搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双端腔Ⅱ类倍频产生四组份纠缠光场

郝景晨 杜培林 孙恒信 刘奎 张静 杨荣国 郜江瑞

引用本文:
Citation:

双端腔Ⅱ类倍频产生四组份纠缠光场

郝景晨, 杜培林, 孙恒信, 刘奎, 张静, 杨荣国, 郜江瑞

Quadripartite entanglement from two-port resonator with second-order harmonic generation

Hao Jing-Chen, Du Pei-Lin, Sun Heng-Xin, Liu Kui, Zhang Jing, Yang Rong-Guo, Gao Jiang-Rui
PDF
HTML
导出引用
  • 量子纠缠是执行量子计算和构建量子通信网络的关键资源, 制备与操控纠缠态光场是实现量子信息处理的基础要素. 本文提出了利用双端光学腔倍频产生四组份纠缠态的理论模型, 从耦合波方程出发得到Ⅱ类倍频过程的传输矩阵, 通过腔内自再现方程和输入输出传输矩阵理论研究了输出的两束倍频光的噪声特性; 对于两束倍频光和两束基频泵浦场, 利用多组份纠缠光场的充分必要判据PPT方法(positivity under partial transposition criterion)分析了最小辛本征值与泵浦功率及分析频率之间的关系, 研究结果表明基频泵浦光与倍频光之间存在四组份纠缠.
    Quantum entanglement is a crucial resource for performing quantum computing and constructing quantum communication networks. The preparation and manipulation of entangled light field are the basic elements of quantum communication. With the development of science and technology, multicolor multipartite entanglement is becoming a kind of special resource for quantum information, quantum networks, and quantum memory. In this paper, we propose a scheme of generating quadripartite entanglement among four output beams from a two-port frequency doubling resonator, in which a type-II phase matching nonlinear crystal is placed. We make two fundamental-frequency pump beams with the same frequency and vertical polarization pass through the nonlinear crystal to produce two frequency-doubling beams. There is a quadripartite entanglement between the frequency-doubling beams, which are output at two ports of the optical resonator, and the incident fundamental beams. Based on the transmission matrix from the coupled wave equation, the self-consistent equations of the intracavity modes and the corresponding noise properties of the output modes can be obtained. Then, the quadripartite entanglement produced from two second harmonic beams and two reflected fundamental-frequency pump beams, is verified by using the positive partial transposition criterion, in a wide range of pumping power and analysis frequency. The setup proposed in this work is compact and experimentally feasible. It is also convenient to separate the four entangled beams spatially, with different wavelengths and polarizations. When the beam wavelengths are matched with 1560 nm (low loss window of fiber) and 780 nm (atomic absorption line of Rb), this scheme can be more useful in both quantum communication and quantum memory.
      通信作者: 杨荣国, yrg@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2022YFA1404503, 2021YFC2201802)和国家自然科学基金(批准号: 11874248, 11874249, 62027821, 12074233)资助的课题.
      Corresponding author: Yang Rong-Guo, yrg@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2022YFA1404503, 2021YFC2201802) and the National Natural Science Foundation of China (Grant Nos. 11874248, 11874249, 62027821, 12074233).
    [1]

    Tang J F, Hou Z B, Shang J W, Zhu H J, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. Lett. 124 060502Google Scholar

    [2]

    Xie B Y, Feng S 2021 Chin. Opt. Lett. 19 072701Google Scholar

    [3]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594Google Scholar

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330Google Scholar

    [5]

    Avis G, Rozpędek F, Wehner S 2023 Phys. Rev. A 107 012609Google Scholar

    [6]

    Bugalho L, Coutinho B C, Monteiro F A, Omar Y 2023 Quantum 7 920Google Scholar

    [7]

    Karpow E, Navez P, Gerf N J 2004 Phys. Rev. A 69 040301Google Scholar

    [8]

    Wang X W, Yang G J 2009 Phys. Rev. A 79 062315Google Scholar

    [9]

    Das S, Halder P, Banerjee R, Sen A 2023 Phys. Rev. A 107 042414Google Scholar

    [10]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903Google Scholar

    [11]

