-
In cold atom experiments, high resolution imaging systems have been used to extract in-situ density information when studying quantum gases, which is one of the hot topics in this field. Such a system is usually called “quantum-gas microscope”. In order to achieve a long working distance and large magnification, high resolution imaging of cold atoms through a vacuum window usually requires a long distance between the atoms and the camera. However, due to space limitation caused by a large number of nearby optical elements, it may be difficult to realize a long imaging system, which is a common case in cold atom experiments. Herein we present an imaging system that can achieve a short distance between the atoms and the image plane with diffraction-limited 1 μm resolution and 50 magnification. The telephoto lens design is adopted to reduce the back focal length and enhance the pointing stability of the imaging lens. The system is optimized at an operating wavelength of 767 nm and corrects aberrations induced by a 5-mm-thick silica vacuum window. At a working distance of 32 mm, a diffraction-limited field of view of 408 μm is obtained. The simulation result shows that by changing the air space between lenses, our design operates across a wide range of window thicknesses (0–15 mm), which makes it robust enough to be used in typical laboratories. This compact imaging system is made from commercial on-shelf Φ2 in (1 in = 2.54 cm) singlets and consists of two components: a microscope objective with a numerical aperture of 0.47 and a telephoto objective with a long effective focal length of 1826 mm. Both are infinitely corrected, allowing the distance between them to be adjusted to insert optical elements for irradiating atoms with laser beams of different wavelengths without affecting the imaging resolution. Taking the manufacturing and assembling tolerances into consideration, the Monte Carlo analyses show that more than 95% of the random samples are diffraction-limited within the field of view. This high success rate ensures that these two objectives can be achieved easily in the experiment. Combined with its performance with other wavelengths (470–1064 nm), this imaging system can be used for imaging different atom species, such as sodium, lithium, and cesium.
-
Keywords:
- cold atom experiments /
- high resolution imaging /
- optical design
1. 引 言
作为冷原子实验的基本技术之一, 高分辨率成像能够以亚微米级的分辨率探测和操纵单个俘获的中性原子[1–7]和离子[8], 已经被用来研究量子多体, 如量子计算[9–11]、扭转双层光晶格[12,13]、凝聚物态的合成[14,15]、纠缠熵[16–18]和量子相变[5,19,20]. 这种高分辨率成像系统主要由两部分组成: 一是显微物镜, 用于收集原子散射的光子并补偿厚真空窗口造成的像差; 二是成像镜头, 用于将来自物镜的光束聚焦到相机上. 目前的实验方案中[21–28], 普通情况下即使放大倍率小于30, 物体与像平面之间的距离也超过1 m[21,23–25,28]. 大范围的窗口厚度表示更好的像差校正, 当数值孔径(numerical aperture, NA)大于0.4时, 通过改变透镜间距补偿像差, 窗口厚度范围只能达到13 mm[21,23,24,27]. 要清晰地观察原子, 最好使用大倍率将原子成像在相机上, 但大倍率通常需要长后焦距(back focal length, BFL), 影响焦点的指向稳定性[29,30], 并且冷原子实验中光学元件排布密集, 存在对成像光路的空间限制, 长后焦距将给成像系统的搭建带来困难. 表1和表2为用于冷原子实验的不同高分辨成像系统参数的比较, 表1比对了反映物像距离的参数, 表2比对了真空窗厚度范围. 由于文献中未提供成像光路中原子到像平面的距离, 而物像距离主要取决于靠近相机长焦成像镜组焦点到该镜组距离相机最远透镜的距离, 所以表1中使用此距离反映物像距离的长短.
