搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多晶材料散射模型及识别实验研究

刘昱 贺西平 贺升平

引用本文:
Citation:

多晶材料散射模型及识别实验研究

刘昱, 贺西平, 贺升平

Ultrasonic scattering model and identification experiment of polycrystalline materials

Liu Yu, He Xi-Ping, He Sheng-Ping
PDF
HTML
导出引用
  • 超声波识别在国防、军事、航空航天、核设施等高科技领域具有重要的应用价值. 利用超声波可以实现对个体金属材料的识别, 但现有研究侧重于识别材料超声信号差异的算法, 缺乏识别机理. 本文以2A12铝合金为例, 利用6个晶粒在尺寸、形状、排布方向以及排列顺序不同时, 建立了10个2A12铝合金微结构的初级模型, 以此类比多晶金属材料的复杂微观结构. 利用Comsol有限元软件仿真计算了金属材料不同微观结构中的超声波时域信号, 并将回波信号中的的背向散射信号提取为超声指纹. 定义了特征差异Q, 量化了具有不同微结构的散射模型间的超声指纹的差异. 结果表明, 微观结构的细微变化也会导致超声信号出现差异, 其中晶粒尺寸的变化对信号的影响更为显著. 随后提出了超声识别算法, 并对4块形状完全一致的2A12铝合金样品进行了识别实验. 识别结果表明, 利用超声指纹可以准确识别出目标样品, 且各样品间的超声指纹有显著区别. 最后对样品进行了扫描电子显微镜实验, 所得电子显微镜图片显示了各样品真实微观结构的形貌与差异, 证实了所建立的超声散射模型的有效性.
    Ultrasonic identification has an important application value for national defense, military affairs, aerospace, nuclear facilities and other high-tech fields. Ultrasonic waves can be used to identify any metal material. At present, the researches focus on algorithms for identifying the difference in ultrasonic signal among materials, but the study on the corresponding identification theory is lacking. In this work, 10 primary models of the microstructure of 2A12 aluminum alloy are established as analogies to the complex microstructures of polycrystalline metallic materials. The grains of these models are different from each other in size, separation distance, shape, arrangement directions and orders. The time-domain ultrasonic echo signals of different microstructures are calculated by making use of the finite element method. The grass-like signals between two echoes are ultrasonic backscattering signals, which are sensitive to any change of microstructure. The backscattering signals between the primary echo and the secondary echo in the ultrasonic echo time domain signals are extracted as ultrasonic fingerprints. The feature difference Q is defined to quantify the difference in ultrasonic fingerprint of each sample. The results show that the slight variation in microstructure will lead to difference in ultrasonic signal, and the difference caused by the variation in grain size is more distinct. And then, an ultrasonic identification algorithm is proposed, and the identification experiments are conducted on four 2A12 aluminum alloy samples with the same shape. The identification results show that the target sample can be accurately identified by using ultrasonic fingerprints and the ultrasonic fingerprints of the target sample are distinctly different from those of the other samples. The microstructure morphologies of the samples are examined by using scanning electron microscopy (SEM). The SEM results show that there are significant differences in grain size, separation distance and densification between samples although they are the same material. The features of the microstructure in the proposed ultrasonic scattering model in this work are confirmed by the actual y micromorphologies observed in the SEM images. The identification experiments and SEM results demonstrate that the established ultrasonic scattering model is effective. This work can provide a reference for theoretically studying ultrasonic identification and present an idea for developing some new identification algorithms in future.
      通信作者: 贺西平, hexiping@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174241)资助的课题.
      Corresponding author: He Xi-Ping, hexiping@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174241).
    [1]

    Yang L Y, Turner J A, Li Z 2007 J. Acoust. Soc. Am. 121 50Google Scholar

    [2]

    Ghoshal G, Turner J A 2009 IEEE Trans. Ultrason. Ferrelectr. Freq. Control 56 1419Google Scholar

    [3]

    Huang M, Sha G, Huthwaite P, Rokhlin S I, Lowe M J S 2021 J. Acoust. Soc. Am. 149 2377Google Scholar

    [4]

    Thompson R B, Margetan F J, Haldipur P, Yu L, Wasan H 2008 Wave Motion 45 655Google Scholar

    [5]

    Huntington H B 1950 J. Acoust. Soc. Am. 22 362Google Scholar

    [6]

    Lobkis O I, Rokhlin S I 2010 Appl. Phys. Lett. 96 161905Google Scholar

    [7]

    Li J, Rokhlin S I 2015 Wave Motion 58 145Google Scholar

    [8]

    Song Y F, Kube C M, Turner J A, Li X 2017 Ultrasonics 80 58Google Scholar

    [9]