    Navascues M, Wolfe E, Rosset D, Pozas-Kerstjens A 2020 Phys. Rev. Lett. 125 240505Google Scholar

    [12]

    Menicucc N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501Google Scholar

    [13]

    Bruß D, Macchiavello C 2011 Phys. Rev. A 83 052313Google Scholar

    [14]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K P 2013 Nat. Commun. 4 2828Google Scholar

    [15]

    余胜, 刘焕章, 刘胜帅, 荆杰泰 2020 物理学报 69 090303Google Scholar

    Yu S, Liu H Z, Liu S S, Jing J T 2020 Acta Phys. Sin. 69 090303Google Scholar

    [16]

    Du P L, Wang Y, Liu K, Yang R G, Zhang J 2023 Opt. Express 31 7535Google Scholar

    [17]

    何英秋, 丁东, 彭涛, 闫凤利, 高亭 2018 物理学报 67 060302Google Scholar

    He Y Q, Ding D, Peng T, Yan F L, Gao T 2018 Acta Phys. Sin. 67 060302Google Scholar

    [18]

    丁东, 何英秋, 闫凤利, 高亭 2015 物理学报 64 160301Google Scholar

    Ding D, He Y Q, Yan F L, Gao T 2015 Acta Phys. Sin. 64 160301Google Scholar

    [19]

    张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [20]

    Leng H Y, Wang J F, Yu Y B, Yu X Q, Xu P, Xie Z D, Zhao J S, Zhu S N 2009 Phys. Rev. A 79 032337Google Scholar

    [21]

    Lim O K, Saffman M 2006 Phys. Rev. A 74 023816Google Scholar

    [22]

    Zhai S Q, Yang R G, Liu K, Zhang H L, Zhang J X, Gao J R 2009 Opt. Express 17 9851Google Scholar

    [23]

    Yang R G, Zhai S Q, Liu K, Zhang J X, Gao J R 2010 J. Opt. Soc. Am. B 27 2721Google Scholar

    [24]

    Xue X X, Leo F, Xuan Y, Jaramillo-Villegas J A, Wang P H, Leaird D E, Erkintalo M, Qi M H, Weiner Andrew M 2017 Light: Sci. Appl. 6 e16253Google Scholar

    [25]

    Barral D, Bencheikh K, Belabas N, Levenson J A 2019 Phys. Rev. A 99 051801Google Scholar

    [26]

    Armstrong J A, Bloembergen N, Ducuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar

    [27]

    Li R D, Kumar P 1994 Phys. Rev. A 49 2157Google Scholar

    [28]

    Simón R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [29]

    Bohnet-Waldraff F, Braun D, Giraud O 2016 Phy. Rev. A 94 042343Google Scholar

    [30]

    冯晋霞 2008 博士学位论文 (太原: 山西大学)

    Feng J X 2008 Ph. D. Dissertation (Shanxi: Shanxi University

    [31]

    Villar A S, Cruz L S, Cassemiro K N, Martinelli M, Nussenzveig P 2005 Phys. Rev. Lett. 95 243603Google Scholar

  • 图 1  双端倍频腔产生四组份纠缠态的理论模型

    Fig. 1.  Theoretical model diagram of quadripartite entanglement generated by a dual-ported singly resonant cavity.

    图 2  双端腔倍频产生的两束倍频光的噪声特性 (a) 正交振幅噪声的压缩谱; (b) 正交位相噪声的反压缩谱

    Fig. 2.  Output squeezing spectra of the harmonic fields: (a) Compression spectrum of orthogonal amplitude noise; (b) inverse compression spectrum of orthogonal phase noise.

    图 3  最小辛本征值与泵浦功率${P_{{\text{in}}}}$的关系图 (a) i表示两束基频光的纠缠, ii表示两束倍频光的纠缠; (b) iii表示基频光1与倍频光1的纠缠, iv表示基频光1与倍频光2的纠缠; (c) v表示基频光2与倍频光1的纠缠, vi表示基频光2与倍频光2的纠缠

    Fig. 3.  Lines about symplectic eigenvalues are plotted as functions of ${P_{{\text{in}}}}$ when $\varOmega = 0$: (a) i represents the entanglement of two fundamental beams, ii represents the entanglement of two frequency-doubling beams; (b) iii represents the entanglement of fundamental beam1 and frequency-doubling beam1, iv represents the entanglement of fundamental beam1 and frequency-doubling beam2; (c) v represents the entanglement of fundamental beam2 and frequency-doubling beam1, vi represents the entanglement of fundamental beam2 and frequency-doubling beam2.

