搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Bi2O2Se纳米线的生长及其超导量子干涉器件

刘怀远 肖建飞 吕昭征 吕力 屈凡明

刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明. Bi2O2Se纳米线的生长及其超导量子干涉器件. 物理学报, 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
引用本文: 刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明. Bi2O2Se纳米线的生长及其超导量子干涉器件. 物理学报, 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
Liu Huai-Yuan, Xiao Jian-Fei, Lü Zhao-Zheng, Lü Li, Qu Fan-Ming. Growth of Bi2O2Se nanowires and their superconducting quantum interference devices. Acta Phys. Sin., 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
Citation: Liu Huai-Yuan, Xiao Jian-Fei, Lü Zhao-Zheng, Lü Li, Qu Fan-Ming. Growth of Bi2O2Se nanowires and their superconducting quantum interference devices. Acta Phys. Sin., 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600

Bi2O2Se纳米线的生长及其超导量子干涉器件

刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明

Growth of Bi2O2Se nanowires and their superconducting quantum interference devices

Liu Huai-Yuan, Xiao Jian-Fei, Lü Zhao-Zheng, Lü Li, Qu Fan-Ming
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • Bi2O2Se是一种新型半导体材料, 具有载流子迁移率高、空气中稳定和自旋轨道耦合强等优点, 并且其合成方法多种多样, 应用范围十分广泛. 但已有研究大多集中在其二维薄膜, 本文介绍一种使用三温区管式炉通过化学气相沉积生长Bi2O2Se一维纳米线的方法, 研究了云母衬底处于水平方向不同位置以及竖直方向不同高度对Bi2O2Se纳米线生长的影响, 并归纳出适于其生长的优化条件. 之后, 基于生长的Bi2O2Se纳米线构建了超导量子干涉器件, 并观测到随磁场的超导量子干涉, 为拓宽Bi2O2Se纳米线的应用提供了思路.
    Bi2O2Se is a new type of semiconductor material, which has the advantages of high carrier mobility, air stability, strong spin-orbit coupling, etc. It has a variety of synthesis methods and a wide range of applications. In the past few years, many explorations have been made in the synthesis, large-size growth, and applications of Bi2O2Se. It has been applied to field effect transistors, infrared photodetectors, semiconductor devices, heterojunctions, spin electronics, etc. Since nanowire has a larger surface area-to-volume ratio than nano-film, nanowire may have greater advantages in gate regulation and strong spin-orbit coupling, and these properties can play a crucial role in certain fields. However, most of the studies focused on its two-dimensional films, and there are less researches of its one-dimensional counterpart. In this work, a method of growing Bi2O2Se one-dimensional nanowires by chemical vapor deposition in a three-temperature-zone tubular furnace is introduced. High-quality suspended Bi2O2Se nanowires are obtained. In addition, the effects on the Bi2O2Se nanowire growth of the position of the mica substrates, i.e, different horizontal positions and vertical heights in the quartz boat, are studied, and the optimal conditions for the growth are summarized. The nanowires are characterized by atomic force microscope and energy dispersive spectrometer to show the information about the size and component. Then, superconducting quantum interference device based on the Bi2O2Se nanowires is constructed, and the superconducting quantum interference in a magnetic field is observed, which provides a way to broaden the application of Bi2O2Se nanowires.
      PACS:
      78.67.Uh(Nanowires)
      81.15.Gh(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
      85.25.-j(Superconducting devices)
      通信作者: 吕力, lilu@iphy.ac.cn ; 屈凡明, fanmingqu@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1403400)、国家自然科学基金(批准号: 12074417, 92065203) 、中国科学院战略性先导科技专项 (批准号: XDB28000000, XDB33000000) 、综合极端条件实验装置和科技创新2030―“量子通信与量子计算机”重大项目(批准号: 2021ZD0302600)资助的课题.
      Corresponding author: Lü Li, lilu@iphy.ac.cn ; Qu Fan-Ming, fanmingqu@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403400), the National Natural Science Foundation of China (Grant Nos. 12074417, 92065203), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant Nos. XDB28000000, XDB33000000), the Synergetic Extreme Condition User Facility sponsored by the National Development and Reform Commission, and the Innovation Program for Quantum Science and Technology, China (Grant No. 2021ZD0302600).

    Bi2O2Se是一种新型半导体材料, 具有高载流子迁移率[14]、优异的空气稳定性[1,4]和强自旋轨道耦合[3,5,6]等特性, 越来越受到关注. 随着研究的不断深入, 在Bi2O2Se的合成方法、生长尺寸、应用等方面都有了很多探索. 对于Bi2O2Se, 常见的生长方法包括化学气相沉积(chemical vapor deposition, CVD)[1,2,710]、脉冲激光沉积(pulsed laser deposition, PLD)[10]、湿化学方法[11]和物理气相沉积(physical vapor deposition, PVD)[12]等. 每种生长方法的特点不同, 由此产生的Bi2O2Se形态也不同, 包括Bi2O2Se纳米片[1,2,47,1315]、纳米带[1618]、晶体[19]、颗粒[20]、以及纳米线[3,21]. Bi2O2Se由于各种优异的性能, 其应用范围包括技术应用和科学研究等. Bi2O2Se已应用于场效应晶体管(field effect transistor, FET)[4,12,16,2224]、红外光电探测器[7,15,24]、半导体器件[4]、异质结[25]和自旋电子学[23]等. 由于纳米线相对于纳米片具备更大的表面积体积比, 所以纳米线在栅极调控和强自旋轨道耦合等方面可能具有更大的优势, 而且这些性质在一些领域具有至关重要的作用. 但已有研究主要集中在Bi2O2Se的纳米薄片, 而对其一维纳米线的研究相对较少.