本文设计了一套由两个无限远校正物镜组成的高分辨冷原子成像系统: 一个大NA显微物镜和一个长有效焦距(effective focal length, EFL)远摄物镜. 与之前的设计[21–28]相比, 该成像系统在保持比较大的倍率和视场(field of view, FOV)的同时, 缩短了原子与像平面之间的距离, 并可以在更大的真空窗厚度范围内使用. 显微物镜的NA为0.47, 工作距离(working distance, WD)为32 mm. 为了降低BFL, 采用了远摄物镜 [31]作为成像镜头. 远摄物镜的EFL为1826 mm, BFL为779 mm. 成像波长和真空窗口厚度分别为767 nm和5 mm. 对于其他波长(470—1064 nm)和窗口厚度(0—15 mm), 可以改变透镜间隔补偿像差来保持分辨率.
2. 成像系统设计
表3列出了成像系统的设计要求. 由于需要透过真空窗口对气态39K原子进行成像, 显微镜物镜的WD必须大于原子与窗口外表面之间的距离(20 mm). 相机(Andor iXon Ultra 897)的传感器面积为8.2 mm×8.2 mm, 成像系统放大倍率为50. 为了提高成像分辨率的同时又保持比较大的衍射极限FOV, 使用了1 μm的分辨率. 除上述要求外, 为了使光路易于搭建, 应尽量缩短原子与相机之间的距离(即表3中的track length). 图1为成像系统的光路结构, 两个物镜均为无限远校正, 它们之间的距离可根据实验条件调整到任意值, 方便后期在两个物镜之间插入二向色镜[13,32]或分光镜[6]引入其他波长光到真空室内.
表 3 成像系统的设计要求Table 3. Design requirements of the imaging system.Items Specifications Resolution/μm 1 Wavelength/nm 767 Working distance/mm >20 Magnification 50 Track length/m <1 Image diameter/mm 8.2 根据瑞利判据, 当NA = 0.47时, 分辨率为1 μm. 考虑到相机传感器尺寸和放大率, 显微物镜的图像尺寸应为8.2/50 mm = 164 μm. 使用光线追迹软件OSLO(optics software for layout and optimization, Lambda Research)对物镜设计进行优化和仿真. 显微物镜初始结构来自Alt [33], 为了找到像差最小的结构, 使用均方根光程差(root-mean-square optical path difference, RMS OPD)作为优化函数, 将透镜间隔、厚度和曲率设为变量, 使用透镜分裂增加变量数目来补偿像差, 使用相近EFL商用成品透镜替换优化过程中厚度和曲率都基本不变的透镜.
2.1 显微物镜设计
表4和图2分别为显微物镜的参数和光路结构. 面1—10表示透镜表面, 面11和面12表示真空窗口, 5个球面透镜的直径均为2 in (1 in = 2.54 cm), 来自Thorlabs公司, 透镜型号从左到右依次为LC1093, LB1106, LB1889, LE1418和LE1076. WD(32 mm)为面10边沿与原子之间沿光轴方向的距离, EFL为36.24 mm.
表 4 显微物镜的参数Table 4. Specifications of the microscope objective.Surface No. Radius/mm Thickness/mm Material 1 Infinity 4.00 N-BK7 2 51.46 31.50(d1) Air 3 127.37 8.12 N-BK7 4 –127.37 0.50 Air 5 256.59 5.52 N-BK7 6 –256.59 0.50 Air 7 47.87 7.29 N-BK7 8 119.32 1.40 Air 9 30.34 9.70 N-BK7 10 65.80 17.0264 Air 11 Infinity 5.00 Silica 12 Infinity 15.00 Vacuum 图3为显微物镜的仿真结果, 0.13°视场对应像斑直径为165 μm. 图3(a)中的坐标为物点发出的光线在出瞳中的位置, 不同视场角下物点发出的光线经过出瞳不同位置后具有不同的OPD. 图3(a)说明波像差随着视场角的增大而增大. 边缘视场(1.0 field)的RMS OPD为0.0127λ, 低于0.07λ [34](衍射极限判据, 此时斯特列尔比率为0.8), 小的波像差允许更大的公差范围, 提高装配后的成功率. 图3(b)中, 几乎所有光线都在直径为1 μm的艾里斑内. 图3(c)中, 边缘视场光线的弧矢(sagittal)面和子午(tangential)面调制传递函数(modulation transfer function, MTF)曲线与理论衍射极限下的MTF几乎重合, 插图为目标空间频率(1000 cycles/mm)处的MTF曲线. 图3表明显微物镜在0.13°视场内达到了衍射极限. 对于其他波长(470—1064 nm)和窗口厚度(0—15 mm), 通过改变图2中的d1可使NA = 0.47并达到衍射极限. 0—15 mm的范围增强了对冷原子实验中各种窗口厚度的适应性.
