搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光场对原子核α衰变的影响

张凯林 韩胜贤 岳生俊 刘作业 胡碧涛

引用本文:
Citation:

强激光场对原子核α衰变的影响

张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛

Influence of strong laser field on nuclear α decay

Zhang Kai-Lin, Han Sheng-Xian, Yue Sheng-Jun, Liu Zuo-Ye, Hu Bi-Tao
PDF
HTML
导出引用
  • 为了探究强激光对原子核α衰变的影响, 根据Gamow模型、双折叠模型、团簇模型理论, 给出了一套求解原子核α衰变寿命的方法. 计算了部分原子核α衰变的半衰期, 与实验测量值符合较好, 并进一步获取强激光作用下原子核α衰变半衰期的改变量. 结果表明, 当强激光的功率密度达到1026 W/cm2时, 超强激光可以减少部分原子核的半衰期约0.1%, 有效地影响原子核的α衰变过程. 同时, 还理论计算了α衰变半衰期随着原子核自身参数与激光功率密度的变化关系, 讨论相关参数对于原子核α衰变的影响.
    With the development of pulse amplification and compression technology, the peak power of the pulse has been improved by several orders of magnitude, and it is possible for the ultra strong laser field to affect nuclei directly. The α decay, as one of the most major forms in nuclear reaction, is a critical research topic in nuclear physics. According to the theory of Gamow model explaining nuclear α decay in quantum mechanics, double folding model solving nuclear potential energy, and cluster model describing atomic nucleus, we present a complete set of solutions for the half-life of nuclear α decay to study the influence of ultra strong laser field on nuclear α decay. These half-lives of α decay of different nuclei from medium to heavy in the absence of laser field are obtained, which accord well with the experimental data. Subsequently, we introduce the effects of ultra strong laser field into our theoretical method to achieve the variations of the half-life of nuclear α decay. Considering that the optical period of the laser pulse is much longer than the theoretical tunneling time and the Lorentz force is much smaller than the Coulomb force, the laser field is treated as an electrostatic field. The results show that the half-life of nuclear α decay will reduce about 0.1% by the strong laser field with a peak power density of about 1.0×1026 W/cm2, demonstrating that the half-life of nuclear α decay is effectively affected by the strong laser field. Furthermore, the influences of the nuclear parameters, e.g. total quantum number G describing α particle orbits, and α decay reaction energy Qα, on the variations of these half-lives of α decay of different nuclei are discussed with the help of the calculation results. The dependence of the half-lives of nuclear α decay on the laser peak power density is also explained correspondingly. In summary, we provide a more accurate method of calculating the half-life of nuclear α decay, which is used to study the influences of ultra strong laser field on these half-lives of nuclear α decay of different nuclei. With the further construction of strong laser devices, more interesting phenomena and results will be found from the experiment on the atomic nucleus under strong laser field.
      通信作者: 胡碧涛, hubt@lzu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFE0103900)、国家自然科学基金(批准号: 12374266, 12027809)和中央高校基本科研业务费专项资金(批准号: lzujbky-2022-ey05, lzujbky-2023-stlt01)资助的课题.
      Corresponding author: Hu Bi-Tao, hubt@lzu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE0103900), the National Natural Science Foundation of China (Grant Nos. 12374266, 12027809), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. lzujbky-2022-ey05, lzujbky-2023-stlt01).
    [1]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [2]

    Gurney R W, Condon E U 1929 Phys. Rev. 33 127Google Scholar

    [3]

    Yahya W A, Kimene Kaya B D C 2022 Int. J. Mod. Phys. E 31 2250002

    [4]

    Gontchar I I, Chushnyakova M V 2010 Comput. Phys. Commun. 181 168Google Scholar

    [5]

    Deng J G, Zhao J C, Chu P C, Li X H 2018 Phys. Rev. C 97 044322Google Scholar

    [6]

    邓军刚 2022 博士学位论文 (兰州: 兰州大学)第27—44页

    Deng J G 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University) pp27–44

    [7]

    Qian Y, Ren Z 2014 Phys. Lett. B 738 87Google Scholar

    [8]

    Mourou G 2019 Rev. Mod. Phys. 91 030501Google Scholar

    [9]