    本文将介绍一种使用三温区管式炉通过CVD生长Bi2O2Se纳米线的方法, 并且研究云母衬底处于管式炉水平方向不同位置, 以及竖直方向不同高度, 对生长Bi2O2Se纳米线的影响, 归纳出适合生长的条件. 之后, 使用超导电极和Bi2O2Se纳米线构建超导量子干涉器件(superconducting quantum interference device, SQUID), 并实现了超导邻近, 在磁场中观测到干涉图案, 为拓宽Bi2O2Se纳米线的应用提供了思路.

    Bi2O2Se具有体心四方晶体结构, 强共价键的[Bi2O2]2n+n层被具有相对较弱静电相互作用的平面[Se]2nn层夹在中间. 通常, Bi2O2Se生长在云母[KMg3(AlSi3O10)F2]衬底上. 云母是一种典型的非中性层状材料, 带正电的[K]+层被带负电的[KMg3(AlSi3O10)F2]层分隔. Bi2O2Se纳米线通过[Se]2nn层和[K]+层的静电吸引沉积生长. 本文采用三温区管式炉在云母衬底上通过CVD方法生长Bi2O2Se纳米线. 相比于单温区管式炉, 三温区管式炉可以实现对不同温区的先后升温和分别控制, 从而允许对生长条件的更好调控. 将生长源Bi2Se3粉末和Bi2O3粉末放置在不同温区, 通过将Bi2Se3粉末提前达到蒸发温度, 从而先蒸发出来的[Se]2nn会优先到达云母衬底所在的位置, 并与云母中的[K]+通过静电相互作用沉积, 促进Bi2O2Se纳米线的生长, 这是三温区CVD管式炉的优势之一.

    图1(a)是三温区CVD管式炉的示意图. 该管式炉长110 cm, 每个温区长30 cm, 管式炉两侧分别有7 cm长的石棉, 如图1(a)两侧的粗矩形虚线框所示. 每两个温区之间用3 cm长的石棉隔开, 如图1(a)中间的细矩形虚线框所示. 该管式炉配有一根140 cm长、直径2 in (1 in = 2.54 cm)的石英管, 放置在管式炉内, 两侧分别延伸出15 cm, 用于接入氩气和抽气泵. 含有0.5 g的Bi2Se3粉末的刚玉坩埚和含有0.9 g的Bi2O3粉末的刚玉坩埚分别放置在温区A和温区C的中央, 每个坩埚长7 cm. 用于生长Bi2O2Se纳米线的云母衬底放置在CVD管式炉温区C的右边缘.

    图 1 (a)三温区管式炉的示意图, Bi2Se3粉末放置在温区A的中央, Bi2O3粉末放置在温区C的中央, 带有云母衬底的石英舟放置在管式炉的右边缘. (b), (c)带有云母衬底的石英舟的示意图和光学照片\r\nFig. 1. (a) Schematic diagram of the three-temperature-zone tubular furnace, with Bi2Se3 powder placed at the center of zone A and Bi2O3 powder at the center of zone C, a quartz boat with mica substrates is placed at the right edge of the quartz tube. (b), (c) Schematic diagram and optical photograph of a quartz boat with mica substrates, respectively.
    图 1  (a)三温区管式炉的示意图, Bi2Se3粉末放置在温区A的中央, Bi2O3粉末放置在温区C的中央, 带有云母衬底的石英舟放置在管式炉的右边缘. (b), (c)带有云母衬底的石英舟的示意图和光学照片
    Fig. 1.  (a) Schematic diagram of the three-temperature-zone tubular furnace, with Bi2Se3 powder placed at the center of zone A and Bi2O3 powder at the center of zone C, a quartz boat with mica substrates is placed at the right edge of the quartz tube. (b), (c) Schematic diagram and optical photograph of a quartz boat with mica substrates, respectively.

    图1(b), (c)分别为生长Bi2O2Se纳米线石英舟的示意图和光学照片. 半圆管形石英舟长15 cm, 直径4 cm (高2 cm). 石英舟内为用于改变云母衬底高度的石英衬底和用于放置云母衬底的硅衬底, 每个石英衬底长5 cm, 宽约2.5 cm, 厚1 mm; 硅衬底长约10 cm, 宽约2.5 cm, 厚0.5 mm. 将6片新解理的云母衬底依次摆放在硅衬底上方, 每片云母为长宽均为1 cm的正方形. 图1(c)光学照片中右侧的乳白色物质为石棉. 从石英管的左侧入口引入氩气作为生长Bi2O2Se纳米线时输送Bi2Se3源和Bi2O3源的载气, 流量为标准状况下200 mL/min.

