-
狭缝式成像光谱仪是太阳极紫外光谱成像探测的重要工具之一, 然而目前国内尚无该类载荷, 导致太阳物理学和空间天气学等学科在极紫外光谱诊断研究方面主要依赖国外仪器数据, 严重制约了相关学科的发展. 国外已发射的成像光谱仪仅具有2''量级的空间分辨率, 很难观测到日冕加热模型预测的等离子体核心特征. 为了更好地理解太阳不同层次大气之间的耦合过程, 需要更宽光谱覆盖的太阳观测数据. 鉴于此, 本文提出并设计了一款亚角秒空间分辨的太阳极紫外宽波段成像光谱仪, 相比现有仪器, 系统能够实现更高空间和光谱分辨率、更宽光谱范围覆盖的观测. 性能评价结果表明, 系统在62—80 nm, 92—110 nm波段内的像元空间分辨率均优于0.4'', 光谱分辨率均优于0.007 nm, 光谱成像质量接近衍射极限, 对我国未来首台空间太阳极紫外成像光谱仪的研制具有重要参考价值.The slit imaging spectrometer is one of the important tools for solar extreme ultraviolet (EUV) spectral imaging detection. However, at present, there is no such instrument load in China. The research of solar physics and space weather in the field of EUV spectral diagnosis mainly depends on foreign instrument data, which seriously restricts the development of related disciplines. The spectral imaging instruments that have been launched internationally have only a spatial resolution of
$2''$ , and it is difficult to observe the core characteristics of the plasma related to the coronal heating mechanism predicted by the theoretical model. In order to better understand the coupling process between different layers of the sun’s atmosphere, solar physics research requires the observed data with wider spectral coverage. In light of this, we propose and design a sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer operating in a band range of 62–80 nm and 92–110 nm. Compared with the existing instruments, the system can achieve high spatial resolution and spectral resolution, and wide spectral range coverage. Performance evaluation results indicate that the imaging spectrometer’s spatial resolutions in both bands are better than 0.4'', and their spectral resolutions are both better than 0.007 nm, with spectral imaging quality approaching the diffraction limit. The system designed in this work holds significant reference value for developing the first Chinese space-based solar EUV spectroscopic instrument in the future.-
Keywords:
- solar extreme ultraviolet /
- optical design /
- imaging spectrometer /
- toroidal varied line-space grating
[1] 杨孟飞, 代树武, 王颖, 朱成林, 杨尚斌, 张也驰 2022 中国空间科学技术 42 1Google Scholar
Yang M F, Dai S W, Wang Y, Zhu C L, Yang S B, Zhang Y C 2022 Chin. Space Sci. Technol. 42 1Google Scholar
[2] 颜毅华, 邓元勇, 甘为群, 丁明德, 田晖, 朱小帅 2023 空间科学学报 43 199Google Scholar
Yan Y H, Deng Y Y, Gan W Q, Ding M D, Tian H, Zhu X S 2023 Chin. J. Space Sci. 43 199Google Scholar
[3] 陈鹏飞 2021 中国科学: 物理学 力学 天文学 51 119632Google Scholar
Chen P F 2021 Sci. Sin. -Phys. Mech. Astron. 51 119632Google Scholar
[4] 白先勇, 田晖, 邓元勇, 陈亚杰, 侯振永, 杨子浩, 张志勇, 段帷, 李文显, 郭思璠 2023 空间科学学报 43 406Google Scholar
Bai X Y, Tian H, Deng Y Y, Chen Y J, Hou Z Y, Yang Z H, Zhang Z Y, Duan W, Li W X, Guo S F 2023 Chin. J. Space Sci. 43 406Google Scholar
[5] Domingo V, Fleck B, Poland A I 1995 Sol. Phys. 162 1Google Scholar
[6] Wilhelm K, Axford W I, Curdt W, Gabriel A H, Grewing M, Huber M C E, Jordan S D, Kuehne M, Lemaire P, Marsch E 1995 Sol. Phys. 162 189Google Scholar