图 3 显微物镜的仿真结果 (a) 不同视场角下出瞳不同位置光线的波像差(单位为767 nm); (b) 不同视场角下的点列图, 圆圈表示艾里斑大小; (c) 0.13°视场角时的MTF曲线, 插图为1000 cycles/mm处的MTF曲线Fig. 3. Simulated results of the microscope objective. (a) Wavefront error at different positions of the exit pupil at different fields (The unit is 767 nm). (b) Spot diagrams at different fields. The black circles represent the Airy disks. (c) MTF curves at 1.0 field. The inset plots the MTF near 1000 cycles/mm.对显微镜物镜进行公差分析可以评估可制造性, 表5为分析中使用的公差. 透镜半径公差(radii)以干涉仪使用的波长为单位(λ633=633 nm), 中心偏公差(centering)是指由两个球面中心决定的光轴与由透镜边缘决定的机械轴之间的角度偏差, 装配中心偏公差(decentration)表示装配后透镜中心与光轴的偏差距离, 孔径倾斜公差(clear aperture tilt)表示透镜的倾斜角度公差. 将面10的厚度设置为变量, 对应装配后调节显微物镜到真空窗口的距离. 图2中左侧第一个透镜的中心关于物镜光轴的偏移距离和倾斜角度也被设置为变量 [32]. 假定公差为高斯分布, 对500个样本进行蒙特卡罗公差分析, 99%的样本在视场内达到了衍射极限.
表 5 公差分析中使用的公差值Table 5. Tolerances used in the tolerance analysis.Tolerance type Items Value Manufacturing tolerance Lens thickness ±0.1 mm Air space ±0.05 mm Radii ±3λ633 Refractive index ±0.001 Centering ±3 arcmin Assembling tolerance Decentration ±0.05 mm Clear aperture tilt ±0.02° 2.2 远摄物镜设计
为了满足50倍放大率的要求, 远摄物镜的EFL应为显微物镜的50倍. 图4为远摄物镜的示意图. H’为像方主点, 透镜L1、透镜L2的焦距分别为f′1, f′2, d是它们之间的距离, f′, lF′分别为组合后透镜组的EFL和BFL.
利用薄透镜近似来简化计算:
1f′=1f′2+1f′1−df′1f′2 ,BFL=lF′=f′(1−d/f′1) . (1) 根据设计目标, 设定约束条件为f′=1900 mm, BFL小于1000 mm, d<100 mm, 得到
−125<f′2<0 ,−f′2/(1019−f′21900)<f′1<19009 . (2) 选择常见焦距为f′2, 用(2)式计算f′1, 利用(1)式计算出f′和BFL. 经过计算, 只有f′1=150 mm和f′2=−75 mm满足要求. 将初步计算出的结果作为初始结构在OSLO中选择成品透镜并进行优化, 优化过程中发现2片透镜得到的像差较大, 于是将正透镜分裂为两个透镜后再优化, 最终透镜组如表6和图5所示. 透镜型号从左到右依次为LA1384, KBC070和LC1315, 双凹透镜来自Newport公司, 其他透镜来自Thorlabs公司, 面7和面8表示相机窗口, 相机窗口位于右侧, 未在光路结构图中显示. 该远摄物镜的长度和BFL分别为95 mm和779 mm, EFL为1826 mm, 约为显微物镜EFL的50.4倍.