    Yang L, Li J, Rokhlin S I 2013 Wave Motion 50 1283Google Scholar

    [10]

    Li J, Yang L, Rokhlin S I 2014 Ultrasonics 54 1789Google Scholar

    [11]

    贾晓菲, 何亮 2014 中国科学: 物理学 力学 天文学 44 185Google Scholar

    Jia X F, He L 2014 Sci. Sin. Phys. Mech. Astron. 44 185Google Scholar

    [12]

    李珊, 李雄兵, 宋永锋, 陈超 2018 物理学报 67 234301Google Scholar

    Li S, Li X B, Song Y F, Chen C 2018 Acta Phys. Sin. 67 234301Google Scholar

    [13]

    Yang L, Rokhlin S I 2013 J. Nondestr. Eval. 32 142Google Scholar

    [14]

    Li J, Rokhlin S I 2016 Int. J. Solids Struct. 78–79 110Google Scholar

    [15]

    Hu P, Turner J A 2015 J. Acoust. Soc. Am. 137 321Google Scholar

    [16]

    Liu Y, Tian Q, Yu P, He J, Guan X 2022 NDT and E Int. 129 102634Google Scholar

    [17]

    Thompson B R 2002 Top. Appl. Phys. 84 233Google Scholar

    [18]

    Good M S, Simpkins B E, Kirihara J L, Skorpik R J, Willett J A 2003 Ultrasonic Intrinsic Tagging for Nuclear Disarmament: A Proof-of-Concept Test (Richland: Pacific Northwest National Laboratory) PNNL-14462

    [19]

    刘小荣, 贺西平, 张宏普, 贺升平, 尼涛, 崔东, 卢康 2016 科学通报 61 844Google Scholar

    Liu X R, He X P, Zhang H P, He S P, Ni T, Cui D, Lu K 2016 Chin. Sci. Bull. 61 844Google Scholar

    [20]

    安笑笑, 贺西平, 卢康 2018 电子学报 46 1737Google Scholar

    An X X, He X P, Lu K 2018 Acta Electron. Sin. 46 1737Google Scholar

    [21]

    Liu Y, He X P, He S P 2023 Acoust. Phys. 69 574Google Scholar

    [22]

    Du H 2022 Ultrasonics 119 106633Google Scholar

    [23]

    Yang L, Li J, Lobkis O I, Rokhlin S I 2012 J. Nondestr. Eval. 31 270Google Scholar

    [24]

    Rokhlin S I, Sha G, Li J, Pilchak A L 2021 Ultrasonics 115 106433Google Scholar

    [25]

    Yang L, Lobkis O I, Rokhlin S I 2011 Ultrasonics 51 697Google Scholar

    [26]

    Lobkis O I, Yang L, Li J, Rokhlin S I 2012 Ultrasonics 52 694Google Scholar

  • 图 1  椭球形晶粒模型

    Fig. 1.  Model of ellipsoidal grain.

    图 2  样品的微观结构模型

    Fig. 2.  Microstructure models of the samples.

    图 3  模型A中不同时刻的超声波 (a) 4.0×10–7 s; (b) 9.4×10–7 s; (c) 1.34×10–6 s; (d) 4.82×10–6 s

    Fig. 3.  Ultrasonic waves at different moments in model A: (a) 4.0×10–7 s; (b) 9.4×10–7 s; (c) 1.34×10–6 s; (d) 4.82×10–6 s.

    图 4  各模型中超声回波的时域信号

    Fig. 4.  Time-domain signals of ultrasonic echos of each model.

    图 5  2A12铝合金样品

    Fig. 5.  2A12 aluminum alloy samples.

    图 6  实验装置

    Fig. 6.  Experimental setup.

    图 7  2A12铝合金的SEM断面图 (a) 1#样品; (b) 2# 样品; (c) 3#样品; (d) 4#样品

    Fig. 7.  SEM cross-sections of 2A12 aluminum alloy samples: (a) Sample 1#; (b) Sample 2#; (c) Sample 3#; (d) Sample 4#.

    表 1  模型参数

    Table 1.  Model parameters of the models.

    A B C D E F G H I J
    排列顺序 HSV
    HSV
    VHS
    VHS
    HSV
    HSV
    HHH
    HHH
    SSS
    SSS
    HSV
    HSV
    VSH
    VSH
    HSV
    HSV
    VHS
    HSV
    VVV
    VVV
    间距1/μm 900 900 1300 900 900 900 900 600 900 900
    间距2/μm 800 800 500 800 800 800 800 500 800 800
    RCL/μm 10 10 10 10 10 10 10 10 10 10
    RCS/μm 5 5 5 5 5 5 5 5 5 5
    RHL/μm 300 300 300 300 300 200 300 300 300 300
    RHS/μm 150 150 150 150 150 100 150 150 150 150
    RS/μm 200 200 200 200 200 100 200 200 200 200
    RVL/μm 300 300 300 300 300 200 300 300 300 300
    RVS/μm 200 200 200 200 200 100 200 200 200 200
    下载: 导出CSV

    表 2  各模型间特征差异

    Table 2.  Feature differences of each model.