    表1列出了生长Bi2O2Se纳米线的具体流程. 第1步是在5 min内将CVD管式炉的三个温区的温度从室温升到100 ℃; 第2步是在25 min内将有Bi2Se3的温区A 从100 ℃升到580 ℃, 同时在30 min内分别将温区B和放有Bi2O3的温区C从100 ℃升到610 ℃和630 ℃. 值得说明的是, 提前5 min将温区A升到Bi2Se3的蒸发温度, 使得Bi2Se3能够先到达云母衬底, 从而促进Bi2O2Se纳米线或薄片的生长. 第3步是保持温度恒定, 温区A在580 ℃保持30 min, 温区B在610 ℃保持25 min, 温区C在630 ℃保持25 min. 第4步是将CVD管式炉自然冷却至室温. 当温度降至室温时, 可以取出样品进行后续实验.

    表 1  Bi2O2Se纳米线的生长步骤
    Table 1.  Growth steps of Bi2O2Se nanowires.
    步骤 第1步 第2步 第3步 第4步
    温区A(Bi2Se3) 温度/℃ 室温—100 100—580 580 580—室温
    时间/min 5 25 30
    温区B 温度/℃ 室温—100 100—610 610 610—室温
    时间/min 5 30 25
    温区C(Bi2O3) 温度/℃ 室温—100 100—630 630 630—室温
    时间/min 5 30 25
    下载: 导出CSV 
    | 显示表格

    下面讨论云母衬底处于水平方向不同位置对生长Bi2O2Se纳米线的影响. 图2(a), (c), (e)分别对应2号、4号和5号云母衬底在生长后的1000倍光学显微镜照片, 图2(b), (d), (f)分别对应它们的扫描电子显微镜(scanning electron microscope, SEM)照片. 其他位置云母衬底的光学显微镜照片和SEM照片见http://dx.doi.org/10.7498/aps.73.20231600. 由于Bi2O2Se纳米线在云母衬底上竖直或倾斜向上生长, 纳米线的底端和云母衬底处于同一焦平面, 而顶端处于不同焦平面. 为了更好地显现Bi2O2Se纳米线, 2号和5号云母衬底的光学显微镜照片和SEM照片都以纳米线顶端为焦平面. 在光学显微镜照片中, Bi2O2Se纳米线显现为黑点或段, 如图2(a), (e)中红色圆圈所示. 在SEM照片中, Bi2O2Se纳米线的顶端相对亮, 而底端相对暗. 从这些图片可以归纳出云母衬底在水平方向的位置对生长Bi2O2Se纳米线的影响. 在2号云母衬底处, Bi2Se3和Bi2O3的蒸气沉积在云母衬底上并生长出Bi2O2Se纳米线, 如图2(a)中的黑点所示. 图2(b)为对应的SEM照片, Bi2O2Se纳米线在云母衬底上倾斜向上生长, 同时可见悬立生长的Bi2O2Se纳米薄片. 在4号云母衬底处, 可以看到密集的Bi2O2Se纳米薄片, 如图2(c)及红色圆圈所示. 图2(d)为对应的SEM照片, 可见很多Bi2O2Se纳米片分布在云母衬底上. 在5号云母衬底处, 可以看到比2号衬底更密集的纳米线(黑点), 如图2(e)所示, 可以推测5号衬底所在的位置可以生长更高密度的Bi2O2Se纳米线. 图2(f)为对应的SEM照片, Bi2O2Se纳米线同样悬立生长, 同时可见衬底上的纳米薄片已几乎铺满, 以及少量悬立的纳米薄片. 2号和5号云母衬底所处的位置是此CVD管式炉生长Bi2O2Se纳米线较理想的位置.

    图 2 不同水平位置的云母衬底生长的Bi2O2Se光学显微镜照片和SEM照片 (a), (c), (e)对应2号、4号和5号云母衬底生长Bi2O2Se后的光学显微镜照片; (b), (d), (f)对应2号、4号和5号云母衬底生长Bi2O2Se后的SEM照片\r\nFig. 2. Optical microscope photos and SEM photos of Bi2O2Se grown on mica substrates at different horizontal positions: (a), (c), (e) Optical microscope photos of Bi2O2Se grown on mica substrates at positions No.2, No.4 and No.5, respectively; (b), (d), (f) SEM photos of Bi2O2Se grown on mica substrates at positions No.2, No.4 and No.5, respectively.
    图 2  不同水平位置的云母衬底生长的Bi2O2Se光学显微镜照片和SEM照片 (a), (c), (e)对应2号、4号和5号云母衬底生长Bi2O2Se后的光学显微镜照片; (b), (d), (f)对应2号、4号和5号云母衬底生长Bi2O2Se后的SEM照片
    Fig. 2.  Optical microscope photos and SEM photos of Bi2O2Se grown on mica substrates at different horizontal positions: (a), (c), (e) Optical microscope photos of Bi2O2Se grown on mica substrates at positions No.2, No.4 and No.5, respectively; (b), (d), (f) SEM photos of Bi2O2Se grown on mica substrates at positions No.2, No.4 and No.5, respectively.