    图 4  最小辛本征值与归一化到腔带宽频率$\varOmega $的关系图 (a) i表示两束基频光的纠缠, ii表示两束倍频光的纠缠; (b) iii表示基频光1与倍频光1的纠缠, iv表示基频光1与倍频光2的纠缠; (c) v表示基频光2与倍频光1的纠缠, vi表示基频光2与倍频光2的纠缠

    Fig. 4.  Lines about symplectic eigenvalues are plotted as functions of $\varOmega $ when ${P_{{\text{in}}}} = 2{\text{ W}}$: (a) i represents the entanglement of two fundamental beams, ii represents the entanglement of two frequency-doubling beams; (b) iii represents the entanglement of fundamental beam1 and frequency-doubling beam1, iv represents the entanglement of fundamental beam1 and frequency-doubling beam2; (c) v represents the entanglement of fundamental beam2 and frequency-doubling beam1, vi represents the entanglement of fundamental beam2 and frequency-doubling beam2.

  • [1]

    Tang J F, Hou Z B, Shang J W, Zhu H J, Xiang G Y, Li C F, Guo G C 2020 Phys. Rev. Lett. 124 060502Google Scholar

    [2]

    Xie B Y, Feng S 2021 Chin. Opt. Lett. 19 072701Google Scholar

    [3]

    Brendel J, Gisin N, Tittel W, Zbinden H 1999 Phys. Rev. Lett. 82 2594Google Scholar

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 306 1330Google Scholar

    [5]

    Avis G, Rozpędek F, Wehner S 2023 Phys. Rev. A 107 012609Google Scholar

    [6]

    Bugalho L, Coutinho B C, Monteiro F A, Omar Y 2023 Quantum 7 920Google Scholar

    [7]

    Karpow E, Navez P, Gerf N J 2004 Phys. Rev. A 69 040301Google Scholar

    [8]

    Wang X W, Yang G J 2009 Phys. Rev. A 79 062315Google Scholar

    [9]

    Das S, Halder P, Banerjee R, Sen A 2023 Phys. Rev. A 107 042414Google Scholar

    [10]

    Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C 2003 Phys. Rev. Lett. 90 167903Google Scholar

    [11]

    Navascues M, Wolfe E, Rosset D, Pozas-Kerstjens A 2020 Phys. Rev. Lett. 125 240505Google Scholar

    [12]

    Menicucc N C, van Loock P, Gu M, Weedbrook C, Ralph T C, Nielsen M A 2006 Phys. Rev. Lett. 97 110501Google Scholar

    [13]

    Bruß D, Macchiavello C 2011 Phys. Rev. A 83 052313Google Scholar

    [14]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K P 2013 Nat. Commun. 4 2828Google Scholar

    [15]

    余胜, 刘焕章, 刘胜帅, 荆杰泰 2020 物理学报 69 090303Google Scholar

    Yu S, Liu H Z, Liu S S, Jing J T 2020 Acta Phys. Sin. 69 090303Google Scholar

    [16]

    Du P L, Wang Y, Liu K, Yang R G, Zhang J 2023 Opt. Express 31 7535Google Scholar

    [17]

    何英秋, 丁东, 彭涛, 闫凤利, 高亭 2018 物理学报 67 060302Google Scholar

    He Y Q, Ding D, Peng T, Yan F L, Gao T 2018 Acta Phys. Sin. 67 060302Google Scholar

    [18]

    丁东, 何英秋, 闫凤利, 高亭 2015 物理学报 64 160301Google Scholar

    Ding D, He Y Q, Yan F L, Gao T 2015 Acta Phys. Sin. 64 160301Google Scholar

    [19]