    编号ABCDEFGHIJ
    A4.20430.23620.64631.34336.34212.35612.48692.70602.8057
    B4.20433.96813.55802.86102.13781.84821.71741.49831.3986
    C0.23623.96810.41001.10716.10592.11992.25072.46982.5695
    D0.64633.55800.41000.69715.69581.70981.84062.05982.1595
    E1.34332.86101.10710.69714.99881.01271.14361.36271.4624
    F6.34212.13786.10595.69584.99883.98603.85523.63603.5364
    G2.35611.84822.11991.70981.01273.98600.13080.35000.4497
    H2.48691.71742.25071.84061.14363.85520.13080.21910.3188
    I2.70601.49832.46982.05981.36273.63600.35000.21910.0997
    J2.80571.39862.56952.15951.46243.53640.44970.31880.0997
    下载: 导出CSV

    表 3  超声指纹识别结果

    Table 3.  Identification results of the ultrasonic fingerprints.

    1 2 3 ······ 7 阈值 超出阈值次数
    Pk (1#) 1.1474 0.8247 0.7687 ······ 0.7652 1.0362 1
    Pk (2#) 4.3000 4.3018 4.3559 ······ 4.4523 7
    Pk (3#) 4.5489 4.5639 4.5547 ······ 4.6969 7
    Pk (4#) 3.8497 3.4267 3.5947 ······ 3.7984 7
    下载: 导出CSV
  • [1]

    Yang L Y, Turner J A, Li Z 2007 J. Acoust. Soc. Am. 121 50Google Scholar

    [2]

    Ghoshal G, Turner J A 2009 IEEE Trans. Ultrason. Ferrelectr. Freq. Control 56 1419Google Scholar

    [3]

    Huang M, Sha G, Huthwaite P, Rokhlin S I, Lowe M J S 2021 J. Acoust. Soc. Am. 149 2377Google Scholar

    [4]

    Thompson R B, Margetan F J, Haldipur P, Yu L, Wasan H 2008 Wave Motion 45 655Google Scholar

    [5]

    Huntington H B 1950 J. Acoust. Soc. Am. 22 362Google Scholar

    [6]

    Lobkis O I, Rokhlin S I 2010 Appl. Phys. Lett. 96 161905Google Scholar

    [7]

    Li J, Rokhlin S I 2015 Wave Motion 58 145Google Scholar

    [8]

    Song Y F, Kube C M, Turner J A, Li X 2017 Ultrasonics 80 58Google Scholar

    [9]

    Yang L, Li J, Rokhlin S I 2013 Wave Motion 50 1283Google Scholar

    [10]

    Li J, Yang L, Rokhlin S I 2014 Ultrasonics 54 1789Google Scholar

    [11]

    贾晓菲, 何亮 2014 中国科学: 物理学 力学 天文学 44 185Google Scholar

    Jia X F, He L 2014 Sci. Sin. Phys. Mech. Astron. 44 185Google Scholar

    [12]

    李珊, 李雄兵, 宋永锋, 陈超 2018 物理学报 67 234301Google Scholar

    Li S, Li X B, Song Y F, Chen C 2018 Acta Phys. Sin. 67 234301Google Scholar

    [13]

    Yang L, Rokhlin S I 2013 J. Nondestr. Eval. 32 142Google Scholar

    [14]

    Li J, Rokhlin S I 2016 Int. J. Solids Struct. 78–79 110Google Scholar

    [15]

    Hu P, Turner J A 2015 J. Acoust. Soc. Am. 137 321Google Scholar

    [16]

    Liu Y, Tian Q, Yu P, He J, Guan X 2022 NDT and E Int. 129 102634Google Scholar

    [17]

    Thompson B R 2002 Top. Appl. Phys. 84 233Google Scholar

    [18]

    Good M S, Simpkins B E, Kirihara J L, Skorpik R J, Willett J A 2003 Ultrasonic Intrinsic Tagging for Nuclear Disarmament: A Proof-of-Concept Test (Richland: Pacific Northwest National Laboratory) PNNL-14462

    [19]

    刘小荣, 贺西平, 张宏普, 贺升平, 尼涛, 崔东, 卢康 2016 科学通报 61 844Google Scholar

    Liu X R, He X P, Zhang H P, He S P, Ni T, Cui D, Lu K 2016 Chin. Sci. Bull. 61 844Google Scholar