    下面讨论云母衬底在竖直方向的不同高度对生长Bi2O2Se纳米线的影响. 通过改变云母衬底下方石英衬底的数量改变云母衬底的竖直方向高度, 所选水平方向位置固定为2号衬底位置. 当石英衬底的数量为15个时, 云母衬底基本与半圆管石英舟切口平齐. 图3(a)(c)分别对应石英衬底数量为1, 8, 13个时在云母衬底上生长Bi2O2Se纳米线的SEM照片, 云母衬底距离半圆管石英舟切口分别约为14, 7, 2 mm. 从图3可以看出(更多照片未给出), 当云母衬底距离半圆管石英舟切口大概7 mm时, 生长的Bi2O2Se纳米线的长度最长, 约10 μm. 该竖直方向高度是此CVD管式炉最佳的生长位置. 在化学气相沉积生长中, 气流起着关键的作用. 比如, 在参考文献[21]中, 纳米线的生长长度和气流为湍流或层流有关, 通过使用小直径石英管可以在层流气流下生长较长的纳米线. 在我们的生长条件中, 改变云母衬底在石英舟中的竖直高度可以影响纳米线的生长长度, 估计这是由于局部的气流环境导致的, 具体分析请见http://dx.doi.org/10.7498/aps.73.20231600.

    图 3 不同竖直高度的云母衬底生长的Bi2O2Se纳米线的SEM照片 (a)—(c)石英衬底数量为1个、8个和13个\r\nFig. 3. SEM photos of Bi2O2Se nanowires grown on mica substrates of different vertical heights: (a)–(c) There are 1, 8 and 13 quartz substrates, respectively.
    图 3  不同竖直高度的云母衬底生长的Bi2O2Se纳米线的SEM照片 (a)—(c)石英衬底数量为1个、8个和13个
    Fig. 3.  SEM photos of Bi2O2Se nanowires grown on mica substrates of different vertical heights: (a)–(c) There are 1, 8 and 13 quartz substrates, respectively.

    通过以上介绍, 归纳了云母衬底在水平方向不同位置和竖直方向不同高度对生长Bi2O2Se纳米线的影响. 下面, 将对Bi2O2Se纳米线进行基本的表征, 并与超导结合构建SQUID.

    我们生长的Bi2O2Se纳米线, 长度可达10 μm以上, 较窄的纳米线宽度大约在100 nm, 厚度在4—50 nm. 为了对Bi2O2Se纳米线进行表征, 通过机械接触的办法将纳米线转移到Si/SiO2衬底上. 图4(a), (b)是Bi2O2Se纳米线的原子力显微镜(atomic force microscope, AFM)图, 可见其厚度大约为4 nm. 图4(c)是一根较宽的Bi2O2Se纳米线的能谱图(energy dispersive spectrometer, EDS), 可见Bi∶O∶Se符合2∶2∶1的原子比.

    图 4 (a), (b) Bi2O2Se纳米线的AFM表征; (c) Bi2O2Se纳米线的EDS能谱; (d)使用Bi2O2Se纳米线制备的SQUID的SEM照片; (e) SQUID的dV/dI-Ib曲线; (d) SQUID干涉图案\r\nFig. 4. (a), (b) AFM characterization of Bi2O2Se nanowire; (c) EDS spectra of Bi2O2Se nanowire; (d) SEM images of SQUID device; (e) dV/dI-Ib curve of SQUID; (f) SQUID interference pattern.
    图 4  (a), (b) Bi2O2Se纳米线的AFM表征; (c) Bi2O2Se纳米线的EDS能谱; (d)使用Bi2O2Se纳米线制备的SQUID的SEM照片; (e) SQUID的dV/dI-Ib曲线; (d) SQUID干涉图案
    Fig. 4.  (a), (b) AFM characterization of Bi2O2Se nanowire; (c) EDS spectra of Bi2O2Se nanowire; (d) SEM images of SQUID device; (e) dV/dI-Ib curve of SQUID; (f) SQUID interference pattern.