表 6 远摄物镜的参数Table 6. Specifications of the telephoto objective.Surface No. Radius/mm Thicknesses/mm Material 1 64.38 8.22 N-BK7 2 Infinity 9.60(d2) Air 3 –517.255 2.50 N-BK7 4 517.255 71.00(d3) Air 5 –38.59 3.50 N-BK7 6 Infinity 772.016 Air 7 Infinity 1.50 Silica 8 Infinity 5.55 Vacuum 分析像差时的视场与显微物镜相同, 对应远摄物镜像平面上的像斑直径为8.3 mm. 图6(a)显示了该远摄物镜在不同视场角下的波像差. 将相机窗口的材料从石英变为空气后, 边缘视场RMS OPD仅增加了0.017λ, 说明成像系统对相机窗口不敏感, 所以该设计可用于其他类型的相机. 图6(b)和图6(c)为点列图和MTF曲线. 在图6(b)中, 所有光线都在艾里斑内, 边缘视场的锥形点列图表示残余像差主要由彗差造成. 图6(c)中三条MTF曲线几乎重叠. 由于远摄物镜的NA约为显微物镜的1/50, 因此最大空间频率设定为30 cycles/mm. 通过调节d2和d3, 可使远摄物镜在其他波长(440—1064 nm)处保持衍射极限的同时, EFL大于1700 mm, BFL小于810 mm.
公差值和变量与显微物镜公差分析中使用的相同. 蒙特卡罗公差分析表明, 在对500个随机系统进行评估后, 97%的系统在视场内达到了衍射极限.
2.3 组合后成像系统表现
组合两个物镜后的完整成像系统如图1所示, 图7为使用Zemax(OpticStudio, Ansys)对中心视场处(0 field)的成像仿真. 如图7(a)所示, 为了使第9组元素3中白条之间的中心距离为1 μm, USAF 1951分辨率板已按比例缩小, 仿真结果显示对应图7(b)中的白条可被分辨. 图7(c)为像平面上点扩散函数(point spread function, PSF)的径向分布, 已经使用理想情况下的PSF归一化. PSF第一个极小值距离中心50 μm, 结合系统的放大倍数为50.6, 对应物平面上距离为0.99 μm, 验证了系统的1 μm分辨率.
图 7 中心视场处的分辨率仿真 (a) 物平面上的USAF 1951分辨率板; (b) 像平面上的仿真结果; (c) 像平面上PSF的径向分布, 插图为PSF在像平面上的投影, 峰值对应斯特列尔比率Fig. 7. Simulation of the system’s resolution at 0 field: (a) The USAF 1951 resolution target in the object plane; (b) the simulation result in the image plane; (c) PSF along the radial direction in the image plane. The inset in panel (c) shows the projection of the PSF on the image plane, where the peak value corresponds to the Strehl ratio.表7为不同真空窗厚度和波长下成像系统的表现. 组合前显微物镜和远摄物镜都独立优化至最小像差, 组合后两者间距为20 mm, 可以用来继续对成像组进行优化的唯一的变量为远摄物镜至相机的距离. 物镜的NA和FOV被设定为固定值, 分别为0.47和160 μm. 衍射极限FOV (diffraction-limited FOV)表示使边缘视场RMS OPD增至0.07λ时的视场直径. 追迹长度(track length)表示物平面至像平面的距离, 该值小于1.1 m, 使得整个成像系统节省空间. 从表7可知, 该成像系统可在470—1064 nm和0—15 mm之间的任意波长和窗口厚度条件下工作, 具有较短的追迹长度和较大的衍射极限FOV. 进一步的无热化分析结果表明, 在10 ℃至30 ℃之间, 通过改变远摄物镜与相机窗口之间的距离可以保持衍射极限.