    张越, 侯飞雁, 刘涛, 张晓斐, 张首刚, 董瑞芳 2018 物理学报 67 144204Google Scholar

    Zhang Y, Hou F Y, Liu T, Zhang X F, Zhang S G, Dong R F 2018 Acta Phys. Sin. 67 144204Google Scholar

    [20]

    Leng H Y, Wang J F, Yu Y B, Yu X Q, Xu P, Xie Z D, Zhao J S, Zhu S N 2009 Phys. Rev. A 79 032337Google Scholar

    [21]

    Lim O K, Saffman M 2006 Phys. Rev. A 74 023816Google Scholar

    [22]

    Zhai S Q, Yang R G, Liu K, Zhang H L, Zhang J X, Gao J R 2009 Opt. Express 17 9851Google Scholar

    [23]

    Yang R G, Zhai S Q, Liu K, Zhang J X, Gao J R 2010 J. Opt. Soc. Am. B 27 2721Google Scholar

    [24]

    Xue X X, Leo F, Xuan Y, Jaramillo-Villegas J A, Wang P H, Leaird D E, Erkintalo M, Qi M H, Weiner Andrew M 2017 Light: Sci. Appl. 6 e16253Google Scholar

    [25]

    Barral D, Bencheikh K, Belabas N, Levenson J A 2019 Phys. Rev. A 99 051801Google Scholar

    [26]

    Armstrong J A, Bloembergen N, Ducuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar

    [27]

    Li R D, Kumar P 1994 Phys. Rev. A 49 2157Google Scholar

    [28]

    Simón R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [29]

    Bohnet-Waldraff F, Braun D, Giraud O 2016 Phy. Rev. A 94 042343Google Scholar

    [30]

    冯晋霞 2008 博士学位论文 (太原: 山西大学)

    Feng J X 2008 Ph. D. Dissertation (Shanxi: Shanxi University

    [31]

    Villar A S, Cruz L S, Cassemiro K N, Martinelli M, Nussenzveig P 2005 Phys. Rev. Lett. 95 243603Google Scholar

  • [1] 陈锋, 任刚. 基于纠缠态表象的双模耦合谐振子量子特性分析. 物理学报, 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [2] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门. 物理学报, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [4] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控. 物理学报, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [5] 王灿灿. 量子纠缠与宇宙学弗里德曼方程. 物理学报, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [6] 邢贵超, 夏云杰. 与热库耦合的光学腔内三原子间的纠缠动力学. 物理学报, 2018, 67(7): 070301. doi: 10.7498/aps.67.20172546
    [7] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数. 物理学报, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [8] 汪仲清, 赵小奇, 周贤菊. 原子在弱相干场光纤耦合腔系统中的纠缠特性. 物理学报, 2013, 62(22): 220302. doi: 10.7498/aps.62.220302
    [9] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [10] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [11] 廖庆洪, 刘晔. 陆续通过一个双模腔的两原子之间纠缠的突然产生和调控. 物理学报, 2012, 61(15): 150301. doi: 10.7498/aps.61.150301
    [12] 卢道明. 三能级原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2012, 61(3): 030301. doi: 10.7498/aps.61.030301
    [13] 卢道明. 三个耦合腔系统中的纠缠特性. 物理学报, 2012, 61(15): 150303. doi: 10.7498/aps.61.150303
    [14] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响. 物理学报, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [15] 卢道明. 型和V型三能级原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2011, 60(12): 120303. doi: 10.7498/aps.60.120303
    [16] 卢道明. 原子与耦合腔相互作用系统中的纠缠特性. 物理学报, 2011, 60(9): 090302. doi: 10.7498/aps.60.090302
    [17] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议. 物理学报, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [18] 卢道明. 腔外原子操作控制腔内原子的纠缠特性. 物理学报, 2010, 59(12): 8359-8364. doi: 10.7498/aps.59.8359
    [19] 胡要花, 方卯发, 廖湘萍, 郑小娟. 二项式光场与级联三能级原子的量子纠缠. 物理学报, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干. 物理学报, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  1489
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-09
  • 修回日期:  2023-11-30
  • 上网日期:  2024-02-06
  • 刊出日期:  2024-04-05

/

返回文章
返回