    之后, 对Bi2O2Se纳米线与超导结合的器件进行了制备和表征. 此类具有强自旋轨道耦合的半导体材料与超导结合可以用来构建复合器件, 研究诸如超导二极管[26]、约瑟夫森反常相位[27,28]、拓扑量子器件[2931]等. 比如, 在InAs, InSb等强自旋轨道耦合的半导体中研究了二极管、反常相位、马约拉纳束缚态等[3235], 在强自旋轨道耦合的拓扑材料Bi2Se3, NiTe2等中同样有广泛研究[36,37], 但在Bi2O2Se上的这类研究还很少. 作为这些研究的第1步, 就是将超导电极制备到Bi2O2Se上, 实现超导邻近效应. 为此, 进一步使用电子束光刻, 结合电子束蒸镀钛/铝(5/60 nm)金属层, 制备了SQUID器件, 如图4(d)所示. 在蒸镀金属之前, 使用氩气等离子体对Bi2O2Se上与电极接触的区域进行清洁处理, 以去除残留的聚甲基丙烯酸甲酯胶(polymethyl methacrylate, PMMA). 低温输运测量是在稀释制冷机内约10 mK的温度下进行, 使用了标准的低噪声锁相技术. 图4(e)展示了器件的零磁场下dV/dI-Ib曲线, 其中dV为测得的交流电压, dI为施加的小幅度交流电流, Ib为施加的直流偏置电流. 可以看出, 超导临界电流大约为40 nA, 表明器件已经实现了超导邻近. 图4(f)是dV/dI对垂直磁场Bz和偏置电流Ib的依赖关系二维图, 可以看出SQUID干涉振荡, 周期约为1.4 Gs, 与器件的面积14 μm2一致. 需要指出的是, 图4(f)的真实零磁场并未矫正; 由于磁体剩磁和地磁场等影响, 真实零磁场偏离了所加磁场零点(Bz = 0). 以上表征表明Bi2O2Se纳米线可以用于与超导结合的器件研究, 考虑到其空气稳定性和强自旋轨道耦合等特性, 在超导二极管[26]、约瑟夫森反常相位[27,28]、拓扑量子器件[2931]等方向具有应用前景.

    本文使用三温区管式炉利用CVD方法生长了Bi2O2Se纳米线, 并且归纳了云母衬底的水平位置和竖直高度对生长Bi2O2Se纳米线的影响; 制备了SQUID器件, 实现了超导邻近并观测到超导量子干涉. Bi2O2Se具备高迁移率、空气中稳定、强自旋轨道耦合等特性, 而纳米线具有高的表面体积比和便利的调控性, 有望在超导器件中得到广泛应用.

    [1]

    Wu J X, Yuan H T, Meng M M, Chen C, Sun Y, Chen Z Y, Dang W H, Tan C W, Liu Y J, Yin J B, Zhou Y B, Huang S Y, Xu H Q, Cui Y, Hwang H Y, Liu Z F, Chen Y L, Yan B H, Peng H L 2017 Nat. Nanotechnol. 12 530Google Scholar

    [2]

    Wu J, Tan C, Tan Z, Liu Y, Yin J, Dang W, Wang M, Peng H 2017 Nano Lett. 17 3021Google Scholar

    [3]

    Zhao K, Liu H, Tan C, Xiao J, Shen J, Liu G, Peng H, Lu L, Qu F 2022 Appl. Phys. Lett. 121 212104Google Scholar

    [4]

    Wu J X, Liu Y J, Tan Z, Tan C, Yin J B, Li T, Tu T, Peng H 2017 Adv. Mater. 29 1704060Google Scholar

    [5]

    Meng M M, Huang S Y, Tan C, Wu J X, Jing Y, Peng H, Xu H Q 2018 Nanoscale 10 2704Google Scholar

    [6]

    Meng M M, Huang S Y, Tan C, Wu J X, Li X, Peng H, Xu H Q 2019 Nanoscale 11 10622Google Scholar

    [7]

    Li J, Wang Z, Wen Y, Chu J, Yin L, Cheng R, Lei L, He P, Jiang C, Feng L, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [8]

    Xu S, Fu H, Tian Y, Deng T, Cai J, Wu J, Tu T, Li T, Tan C, Liang Y, Zhang C, Liu Z, Liu Z, Chen Y, Jiang Y, Yan B, Peng H 2020 Angew. Chem. Int. Ed. 59 17938Google Scholar

    [9]

    Hong C Y, Tao Y, Nie A M, Zhang M H, Wang N, Li R P, Huang J Q, Huang Y Q, Ren X M, Cheng Y C, Liu X L 2020 ACS Nano 14 16803Google Scholar

    [10]

    Song Y, Li Z, Li H, Tang S, Mu G, Xu L, Peng W, Shen D, Chen Y, Xie X, Jiang M 2020 Nanotechnology 31 165704Google Scholar

    [11]

    Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G, Biswas K 2019 Nano Lett. 19 5703Google Scholar

    [12]

    Khan U, Luo Y, Tang L, Teng C, Liu J, Liu B, Cheng H M 2019 Adv. Funct. Mater. 29 1807979Google Scholar

    [13]

    Wu Z, Liu G L, Wang Y X, Yang X, Wei T Q, Wang Q J, Liang J, Xu N, Li Z Z, Zhu B, Qi H S, Deng Y, Zhu J 2019 Adv. Funct. Mater. 29 1906639Google Scholar

    [14]

    Liu S, Tan C, He D, Wang Y, Peng H, Zhao H 2020 Adv. Optical Mater. 8 1901567Google Scholar

    [15]

    Zou X, Sun Y, Wang C 2022 Small Methods 6 2200347Google Scholar

    [16]

    Khan U, Nairan A, Khan K, Li S, Liu B, Gao J 2022 Small 19 2206648Google Scholar

    [17]

    Khan U, Tang L, Ding B, Yuting L, Feng S, Chen W, Khan M J, Liu B, Cheng H M 2021 Adv. Funct. Mater. 31 2101170Google Scholar