    沈百飞, 吉亮亮, 张晓梅, 步志刚, 徐建彩 2021 物理学报 70 084101Google Scholar

    Shen B F, Ji L L, Zhang X M, Bu Z G, Xu J C 2021 Acta Phys. Sin. 70 084101Google Scholar

    [10]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar

    [11]

    席晓峰, 郭冰, 符长波, 吕冲, 张国强 2023 原子能科学技术 57 865Google Scholar

    Xi X F, Guo B, Fu C B, Lü C, Zhang G Q 2023 At. Energy Sci. Technol. 57 865Google Scholar

    [12]

    Castañeda Cortés H M 2012 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität) pp69–103

    [13]

    Buck B, Merchant A C, Perez S M 1990 Phys. Rev. Lett. 65 2975Google Scholar

    [14]

    Qi J T, Li T, Xu R H, Fu L B, Wang X 2019 Phys. Rev. C 99 044610Google Scholar

    [15]

    Delion D S, Ghinescu S A 2017 Phys. Rev. Lett. 119 202501Google Scholar

    [16]

    Wang X 2020 Phys. Rev. C 102 011601Google Scholar

    [17]

    Qi J 2022 Nucl. Phys. A 1020 122394Google Scholar

    [18]

    Qi J, Fu L 2020 Phys. Rev. C 102 064629Google Scholar

    [19]

    Pálffy A, Popruzhenko S V 2020 Phys. Rev. Lett. 124 212505Google Scholar

    [20]

    Cortés H C, Popruzhenko S V, Bauer D, Pálffy A 2011 New J. Phys. 13 063007Google Scholar

    [21]

    Queisser F, Schützhold R 2019 Phys. Rev. C 100 041601

    [22]

    Ur C A, Balabanski D, Cata-Danil G, Gales S, Morjan I, Tesileanu O, UrsescuD, Ursu I, Zamfir N V 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 198Google Scholar

    [23]

    Balabanski D L, Constantin P, Rotaru A, State A 2019 Hyperfine Interact. 240 49Google Scholar

    [24]

    Zhang Z X, Wu F X, Hu J B, Yang X J, Gui J Y, Ji P H, Liu X Y, Wang C, Liu Y Q, Lu X M, Xu Y, Leng Y X, Li R X, Xu Z Z 2020 High Power Laser Sci. Eng. 8 e4Google Scholar

    [25]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang J Y, Huang P, Cao H, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681Google Scholar

    [26]

    Buck B, Merchant A C, Perez S M 1991 J. Phys. G: Nucl. Part. Phys. 17 1223

    [27]

    Bertsch G, Borysowicz J, McManus H, Love W G 1977 Nucl. Phys. A 284 399Google Scholar

    [28]

    Wildermuth K, Kanellopoulos T 1958 Nucl. Phys. 7 150Google Scholar

    [29]

    卢希庭 2000 原子核物理 (修订版) (北京: 原子能出版社) 第22页

    Lu X T 2000 Nuclear Physics (Rev. Ed.) (Beijing: Atomic Energy Publishing House) p22

    [30]

    Jeffreys H 1925 Proceedings of the London Mathematical Society s2-23 428Google Scholar

    [31]

    邢凤竹, 崔建坡, 王艳召, 顾建中 2022 物理学报 71 062301Google Scholar

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta Phys. Sin. 71 062301Google Scholar

    [32]

    Maroufi N, Dehghani V, Alavi S A 2019 Nucl. Phys. A 983 77Google Scholar

    [33]

    Sinha B 1975 Phys. Rep. 20 1Google Scholar

    [34]

    Satchler G R, Love W G 1979 Phys. Rep. 55 183Google Scholar

    [35]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [36]

    Landau L D, Lifshitz E M 2013 Quantum Mechanics: Non-relativistic Theory (Castellana: Elsevier) p472

    [37]

    Royer G 2010 Nucl. Phys. A 848 279Google Scholar

    [38]

    Basu D N 2003 Phys. Lett. B 566 90Google Scholar

    [39]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714Google Scholar

    [40]

    Sauter F 1931 Z. Phys. 69 742Google Scholar

    [41]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

  • 图 1  原子核半衰期数值计算结果及对比

    Fig. 1.  Results and comparison of nuclear half-lives.

    图 2  G值(a)和Qα值(b)与激光诱导作用的相关性

    Fig. 2.  Correlation between G (a) and Qα (b) values and laser induction.