表 7 不同真空窗厚度与波长下的表现Table 7. Performance of the imaging system at different window thicknesses and wavelengths.Wavelength/nm Window
thickness/mmd1/mm d2/mm d3/mm Diffraction-limited
FOV/μmMagnification Track
length/mm470 0 26.1 226 –48.8 963 5 31.4 0.624 83.9 230 –51.5 969 15 50.8 173 –50.0 827 767 0 26.2 398 –47.7 986 5 31.5 9.6 71.0 408 –50.6 993 15 50.8 404 –61.6 1013 1064 0 26.2 440 –48.9 1022 5 31.4 11.0 69.4 440 –51.7 1028 15 50.5 502 –63.0 1048 3. 总结与展望
使用商用成品透镜设计了一套结构紧凑、高分辨率的冷原子成像系统. 原子与像平面之间的距离很短, 便于空间受限的情况下安装; 真空窗口厚度范围很宽, 有利于在各种冷原子实验中使用. 成像系统结合了两个无限远校正物镜: 一个高分辨显微物镜和一个长EFL远摄物镜. 这两个物镜都达到了衍射极限, 并且对公差不敏感. 仿真结果表明, 通过改变透镜间距, 成像系统可以在波长470—1064 nm、窗口厚度0—15 mm下工作, 同时提供一个大的衍射极限FOV. 已有关于安装物镜所需机械结构的详尽描述[21,32,35], 可被用于后续成像系统的搭建. 在需要同时操纵并成像的冷原子实验中, 由于操纵原子所用到的波长与成像波长不同, 需要使用消色差或复消色差的成像系统, 目前主要使用商用定制物镜. 大口径高分辨显微物镜存在遮挡其他光线与安装不便的问题, 所以消色差、显微物镜直径约30 mm、数值孔径约0.5、工作距离大于20 mm的高分辨成像系统设计已在计划中.
[1] Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68
Google Scholar
[2] Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001
Google Scholar
[3] Wei D, Rubio-Abadal A, Ye B, Machado F, Kemp J, Srakaew K, Hollerith S, Rui J, Gopalakrishnan S, Yao N Y, Bloch I, Zeiher J 2022 Science 376 716
Google Scholar
[4] Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74
Google Scholar
[5] Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Folling S, Pollet L, Greiner M 2010 Science 329 547
Google Scholar
[6] Salim E A, Caliga S C, Pfeiffer J B, Anderson D Z 2013 Appl. Phys. Lett. 102 084104
Google Scholar
[7] Preiss P M, Ma R C, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R, Greiner M 2015 Science 347 1229
Google Scholar
[8] Britton J W, Sawyer B C, Keith A C, Wang C C J, Freericks J K, Uys H, Biercuk M J, Bollinger J J 2012 Nature 484 489
Google Scholar
[9] Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2022 Nature 604 457
Google Scholar
[10] Weiss D S, Saffman M 2017 Phys. Today 70 44
Google Scholar
[11] Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K, You L 2021 Chin. Phys. B 30 020305
Google Scholar
[12] Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231
Google Scholar
[13] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖 2023 物理学报 72 064201
Google Scholar
Wang L W, Liu F D, Li Y D, Han W, Meng Z M, Zhang J 2023 Acta Phys. Sin. 72 064201
Google Scholar
[14] Trisnadi J, Zhang M, Weiss L, Chin C 2022 Rev. Sci. Instrum. 93 083203
Google Scholar
[15] Raithel G, Duspayev A, Dash B, Carrasco S C, Goerz M H, Vuletić V, Malinovsky V S 2023 Quantum Sci. Technol. 8 014001
Google Scholar
[16] Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Léonard J, Greiner M 2019 Nature 573 385
Google Scholar
[17] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256
Google Scholar
[18] Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M, Greiner M 2016 Science 353 794