    [18]

    Yu J, Sun Q 2018 Appl. Phys. Lett. 112 053901Google Scholar

    [19]

    Mao Q, Geng X, Yang J, Zhang J, Zhu S, Yu Q, Wang Y, Li H, Li R, Hao H 2018 J. Cryst. Growth. 498 244Google Scholar

    [20]

    Kim M, Park D, Kim J 2021 J. Alloy. Compd. 851 156905Google Scholar

    [21]

    Li J, Wang Z, Chu J, Cheng Z, He P, Wang J, Yin L, Cheng R, Li N, Wen Y, He J 2019 Appl. Phys. Lett. 114 151104Google Scholar

    [22]

    Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V, Yacoby A 2010 Nat. Phys. 7 109Google Scholar

    [23]

    Quhe R, Liu J, Wu J, Yang J, Wang Y, Li Q, Li T, Guo Y, Yang J, Peng H, Lei M, Lu J 2019 Nanoscale 11 532Google Scholar

    [24]

    Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K, Peng H 2018 Nat. Commun. 9 3311Google Scholar

    [25]

    Fan C, Dai B, Liang H, Xu X, Qi Z, Jiang H, Duan H, Zhang Q 2021 Adv. Funct. Mater. 31 2010263Google Scholar

    [26]

    Jiang K, Hu J 2022 Nat. Phys. 18 1145Google Scholar

    [27]

    Mayer W, Dartiailh M C, Yuan J, Wickramasinghe K S, Rossi E, Shabani J 2020 Nat. Commun. 11 212Google Scholar

    [28]

    Fukaya Y, Tanaka Y, Gentile P, Yada K, Cuoco M 2022 npj Quantum Mater. 7 99Google Scholar

    [29]

    Jiang D, Yu D Y, Zheng Z, Cao X C, Lin Q, Liu W M 2022 Acta Phys. Sin. 71 160302Google Scholar

    [30]

    Frolov S M, Manfra M J, Sau J D 2020 Nat. Phys. 16 718Google Scholar

    [31]

    Breunig O, Ando Y 2021 Nat. Rev. Phys. 4 184Google Scholar

    [32]

    Matsuo S, Imoto T, Yokoyama T, Sato Y, Lindemann T, Gronin S, Gardner G C, Manfra M J, Tarucha S 2023 Nat. Phys. 19 1636Google Scholar

    [33]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [34]

    Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P 2023 Nature 614 445Google Scholar

    [35]

    Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, Marcus C M 2016 Science 354 1557Google Scholar

    [36]

    Pal B, Chakraborty A, Sivakumar P K, Davydova M, Gopi A K, Pandeya A K, Krieger J A, Zhang Y, Date M, Ju S, Yuan N, Schröter N B M, Fu L, Parkin S S P 2022 Nat. Phys. 18 1228Google Scholar

    [37]

    Chen A Q, Park M J, Gill S T, Xiao Y R, Reigi-Plessis D, MacDougall G J, Gilbert M J, Mason N 2018 Nat. Commun. 9 3478Google Scholar

  • 图 1  (a)三温区管式炉的示意图, Bi2Se3粉末放置在温区A的中央, Bi2O3粉末放置在温区C的中央, 带有云母衬底的石英舟放置在管式炉的右边缘. (b), (c)带有云母衬底的石英舟的示意图和光学照片

    Fig. 1.  (a) Schematic diagram of the three-temperature-zone tubular furnace, with Bi2Se3 powder placed at the center of zone A and Bi2O3 powder at the center of zone C, a quartz boat with mica substrates is placed at the right edge of the quartz tube. (b), (c) Schematic diagram and optical photograph of a quartz boat with mica substrates, respectively.

    图 2  不同水平位置的云母衬底生长的Bi2O2Se光学显微镜照片和SEM照片 (a), (c), (e)对应2号、4号和5号云母衬底生长Bi2O2Se后的光学显微镜照片; (b), (d), (f)对应2号、4号和5号云母衬底生长Bi2O2Se后的SEM照片

    Fig. 2.  Optical microscope photos and SEM photos of Bi2O2Se grown on mica substrates at different horizontal positions: (a), (c), (e) Optical microscope photos of Bi2O2Se grown on mica substrates at positions No.2, No.4 and No.5, respectively; (b), (d), (f) SEM photos of Bi2O2Se grown on mica substrates at positions No.2, No.4 and No.5, respectively.

    图 3  不同竖直高度的云母衬底生长的Bi2O2Se纳米线的SEM照片 (a)—(c)石英衬底数量为1个、8个和13个

    Fig. 3.  SEM photos of Bi2O2Se nanowires grown on mica substrates of different vertical heights: (a)–(c) There are 1, 8 and 13 quartz substrates, respectively.

    图 4  (a), (b) Bi2O2Se纳米线的AFM表征; (c) Bi2O2Se纳米线的EDS能谱; (d)使用Bi2O2Se纳米线制备的SQUID的SEM照片; (e) SQUID的dV/dI-Ib曲线; (d) SQUID干涉图案

    Fig. 4.  (a), (b) AFM characterization of Bi2O2Se nanowire; (c) EDS spectra of Bi2O2Se nanowire; (d) SEM images of SQUID device; (e) dV/dI-Ib curve of SQUID; (f) SQUID interference pattern.