    图 3  激光功率密度与激光诱导作用的相关性

    Fig. 3.  Correlation between laser power density and laser induction.

    表 1  原子核半衰期数值计算结果及对比, 其中核素的实验数据及不同理论方法计算数据分别来自文献[7,19,37,38]

    Table 1.  Calculation results and comparison of nuclear half-lives. These data are from Refs. [7,19,37,38].

    核素 Qα/MeV R/fm $ {T}_{1/2}^{{\mathrm{e}}{\mathrm{x}}} $/s $ {T}_{1/2}^{{\mathrm{c}}{\mathrm{a}}{\mathrm{l}}} $/s $ {T}_{1/2}^{{\mathrm{r}}{\mathrm{e}}{\mathrm{f}}} $/s 文献 n/%
    $ {}_{60}^{144}{\mathrm{N}}{\mathrm{d}} $ 1.907 7.755 (7.222±0.505)×1022 7.371×1022 5.600×1022 [19] 0.304
    $ {}_{62}^{146}{\mathrm{S}}{\mathrm{m}} $ 2.529 7.758 (2.144±0.221)×1015 1.889×1015 2.176×1015 [7] 0.180
    $ {}_{64}^{152}{\mathrm{G}}{\mathrm{d}} $ 2.205 7.786 (3.406±0.252)×1021 3.640×1021 6.276×1021 [7] 0.240
    $ {}_{68}^{154}{\mathrm{E}}{\mathrm{r}} $ 4.280 7.767 (4.786±0.266)×104 2.294×104 3.890×104 [37] 0.072
    $ {}_{70}^{158}{\mathrm{Y}}{\mathrm{b}} $ 4.180 7.790 (4.266±0.517)×106 5.709×106 4.169×105 [38] 0.074
    $ {}_{72}^{174}{\mathrm{H}}{\mathrm{f}} $ 2.559 8.161 (6.307±1.261)×1022 4.944×1022 1.397×1023 [7] 0.250
    $ {}_{74}^{162}{\mathrm{W}} $ 5.675 7.787 1.390±0.142 2.752 2.450 [19] 0.035
    $ {}_{76}^{186}{\mathrm{O}}{\mathrm{s}} $ 2.822 7.887 (6.307±3.469)×1022 7.679×1022 4.226×1022 [7] 0.235
    $ {}_{78}^{190}{\mathrm{P}}{\mathrm{t}} $ 3.243 7.895 (2.050±0.095)×1019 2.422×1019 5.248×1018 [37] 0.195
    $ {}_{80}^{178}{\mathrm{H}}{\mathrm{g}} $ 6.580 7.820 0.363±0.010 0.416 0.091 [38] 0.034
    $ {}_{84}^{212}{\mathrm{P}}{\mathrm{o}} $ 8.953 8.676 (2.990±0.002)×10–7 2.615×10–7 1.600×10–7 [19] 0.052
    $ {}_{87}^{219}{\mathrm{F}}{\mathrm{r}} $ 7.460 8.457 (1.995±0.517)×10–2 3.079×10–2 3.020×10–2 [38] 0.072
    $ {}_{88}^{220}{\mathrm{R}}{\mathrm{a}} $ 7.600 8.463 (2.512±0.060)×10–2 2.728×10–2 1.660×10–2 [38] 0.066
    $ {}_{90}^{222}{\mathrm{T}}{\mathrm{h}} $ 8.133 8.467 (2.818±0.302)×10–3 3.433×10–3 2.188×10–3 [38] 0.062
    $ {}_{92}^{238}{\mathrm{U}} $ 4.274 8.918 (1.400±0.175)×1017 3.070×1017 4.300×1017 [19] 0.213
    $ {}_{94}^{238}{\mathrm{P}}{\mathrm{u}} $ 5.593 9.196 (2.771±0.003)×109 2.930×109 4.400×109 [19] 0.139
    下载: 导出CSV
  • [1]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [2]

    Gurney R W, Condon E U 1929 Phys. Rev. 33 127Google Scholar

    [3]

    Yahya W A, Kimene Kaya B D C 2022 Int. J. Mod. Phys. E 31 2250002

    [4]