    [20]

    安笑笑, 贺西平, 卢康 2018 电子学报 46 1737Google Scholar

    An X X, He X P, Lu K 2018 Acta Electron. Sin. 46 1737Google Scholar

    [21]

    Liu Y, He X P, He S P 2023 Acoust. Phys. 69 574Google Scholar

    [22]

    Du H 2022 Ultrasonics 119 106633Google Scholar

    [23]

    Yang L, Li J, Lobkis O I, Rokhlin S I 2012 J. Nondestr. Eval. 31 270Google Scholar

    [24]

    Rokhlin S I, Sha G, Li J, Pilchak A L 2021 Ultrasonics 115 106433Google Scholar

    [25]

    Yang L, Lobkis O I, Rokhlin S I 2011 Ultrasonics 51 697Google Scholar

    [26]

    Lobkis O I, Yang L, Li J, Rokhlin S I 2012 Ultrasonics 52 694Google Scholar

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 李珊, 李雄兵, 宋永锋, 陈超. 考虑晶粒分布的多晶体材料超声散射统一理论. 物理学报, 2018, 67(23): 234301. doi: 10.7498/aps.67.20181751
    [3] 曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙. 正电子湮没谱学研究半导体材料微观结构的应用进展. 物理学报, 2017, 66(2): 027801. doi: 10.7498/aps.66.027801
    [4] 秦修培, 耿德路, 洪振宇, 魏炳波. 超声悬浮过程中圆柱体的旋转运动机理研究. 物理学报, 2017, 66(12): 124301. doi: 10.7498/aps.66.124301
    [5] 金国梁, 尹剑飞, 温激鸿, 温熙森. 基于等效参数反演的敷设声学覆盖层的水下圆柱壳体声散射研究. 物理学报, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [6] 李丽丽, 张晓虹, 王玉龙, 国家辉, 张双. 基于聚乙烯/蒙脱土纳米复合材料微观结构的力学性能模拟. 物理学报, 2016, 65(19): 196202. doi: 10.7498/aps.65.196202
    [7] 邓勇, 张喧轩, 罗召洋, 许军, 杨孝全, 孟远征, 龚辉, 骆清铭. 融合结构先验信息的稳态扩散光学断层成像重建算法研究. 物理学报, 2013, 62(1): 014202. doi: 10.7498/aps.62.014202
    [8] 邹伟博, 周骏, 金理, 张昊鹏. 金纳米球壳对的局域表面等离激元共振特性分析. 物理学报, 2012, 61(9): 097805. doi: 10.7498/aps.61.097805
    [9] 吕林梅, 温激鸿, 赵宏刚, 孟浩, 温熙森. 内嵌不同形状散射子的局域共振型黏弹性覆盖层低频吸声性能研究. 物理学报, 2012, 61(21): 214302. doi: 10.7498/aps.61.214302
    [10] 王豆豆, 王丽莉, 李冬冬. 热可调液晶填充微结构聚合物光纤设计及特性分析. 物理学报, 2012, 61(12): 128101. doi: 10.7498/aps.61.128101
    [11] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 樊星, 龚伟. 高分子有机场效应晶体管中半导体薄膜结晶行为及微观结构变化的研究. 物理学报, 2011, 60(2): 027201. doi: 10.7498/aps.60.027201
    [12] 孙光爱, 陈波, 吴二冬, 闫冠云, 黄朝强, 李武会, 吴忠华, 柳义, 王劼. 蠕变镍基单晶高温合金微观结构与界面特征的X射线小角散射研究. 物理学报, 2011, 60(1): 016102. doi: 10.7498/aps.60.016102
    [13] 王豆豆, 王丽莉. 新型光学聚合物——Topas环烯烃共聚物微结构光纤的设计及特性分析. 物理学报, 2010, 59(5): 3255-3259. doi: 10.7498/aps.59.3255
    [14] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [15] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [16] 王敬时, 徐晓东, 刘晓峻, 许钢灿. 利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应. 物理学报, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [17] 虞益挺, 苑伟政, 乔大勇, 梁 庆. 一种在线测量微机械薄膜残余应力的新结构. 物理学报, 2007, 56(10): 5691-5697. doi: 10.7498/aps.56.5691
    [18] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] 潘梦霄, 曹兴忠, 李养贤, 王宝义, 薛德胜, 马创新, 周春兰, 魏 龙. 氧化钒薄膜微观结构的研究. 物理学报, 2004, 53(6): 1956-1960. doi: 10.7498/aps.53.1956
    [20] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
计量
  • 文章访问数:  2161
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-10-24
  • 上网日期:  2023-11-04
  • 刊出日期:  2024-02-05

/

返回文章
返回