Google Scholar
[19] Gemelke N, Zhang X B, Hung C L, Chin C 2009 Nature 460 995
Google Scholar
[20] Preiss P M, Ma R C, Tai M E, Simon J, Greiner M 2015 Phys. Rev. A 91 041602
Google Scholar
[21] Gempel M W, Hartmann T, Schulze T A, Voges K K, Zenesini A, Ospelkaus S 2019 Rev. Sci. Instrum. 90 053201
Google Scholar
[22] Knottnerus I H A, Pyatchenkov S, Onishchenko O, Urech A, Schreck F, Siviloglou G A 2020 Opt. Express 28 11106
Google Scholar
[23] Li S K, Li G, Yang P F, Wang Z H, Zhang P F, Zhang T C 2020 Opt. Express 28 36122
Google Scholar
[24] Li X, Zhou F, Ke M, Xu P, He X D, Wang J, Zhan M S 2018 Appl. Opt. 57 7584
Google Scholar
[25] Bennie L M, Starkey P T, Jasperse M, Billington C J, Anderson R P, Turner L D 2013 Opt. Express 21 9011
Google Scholar
[26] Shen C Y, Chen C, Wu X L, Dong S, Cui Y, You L, Tey M K 2020 Rev. Sci. Instrum. 91 063202
Google Scholar
[27] Li S K, Li G, Wu W, Fan Q, Tian Y L, Yang P, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104
Google Scholar
[28] Pritchard J D, Isaacs J A, Saffman M 2016 Rev. Sci. Instrum. 87 073107
Google Scholar
[29] Müller T 2011 Ph. D. Dissertation (Zurich: ETH Zurich
[30] 徐睆垚, 徐亮, 沈先春, 徐寒杨, 孙永丰, 刘文清, 刘建国 2021 物理学报 70 184201
Google Scholar
Xu H Y, Xu L, Shen X C, Xu H Y, Sun Y F, Liu W Q, Liu J G 2021 Acta Phys. Sin. 70 184201
Google Scholar
[31] Fischer R, Tadic-Galeb B, Yoder P 2008 Optical System Design (2nd Ed.) (New York: McGraw-Hill Education) pp136–137
[32] Knottnerus I 2018 M. S. Thesis (Amsterdam: University of Amsterdam
[33] Alt W 2002 Optik 113 142
Google Scholar
[34] Gross H, Zügge H, Peschka M, Blechinger F 2006 Image Quality Criteria (Weinheim: Wiley-VCH) pp91–99
[35] Öttl T 2019 M. S. Thesis (Innsbruck: University of Innsbruck
-
图 3 显微物镜的仿真结果 (a) 不同视场角下出瞳不同位置光线的波像差(单位为767 nm); (b) 不同视场角下的点列图, 圆圈表示艾里斑大小; (c) 0.13°视场角时的MTF曲线, 插图为1000 cycles/mm处的MTF曲线
Fig. 3. Simulated results of the microscope objective. (a) Wavefront error at different positions of the exit pupil at different fields (The unit is 767 nm). (b) Spot diagrams at different fields. The black circles represent the Airy disks. (c) MTF curves at 1.0 field. The inset plots the MTF near 1000 cycles/mm.
图 7 中心视场处的分辨率仿真 (a) 物平面上的USAF 1951分辨率板; (b) 像平面上的仿真结果; (c) 像平面上PSF的径向分布, 插图为PSF在像平面上的投影, 峰值对应斯特列尔比率
Fig. 7. Simulation of the system’s resolution at 0 field: (a) The USAF 1951 resolution target in the object plane; (b) the simulation result in the image plane; (c) PSF along the radial direction in the image plane. The inset in panel (c) shows the projection of the PSF on the image plane, where the peak value corresponds to the Strehl ratio.
表 1 相机附近长焦成像镜组光路长度(L)的比对
Table 1. Comparison of the optical path lengths (L) of the long foci imaging lens group near the camera.