    Gontchar I I, Chushnyakova M V 2010 Comput. Phys. Commun. 181 168Google Scholar

    [5]

    Deng J G, Zhao J C, Chu P C, Li X H 2018 Phys. Rev. C 97 044322Google Scholar

    [6]

    邓军刚 2022 博士学位论文 (兰州: 兰州大学)第27—44页

    Deng J G 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University) pp27–44

    [7]

    Qian Y, Ren Z 2014 Phys. Lett. B 738 87Google Scholar

    [8]

    Mourou G 2019 Rev. Mod. Phys. 91 030501Google Scholar

    [9]

    沈百飞, 吉亮亮, 张晓梅, 步志刚, 徐建彩 2021 物理学报 70 084101Google Scholar

    Shen B F, Ji L L, Zhang X M, Bu Z G, Xu J C 2021 Acta Phys. Sin. 70 084101Google Scholar

    [10]

    Ledingham K W D, Spencer I, McCanny T, Singhal R P, Santala M I K, Clark E, Watts I, Beg F N, Zepf M, Krushelnick K, Tatarakis M, Dangor A E, Norreys P A, Allott R, Neely D, Clark R J, Machacek A C, Wark J S, Cresswell A J, Sanderson D C W, Magill J 2000 Phys. Rev. Lett. 84 899Google Scholar

    [11]

    席晓峰, 郭冰, 符长波, 吕冲, 张国强 2023 原子能科学技术 57 865Google Scholar

    Xi X F, Guo B, Fu C B, Lü C, Zhang G Q 2023 At. Energy Sci. Technol. 57 865Google Scholar

    [12]

    Castañeda Cortés H M 2012 Ph. D. Dissertation (Heidelberg: Ruprecht-Karls-Universität) pp69–103

    [13]

    Buck B, Merchant A C, Perez S M 1990 Phys. Rev. Lett. 65 2975Google Scholar

    [14]

    Qi J T, Li T, Xu R H, Fu L B, Wang X 2019 Phys. Rev. C 99 044610Google Scholar

    [15]

    Delion D S, Ghinescu S A 2017 Phys. Rev. Lett. 119 202501Google Scholar

    [16]

    Wang X 2020 Phys. Rev. C 102 011601Google Scholar

    [17]

    Qi J 2022 Nucl. Phys. A 1020 122394Google Scholar

    [18]

    Qi J, Fu L 2020 Phys. Rev. C 102 064629Google Scholar

    [19]

    Pálffy A, Popruzhenko S V 2020 Phys. Rev. Lett. 124 212505Google Scholar

    [20]

    Cortés H C, Popruzhenko S V, Bauer D, Pálffy A 2011 New J. Phys. 13 063007Google Scholar

    [21]

    Queisser F, Schützhold R 2019 Phys. Rev. C 100 041601

    [22]

    Ur C A, Balabanski D, Cata-Danil G, Gales S, Morjan I, Tesileanu O, UrsescuD, Ursu I, Zamfir N V 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 355 198Google Scholar

    [23]

    Balabanski D L, Constantin P, Rotaru A, State A 2019 Hyperfine Interact. 240 49Google Scholar

    [24]

    Zhang Z X, Wu F X, Hu J B, Yang X J, Gui J Y, Ji P H, Liu X Y, Wang C, Liu Y Q, Lu X M, Xu Y, Leng Y X, Li R X, Xu Z Z 2020 High Power Laser Sci. Eng. 8 e4Google Scholar

    [25]

    Li W Q, Gan Z B, Yu L H, Wang C, Liu Y Q, Guo Z, Xu L, Xu M, Hang Y, Xu Y, Wang J Y, Huang P, Cao H, Yao B, Zhang X B, Chen L R, Tang Y H, Li S, Liu X Y, Li S M, He M Z, Yin D J, Liang X Y, Leng Y X, Li R X, Xu Z Z 2018 Opt. Lett. 43 5681Google Scholar

    [26]

    Buck B, Merchant A C, Perez S M 1991 J. Phys. G: Nucl. Part. Phys. 17 1223

    [27]

    Bertsch G, Borysowicz J, McManus H, Love W G 1977 Nucl. Phys. A 284 399Google Scholar

    [28]

    Wildermuth K, Kanellopoulos T 1958 Nucl. Phys. 7 150Google Scholar

    [29]