[7] Harrison R A, Sawyer E C, Carter M K, et al. 1995 Sol. Phys. 162 233Google Scholar
[8] Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Sol. Phys. 243 3Google Scholar
[9] Culhane J L, Harra L K, James A M, et al. 2007 Sol. Phys. 243 19Google Scholar
[10] Brosius J W, Daw A N, Rabin D M 2014 Astrophys. J. 790 1Google Scholar
[11] Müller D, St Cyr O C, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar
[12] Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar
[13] Marirrodriga C G, Pacros A, Strandmoe S, et al. 2021 Astron. Astrophys. 646 A121Google Scholar
[14] Li C, Fang C, Li Z, et al. 2022 Sci. China-Phys. Mech. Astron. 65 289602Google Scholar
[15] Gan W Q, Zhu C, Deng Y Y, et al. 2019 Res. Astron. Astrophys. 19 156Google Scholar
[16] Zhang P, Hu X Q, Lu Q F, Zhu A J, Lin M Y, Sun L, Chen L, Xu N 2022 Adv. Atmos. Sci. 39 1Google Scholar
[17] Chen B, Zhang X X, He L P, et al. 2022 Light-Sci. Appl. 11 329Google Scholar
[18] Bai X Y, Tian H, Deng Y Y, et al. 2023 Res. Astron. Astrophys. 23 065014Google Scholar
[19] Tian H 2017 Res. Astron. Astrophys. 17 3Google Scholar
[20] Poletto L, Thomas R J 2004 Appl. Opt. 43 2029Google Scholar
[21] Poletto L, Gasparotto A, Tondello G, Thomas R J 2004 UV and Gamma-Ray Space Telescope Systems Glasgow, United Kingdom, June 21–25, 2004 p898
[22] Larruquert J I, Keski-Kuha R A M 2000 Appl. Opt. 39 1537Google Scholar
[23] 王丽辉, 何玲平, 王孝坤, 尼启良, 陈波 2008 光学精密工程 16 42Google Scholar
Wang L H, He L P, Wang X K, Ni Q L, Chen B 2008 Opt. Precis. Eng. 16 42Google Scholar
[24] 汪毓明, 季海生, 王亚敏, 等 2020 中国科学: 技术科学 50 1243Google Scholar
Wang Y M, Ji H S, Wang Y M, et al. 2020 Sci. Sin. Technol. 50 1243Google Scholar
[25] 林隽, 黄善杰, 李燕, 等 2021 空间科学学报 41 183Google Scholar
Liu J, Huang S J, Li Y, et al. 2021 Chin. J. Space Sci. 41 183Google Scholar
[26] 季海生, 汪毓明, 汪景琇 2019 中国科学: 物理学 力学 天文学 49 059605Google Scholar
Ji H S, Wang Y M, Wang J X 2019 Sci. Sin. Phys. Mech. Astron. 49 059605Google Scholar
[27] 杨孟飞, 汪景琇, 王赤, 等 2023 科学通报 68 859Google Scholar
Yang M F, Wang J X, Wang C, et al. 2023 Chin. Sci. Bull. 68 859Google Scholar
[28] 邓元勇, 周桂萍, 代树武, 等 2023 科学通报 68 298Google Scholar
Deng Y Y, Zhou G P, Dai S W, et al. 2023 Chin. Sci. Bull. 68 298Google Scholar
-
图 9 系统像元空间分辨率评价 (a) 垂直狭缝方向的像元空间分辨率; (b) 62—80 nm波段平行狭缝方向的像元空间分辨率; (c) 92—110 nm波段平行狭缝方向的像元空间分辨率
Fig. 9. System spatial plate scale evaluation: (a) Spatial plate scale perpendicular to the slit; (b) spatial plate scale parallel to the slit in 62–80 nm wavelengths; (c) spatial plate scale parallel to the slit in 92–110 nm wavelengths.
图 11 反射膜层、滤光片、TVLS光栅效率和探测器量子效率随波长的变化曲线 (a) 热压B4C单层膜的反射率曲线; (b) 厚度为150 nm铝滤光片的透过率曲线; (c) 光栅效率; (d) 探测器量子效率
Fig. 11. Curves of reflective film, filter, TVLS grating efficiency and detector quantum efficiency change with wavelength: (a) Reflectance curve of hot-pressed B4C single-layer film; (b) transmission curve of Al filter with thickness of 150 nm; (c) grating efficiency; (d) detector quantum efficiency.
