald D J 2005 J. Acoust. Soc. Am. 117 3504Google Scholar

    [17]

    La H, Choi J W 2010 J. Acoust. Soc. Am. 127 160Google Scholar

    [18]

    Hefner B T, Hodgkiss W S 2018 J. Acoust. Soc. Am. 144 1948Google Scholar

    [19]

    布列霍夫斯基Л М 著 (山东省 海洋学院海洋物理系, 中国科学院声学研究所水声研究室 译) 1983 海洋声学 (北京: 科学出版社) 第365—367页

    Бреховских Л М (translated by Department of Oceanophysics Shandong College of Oceanology, Laboratory of Underwater Acoustic Institute of Acoustics Chinese Academy of Science) 1983 Fundamentals of Ocean acoustics (Beijing: Science Press) pp365–367

    [20]

    Schmidt P B 1971 J. Acoust. Soc. Am. 50 326Google Scholar

    [21]

    Ellis D D, Crowe D V 1991 J. Acoust. Soc. Am. 89 2207Google Scholar

    [22]

    Caruthers J W, Novarini J C 1993 IEEE. J. Oceanic. Eng. 18 100Google Scholar

    [23]

    侯倩男, 吴金荣 2019 物理学报 68 044301Google Scholar

    Hou Q N, Wu J R 2019 Acta Phys. Sin. 68 044301Google Scholar

    [24]

    Jackson D R, Winebrenner D P, Ishimaru A 1986 J. Acoust. Soc. Am. 79 1410Google Scholar

    [25]

    Kuo E Y T 1964 J. Acoust. Soc. Am. 36 2135Google Scholar

    [26]

    Kuperman W A, Schmidt H 1986 J. Acoust. Soc. Am. 79 1967Google Scholar

    [27]

    Kuo E Y T 1992 IEEE J. Oceanic. Eng. 17 159Google Scholar

    [28]

    Essen H H 1994 J. Acoust. Soc. Am. 95 1299Google Scholar

    [29]

    Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar

    [30]

    Gragg R F, Wurmser D, Gauss R C 2001 J. Acoust. Soc. Am. 110 2878Google Scholar

    [31]

    Soukup R J, Canepa G, Simpson H J 2007 J. Acoust. Soc. Am. 122 2551Google Scholar

    [32]

    Jackson D 2013 Proceedings of Meetings on Acoustics Montreal, Canada, June 2−7, 2013 p070001

    [33]

    Jackson D, Olson D R 2020 J. Acoust. Soc. Am. 147 56Google Scholar

    [34]

    汪德昭, 尚尔昌2013 水声学 (第二版) (北京: 科学出版社) 第297页

    Wang D Z, Shang E C 2013 Hydroacoustics (2nd Ed.) (Beijing: Science Press) p297

    [35]

    Grigor’ev V A, Kuz’kin V M, Petnikov B G 2004 Acoust. Phys. 50 37Google Scholar

    [36]

    Grigor’ev V A, Katsnel’son B G, Kuz’kin V M 2001 Acoust. Phys. 47 35Google Scholar

    [37]

    McKinney C M, Anderson C D 1964 J. Acoust. Soc. Am. 36 158Google Scholar

    [38]

    任超, 黄益旺, 夏峙 2022 物理学报 71 024301Google Scholar

    Ren C, Huang Y W, Xia Z 2022 Acta Phys. Sin. 71 024301Google Scholar

  • [1] 曾嘉乐, 练昌旺, 季雨, 闫锐. 间接驱动相关条件下的大空间尺度对流受激拉曼侧向散射. 物理学报, 2024, 73(10): 105202. doi: 10.7498/aps.73.20240045
    [2] 邓玉鑫, 刘雄厚, 杨益新. 浅海环境中用于目标深度属性判别的线谱起伏特征量分析. 物理学报, 2024, 73(13): 134301. doi: 10.7498/aps.73.20231911
    [3] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演. 物理学报, 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [4] 李晓彬, 孙超, 刘雄厚. 浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别. 物理学报, 2022, 71(13): 134302. doi: 10.7498/aps.71.20211987
    [5] 王益民, 马瑞轩, 武从海, 罗勇, 张树海. 旋涡声散射的空间尺度特性数值研究. 物理学报, 2021, 70(19): 194302. doi: 10.7498/aps.70.20202232
    [6] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析. 物理学报, 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [7] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [8] 蒋光禹, 孙超, 谢磊, 刘雄厚. 表面声道对深海风成噪声垂直空间特性的影响规律. 物理学报, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [9] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [10] 戚聿波, 周士弘, 张仁和. 浅海波导中折射类简正波的warping变换. 物理学报, 2016, 65(13): 134301. doi: 10.7498/aps.65.134301
    [11] 秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于. 三维绝热简正波-抛物方程理论及应用. 物理学报, 2016, 65(3): 034301. doi: 10.7498/aps.65.034301
    [12] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [13] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [14] 周天, 李海森, 朱建军, 魏玉阔. 利用多角度海底反向散射信号进行地声参数估计. 物理学报, 2014, 63(8): 084302. doi: 10.7498/aps.63.084302
    [15] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [16] 杨春梅, 骆文于, 张仁和, 秦继兴. 一种水平变化可穿透波导中声传播问题的耦合简正波方法. 物理学报, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [17] 余 赟, 惠俊英, 赵安邦, 孙国仓, 滕 超. Pekeris波导中简正波的复声强及其应用. 物理学报, 2008, 57(9): 5742-5748. doi: 10.7498/aps.57.5742
    [18] 张仁和, 朱柏贤. 指向性辐射器的简正波声场. 物理学报, 1983, 32(4): 490-496. doi: 10.7498/aps.32.490
    [19] 唐应吾. 具有随机起伏表面的正声速梯度浅海中的简正波声场. 物理学报, 1976, 25(6): 481-486. doi: 10.7498/aps.25.481
    [20] 张仁和. 浅海表面声道中的简正波声场. 物理学报, 1975, 24(3): 200-209. doi: 10.7498/aps.24.200
计量
  • 文章访问数:  3269
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-12
  • 修回日期:  2023-11-06
  • 上网日期:  2023-11-09
  • 刊出日期:  2024-02-05

/

返回文章
返回