    表 1  Bi2O2Se纳米线的生长步骤

    Table 1.  Growth steps of Bi2O2Se nanowires.

    步骤 第1步 第2步 第3步 第4步
    温区A(Bi2Se3) 温度/℃ 室温—100 100—580 580 580—室温
    时间/min 5 25 30
    温区B 温度/℃ 室温—100 100—610 610 610—室温
    时间/min 5 30 25
    温区C(Bi2O3) 温度/℃ 室温—100 100—630 630 630—室温
    时间/min 5 30 25
    下载: 导出CSV
  • [1]

    Wu J X, Yuan H T, Meng M M, Chen C, Sun Y, Chen Z Y, Dang W H, Tan C W, Liu Y J, Yin J B, Zhou Y B, Huang S Y, Xu H Q, Cui Y, Hwang H Y, Liu Z F, Chen Y L, Yan B H, Peng H L 2017 Nat. Nanotechnol. 12 530Google Scholar

    [2]

    Wu J, Tan C, Tan Z, Liu Y, Yin J, Dang W, Wang M, Peng H 2017 Nano Lett. 17 3021Google Scholar

    [3]

    Zhao K, Liu H, Tan C, Xiao J, Shen J, Liu G, Peng H, Lu L, Qu F 2022 Appl. Phys. Lett. 121 212104Google Scholar

    [4]

    Wu J X, Liu Y J, Tan Z, Tan C, Yin J B, Li T, Tu T, Peng H 2017 Adv. Mater. 29 1704060Google Scholar

    [5]

    Meng M M, Huang S Y, Tan C, Wu J X, Jing Y, Peng H, Xu H Q 2018 Nanoscale 10 2704Google Scholar

    [6]

    Meng M M, Huang S Y, Tan C, Wu J X, Li X, Peng H, Xu H Q 2019 Nanoscale 11 10622Google Scholar

    [7]

    Li J, Wang Z, Wen Y, Chu J, Yin L, Cheng R, Lei L, He P, Jiang C, Feng L, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [8]

    Xu S, Fu H, Tian Y, Deng T, Cai J, Wu J, Tu T, Li T, Tan C, Liang Y, Zhang C, Liu Z, Liu Z, Chen Y, Jiang Y, Yan B, Peng H 2020 Angew. Chem. Int. Ed. 59 17938Google Scholar

    [9]

    Hong C Y, Tao Y, Nie A M, Zhang M H, Wang N, Li R P, Huang J Q, Huang Y Q, Ren X M, Cheng Y C, Liu X L 2020 ACS Nano 14 16803Google Scholar

    [10]

    Song Y, Li Z, Li H, Tang S, Mu G, Xu L, Peng W, Shen D, Chen Y, Xie X, Jiang M 2020 Nanotechnology 31 165704Google Scholar

    [11]

    Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G, Biswas K 2019 Nano Lett. 19 5703Google Scholar

    [12]

    Khan U, Luo Y, Tang L, Teng C, Liu J, Liu B, Cheng H M 2019 Adv. Funct. Mater. 29 1807979Google Scholar

    [13]

    Wu Z, Liu G L, Wang Y X, Yang X, Wei T Q, Wang Q J, Liang J, Xu N, Li Z Z, Zhu B, Qi H S, Deng Y, Zhu J 2019 Adv. Funct. Mater. 29 1906639Google Scholar

    [14]

    Liu S, Tan C, He D, Wang Y, Peng H, Zhao H 2020 Adv. Optical Mater. 8 1901567Google Scholar

    [15]

    Zou X, Sun Y, Wang C 2022 Small Methods 6 2200347Google Scholar

    [16]

    Khan U, Nairan A, Khan K, Li S, Liu B, Gao J 2022 Small 19 2206648Google Scholar

    [17]

    Khan U, Tang L, Ding B, Yuting L, Feng S, Chen W, Khan M J, Liu B, Cheng H M 2021 Adv. Funct. Mater. 31 2101170Google Scholar

    [18]

    Yu J, Sun Q 2018 Appl. Phys. Lett. 112 053901Google Scholar

    [19]

    Mao Q, Geng X, Yang J, Zhang J, Zhu S, Yu Q, Wang Y, Li H, Li R, Hao H 2018 J. Cryst. Growth. 498 244Google Scholar

    [20]

    Kim M, Park D, Kim J 2021 J. Alloy. Compd. 851 156905Google Scholar

    [21]

    Li J, Wang Z, Chu J, Cheng Z, He P, Wang J, Yin L, Cheng R, Li N, Wen Y, He J 2019 Appl. Phys. Lett. 114 151104Google Scholar

    [22]

    Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V, Yacoby A 2010 Nat. Phys. 7 109Google Scholar

    [23]