图 13 光谱(Smile)畸变和空间(Keystone)畸变 (a) 不同波长的Smile畸变; (b) 62—80 nm波段不同视场的Keystone畸变; (c) 92—110 nm波段不同视场的Keystone畸变
Fig. 13. Spectral (Smile) distortion and spatial (Keystone) distortion: (a) Smile distortion of different wavelengths; (b) Keystone distortion of different field of view in 62–80 nm wavelengths; (c) Keystone distortion of different field of view in 92–110 nm wavelengths.
表 1 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪技术指标
Table 1. Specifications of the sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.
Performance parameters Design values Satellite orbit Dawn-dusk solar
synchronous orbitEntrance aperture/mm2 156 × 156 Slit FOV/('' ) 4.8 Wavelength range/nm 62—80 & 92—110 & 46—55 (2nd order) Spectral resolution/nm ≤ 0.007 Spatial plate scale/(('' )·pixel–1) ≤ 0.5 Spatial resolution/('' ) ≤ 1.0 System focal length/mm 11000 Optical volume/mm3 ≤ 2800 × 500 × 450 Pixel size of detector/μm 15 (1536 × 1536) 表 2 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪技术指标和元件参数
Table 2. Specifications and optical element parameters of sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.
Specification Wavelength range@SW/nm 62—80 Wavelength range@LW/nm 92—110 & 46—55
(2nd order)Spectral resolution@SW/nm 0.00615 Spectral resolution@LW/nm 0.00642 Spatial plate scale
@SW/(('' )·pixel–1)0.340(@71 nm) Spatial plate scale
@LW/(('' )·pixel–1)0.382(@101 nm) System focal length/mm 11000 Optical volume/mm3 2600 × 420 × 400 Detector/μm 15 (1536 × 1536) Telescope design Aperture/mm2 156 × 156 RT/mm 4320.025 Conic –1 $\varDelta $/mm 120 Slit design Slits width/('' ) 0.28, 1, 2, 40 Slits length/('' ) 288 Raster coverage/('' ) ±144 TVLS grating design m +1 order 1/d0/mm–1 1500 β 5.177×@SW;
5.261×@LWi/(°) 0.909 rA/mm 440.667 R/mm 735.545 ρ/mm 737.138 b2 0.0349 Groove density/(lines·mm–1) 1500 ± 4 Ruling area/mm2 36 × 36 Two independent detectors design Wavelength range/nm Tilt angle/(°) 62—80 15.259 92—110 17.824 表 3 系统关键元件的公差容限
Table 3. Tolerance limits of key components of the system.
Component Tolerance items Values of tolerances Primary mirror Surface irregularity (RMS) λ/20
(λ = 632.8 nm)Conic ±0.005 Radius of curvature/mm ±3.6 Microroughness (RMS)/nm 0.4 Element decenter/μm ±50 Element tilt/('' ) ±15 TVLS grating Substrate irregularity (RMS) λ/30
(λ = 632.8 nm)Line density/
(groove·mm–1)±0.65 Radius of curvature/mm ±0.3 Microroughness (RMS)/nm 0.8 Element decenter/μm ±20 Element tilt/('' ) ±60 Slit
assemblyElement decenter/μm ±20 Element tilt/(°) ±0.03 -
[1] 杨孟飞, 代树武, 王颖, 朱成林, 杨尚斌, 张也驰 2022 中国空间科学技术 42 1Google Scholar
Yang M F, Dai S W, Wang Y, Zhu C L, Yang S B, Zhang Y C 2022 Chin. Space Sci. Technol. 42 1Google Scholar
[2] 颜毅华, 邓元勇, 甘为群, 丁明德, 田晖, 朱小帅 2023 空间科学学报 43 199Google Scholar
Yan Y H, Deng Y Y, Gan W Q, Ding M D, Tian H, Zhu X S 2023 Chin. J. Space Sci. 43 199Google Scholar