    卢希庭 2000 原子核物理 (修订版) (北京: 原子能出版社) 第22页

    Lu X T 2000 Nuclear Physics (Rev. Ed.) (Beijing: Atomic Energy Publishing House) p22

    [30]

    Jeffreys H 1925 Proceedings of the London Mathematical Society s2-23 428Google Scholar

    [31]

    邢凤竹, 崔建坡, 王艳召, 顾建中 2022 物理学报 71 062301Google Scholar

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta Phys. Sin. 71 062301Google Scholar

    [32]

    Maroufi N, Dehghani V, Alavi S A 2019 Nucl. Phys. A 983 77Google Scholar

    [33]

    Sinha B 1975 Phys. Rep. 20 1Google Scholar

    [34]

    Satchler G R, Love W G 1979 Phys. Rep. 55 183Google Scholar

    [35]

    Wang M, Huang W J, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [36]

    Landau L D, Lifshitz E M 2013 Quantum Mechanics: Non-relativistic Theory (Castellana: Elsevier) p472

    [37]

    Royer G 2010 Nucl. Phys. A 848 279Google Scholar

    [38]

    Basu D N 2003 Phys. Lett. B 566 90Google Scholar

    [39]

    Heisenberg W, Euler H 1936 Z. Phys. 98 714Google Scholar

    [40]

    Sauter F 1931 Z. Phys. 69 742Google Scholar

    [41]

    Schwinger J 1951 Phys. Rev. 82 664Google Scholar

  • [1] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] 吉亮亮, 耿学松, 伍艺通, 沈百飞, 李儒新. 超强激光驱动的辐射反作用力效应与极化粒子加速. 物理学报, 2021, 70(8): 085203. doi: 10.7498/aps.70.20210091
    [3] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变. 物理学报, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [4] 魏留磊, 蔡洪波, 张文帅, 田建民, 张恩浩, 熊俊, 朱少平. 超强激光与泡沫微结构靶相互作用提高强流电子束产额模拟研究. 物理学报, 2019, 68(9): 094101. doi: 10.7498/aps.68.20182291
    [5] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波. 物理学报, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [6] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响. 物理学报, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [7] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [8] 圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发. 有效液滴模型对超铅区结团放射性的研究. 物理学报, 2014, 63(16): 162302. doi: 10.7498/aps.63.162302
    [9] 王广辉, 王晓方, 董克攻. 超短超强激光导引及对电子加速的影响. 物理学报, 2012, 61(16): 165201. doi: 10.7498/aps.61.165201
    [10] 闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生. 物理学报, 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [11] 闫春燕, 张秋菊. 相对传播的双脉冲激光与薄膜靶作用产生的强单色谐波. 物理学报, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [12] 张高龙, 乐小云, 刘浩. 重核大集团发射半衰期的计算. 物理学报, 2009, 58(4): 2300-2305. doi: 10.7498/aps.58.2300
    [13] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
    [14] 孔 青, 朱立俊, 王加祥, 霍裕昆. 电子在超强激光场中的动力学特性. 物理学报, 1999, 48(4): 650-660. doi: 10.7498/aps.48.650
    [15] 基本粒子理论组. 超子的辐射衰变. 物理学报, 1975, 24(1): 46-50. doi: 10.7498/aps.24.46
    [16] 杨慧琳, 胡诗婉, 王珮. 关于ρ介子的辐射衰变. 物理学报, 1964, 20(5): 475-476. doi: 10.7498/aps.20.475
    [17] 戴元本. ω粒子的辐射衰变. 物理学报, 1964, 20(2): 131-136. doi: 10.7498/aps.20.131
    [18] 周月华, 徐永昌, 王朝俊, 郑林生. Cs134的衰变. 物理学报, 1960, 16(7): 401-412. doi: 10.7498/aps.16.401
    [19] 郭硕鸿. π介子的辐射衰变. 物理学报, 1960, 16(5): 299-304. doi: 10.7498/aps.16.299
    [20] 胡宁, 于敏. β—衰变理论. 物理学报, 1951, 8(3): 260-269. doi: 10.7498/aps.8.260
计量
  • 文章访问数:  2327
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 修回日期:  2023-11-09
  • 上网日期:  2023-12-29
  • 刊出日期:  2024-03-20

/

返回文章
返回