    Quhe R, Liu J, Wu J, Yang J, Wang Y, Li Q, Li T, Guo Y, Yang J, Peng H, Lei M, Lu J 2019 Nanoscale 11 532Google Scholar

    [24]

    Yin J, Tan Z, Hong H, Wu J, Yuan H, Liu Y, Chen C, Tan C, Yao F, Li T, Chen Y, Liu Z, Liu K, Peng H 2018 Nat. Commun. 9 3311Google Scholar

    [25]

    Fan C, Dai B, Liang H, Xu X, Qi Z, Jiang H, Duan H, Zhang Q 2021 Adv. Funct. Mater. 31 2010263Google Scholar

    [26]

    Jiang K, Hu J 2022 Nat. Phys. 18 1145Google Scholar

    [27]

    Mayer W, Dartiailh M C, Yuan J, Wickramasinghe K S, Rossi E, Shabani J 2020 Nat. Commun. 11 212Google Scholar

    [28]

    Fukaya Y, Tanaka Y, Gentile P, Yada K, Cuoco M 2022 npj Quantum Mater. 7 99Google Scholar

    [29]

    Jiang D, Yu D Y, Zheng Z, Cao X C, Lin Q, Liu W M 2022 Acta Phys. Sin. 71 160302Google Scholar

    [30]

    Frolov S M, Manfra M J, Sau J D 2020 Nat. Phys. 16 718Google Scholar

    [31]

    Breunig O, Ando Y 2021 Nat. Rev. Phys. 4 184Google Scholar

    [32]

    Matsuo S, Imoto T, Yokoyama T, Sato Y, Lindemann T, Gronin S, Gardner G C, Manfra M J, Tarucha S 2023 Nat. Phys. 19 1636Google Scholar

    [33]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [34]

    Dvir T, Wang G, van Loo N, Liu C X, Mazur G P, Bordin A, ten Haaf S L D, Wang J Y, van Driel D, Zatelli F, Li X, Malinowski F K, Gazibegovic S, Badawy G, Bakkers E P A M, Wimmer M, Kouwenhoven L P 2023 Nature 614 445Google Scholar

    [35]

    Deng M T, Vaitiekėnas S, Hansen E B, Danon J, Leijnse M, Flensberg K, Nygård J, Krogstrup P, Marcus C M 2016 Science 354 1557Google Scholar

    [36]

    Pal B, Chakraborty A, Sivakumar P K, Davydova M, Gopi A K, Pandeya A K, Krieger J A, Zhang Y, Date M, Ju S, Yuan N, Schröter N B M, Fu L, Parkin S S P 2022 Nat. Phys. 18 1228Google Scholar

    [37]

    Chen A Q, Park M J, Gill S T, Xiao Y R, Reigi-Plessis D, MacDougall G J, Gilbert M J, Mason N 2018 Nat. Commun. 9 3478Google Scholar

  • [1] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [2] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结. 物理学报, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [3] 王宏章, 李宇龙, 徐铁权, 朱子青, 马平, 王越, 甘子钊. MgO衬底上YBa2Cu3O7–δ台阶边沿型约瑟夫森结的制备及特性. 物理学报, 2021, 70(3): 037401. doi: 10.7498/aps.70.20201291
    [4] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [6] 冯秋菊, 石博, 李昀铮, 王德煜, 高冲, 董增杰, 解金珠, 梁红伟. 单根Sb掺杂ZnO微米线非平衡电桥式气敏传感器的制作与性能. 物理学报, 2020, 69(3): 038102. doi: 10.7498/aps.69.20191530
    [7] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [8] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究. 物理学报, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [9] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [10] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [11] 马立安, 郑永安, 魏朝晖, 胡利勤, 郭太良. 合成温度和N2/O2流量比对碳纤维衬底上生长的SnO2纳米线形貌及场发射性能影响. 物理学报, 2015, 64(23): 237901. doi: 10.7498/aps.64.237901
    [12] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [13] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [14] 王文荣, 周玉修, 李铁, 王跃林, 谢晓明. 高质量大面积石墨烯的化学气相沉积制备方法研究. 物理学报, 2012, 61(3): 038702. doi: 10.7498/aps.61.038702
    [15] 韩道丽, 赵元黎, 赵海波, 宋天福, 梁二军. 化学气相沉积法制备定向碳纳米管阵列. 物理学报, 2007, 56(10): 5958-5964. doi: 10.7498/aps.56.5958
    [16] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [17] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [18] 闫小琴, 刘祖琴, 唐东升, 慈立杰, 刘东方, 周振平, 梁迎新, 袁华军, 周维亚, 王 刚. 衬底对化学气相沉积法制备氧化硅纳米线的影响. 物理学报, 2003, 52(2): 454-458. doi: 10.7498/aps.52.454
    [19] 闫桂沈, 李贺军, 郝志彪. 热解碳化学气相沉积中的多重定态和非平衡相变的研究. 物理学报, 2002, 51(2): 326-331. doi: 10.7498/aps.51.326
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  3162
  • PDF下载量:  155
出版历程
  • 收稿日期:  2023-10-05
  • 修回日期:  2023-11-27
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-02-20

/

返回文章
返回