[3] 陈鹏飞 2021 中国科学: 物理学 力学 天文学 51 119632Google Scholar
Chen P F 2021 Sci. Sin. -Phys. Mech. Astron. 51 119632Google Scholar
[4] 白先勇, 田晖, 邓元勇, 陈亚杰, 侯振永, 杨子浩, 张志勇, 段帷, 李文显, 郭思璠 2023 空间科学学报 43 406Google Scholar
Bai X Y, Tian H, Deng Y Y, Chen Y J, Hou Z Y, Yang Z H, Zhang Z Y, Duan W, Li W X, Guo S F 2023 Chin. J. Space Sci. 43 406Google Scholar
[5] Domingo V, Fleck B, Poland A I 1995 Sol. Phys. 162 1Google Scholar
[6] Wilhelm K, Axford W I, Curdt W, Gabriel A H, Grewing M, Huber M C E, Jordan S D, Kuehne M, Lemaire P, Marsch E 1995 Sol. Phys. 162 189Google Scholar
[7] Harrison R A, Sawyer E C, Carter M K, et al. 1995 Sol. Phys. 162 233Google Scholar
[8] Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Sol. Phys. 243 3Google Scholar
[9] Culhane J L, Harra L K, James A M, et al. 2007 Sol. Phys. 243 19Google Scholar
[10] Brosius J W, Daw A N, Rabin D M 2014 Astrophys. J. 790 1Google Scholar
[11] Müller D, St Cyr O C, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar
[12] Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar
[13] Marirrodriga C G, Pacros A, Strandmoe S, et al. 2021 Astron. Astrophys. 646 A121Google Scholar
[14] Li C, Fang C, Li Z, et al. 2022 Sci. China-Phys. Mech. Astron. 65 289602Google Scholar
[15] Gan W Q, Zhu C, Deng Y Y, et al. 2019 Res. Astron. Astrophys. 19 156Google Scholar
[16] Zhang P, Hu X Q, Lu Q F, Zhu A J, Lin M Y, Sun L, Chen L, Xu N 2022 Adv. Atmos. Sci. 39 1Google Scholar
[17] Chen B, Zhang X X, He L P, et al. 2022 Light-Sci. Appl. 11 329Google Scholar
[18] Bai X Y, Tian H, Deng Y Y, et al. 2023 Res. Astron. Astrophys. 23 065014Google Scholar
[19] Tian H 2017 Res. Astron. Astrophys. 17 3Google Scholar
[20] Poletto L, Thomas R J 2004 Appl. Opt. 43 2029Google Scholar
[21] Poletto L, Gasparotto A, Tondello G, Thomas R J 2004 UV and Gamma-Ray Space Telescope Systems Glasgow, United Kingdom, June 21–25, 2004 p898
[22] Larruquert J I, Keski-Kuha R A M 2000 Appl. Opt. 39 1537Google Scholar
[23] 王丽辉, 何玲平, 王孝坤, 尼启良, 陈波 2008 光学精密工程 16 42Google Scholar
Wang L H, He L P, Wang X K, Ni Q L, Chen B 2008 Opt. Precis. Eng. 16 42Google Scholar
[24] 汪毓明, 季海生, 王亚敏, 等 2020 中国科学: 技术科学 50 1243Google Scholar
Wang Y M, Ji H S, Wang Y M, et al. 2020 Sci. Sin. Technol. 50 1243Google Scholar
[25] 林隽, 黄善杰, 李燕, 等 2021 空间科学学报 41 183Google Scholar
Liu J, Huang S J, Li Y, et al. 2021 Chin. J. Space Sci. 41 183Google Scholar
[26] 季海生, 汪毓明, 汪景琇 2019 中国科学: 物理学 力学 天文学 49 059605Google Scholar
Ji H S, Wang Y M, Wang J X 2019 Sci. Sin. Phys. Mech. Astron. 49 059605Google Scholar
[27] 杨孟飞, 汪景琇, 王赤, 等 2023 科学通报 68 859Google Scholar
Yang M F, Wang J X, Wang C, et al. 2023 Chin. Sci. Bull. 68 859Google Scholar
[28] 邓元勇, 周桂萍, 代树武, 等 2023 科学通报 68 298Google Scholar
Deng Y Y, Zhou G P, Dai S W, et al. 2023 Chin. Sci. Bull. 68 298Google Scholar
计量
- 文章访问数: 2418
- PDF下载量: 53
- 被引次数: 0