表 2 真空窗厚度范围(R)的比对
Table 2. Comparison of the vacuum window thickness ranges (R).
表 3 成像系统的设计要求
Table 3. Design requirements of the imaging system.
Items Specifications Resolution/μm 1 Wavelength/nm 767 Working distance/mm >20 Magnification 50 Track length/m <1 Image diameter/mm 8.2 表 4 显微物镜的参数
Table 4. Specifications of the microscope objective.
Surface No. Radius/mm Thickness/mm Material 1 Infinity 4.00 N-BK7 2 51.46 31.50(d1) Air 3 127.37 8.12 N-BK7 4 –127.37 0.50 Air 5 256.59 5.52 N-BK7 6 –256.59 0.50 Air 7 47.87 7.29 N-BK7 8 119.32 1.40 Air 9 30.34 9.70 N-BK7 10 65.80 17.0264 Air 11 Infinity 5.00 Silica 12 Infinity 15.00 Vacuum 表 5 公差分析中使用的公差值
Table 5. Tolerances used in the tolerance analysis.
Tolerance type Items Value Manufacturing tolerance Lens thickness ±0.1 mm Air space ±0.05 mm Radii ±3λ633 Refractive index ±0.001 Centering ±3 arcmin Assembling tolerance Decentration ±0.05 mm Clear aperture tilt ±0.02° 表 6 远摄物镜的参数
Table 6. Specifications of the telephoto objective.
Surface No. Radius/mm Thicknesses/mm Material 1 64.38 8.22 N-BK7 2 Infinity 9.60(d2) Air 3 –517.255 2.50 N-BK7 4 517.255 71.00(d3) Air 5 –38.59 3.50 N-BK7 6 Infinity 772.016 Air 7 Infinity 1.50 Silica 8 Infinity 5.55 Vacuum 表 7 不同真空窗厚度与波长下的表现
Table 7. Performance of the imaging system at different window thicknesses and wavelengths.
Wavelength/nm Window thickness/mm d1/mm d2/mm d3/mm Diffraction-limited FOV/μm Magnification Track length/mm 470 0 26.1 226 –48.8 963 5 31.4 0.624 83.9 230 –51.5 969 15 50.8 173 –50.0 827 767 0 26.2 398 –47.7 986 5 31.5 9.6 71.0 408 –50.6 993 15 50.8 404 –61.6 1013 1064 0 26.2 440 –48.9 1022 5 31.4 11.0 69.4 440 –51.7 1028 15 50.5 502 –63.0 1048 -
[1] Sherson J F, Weitenberg C, Endres M, Cheneau M, Bloch I, Kuhr S 2010 Nature 467 68
Google Scholar
[2] Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T, Zwierlein M W 2015 Phys. Rev. Lett. 114 193001
Google Scholar
[3] Wei D, Rubio-Abadal A, Ye B, Machado F, Kemp J, Srakaew K, Hollerith S, Rui J, Gopalakrishnan S, Yao N Y, Bloch I, Zeiher J 2022 Science 376 716
Google Scholar
[4] Bakr W S, Gillen J I, Peng A, Fölling S, Greiner M 2009 Nature 462 74
Google Scholar
[5] Bakr W S, Peng A, Tai M E, Ma R, Simon J, Gillen J I, Folling S, Pollet L, Greiner M 2010 Science 329 547
Google Scholar
[6] Salim E A, Caliga S C, Pfeiffer J B, Anderson D Z 2013 Appl. Phys. Lett. 102 084104
Google Scholar
[7] Preiss P M, Ma R C, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R, Greiner M 2015 Science 347 1229
Google Scholar
[8] Britton J W, Sawyer B C, Keith A C, Wang C C J, Freericks J K, Uys H, Biercuk M J, Bollinger J J 2012 Nature 484 489
Google Scholar
[9] Graham T M, Song Y, Scott J, Poole C, Phuttitarn L, Jooya K, Eichler P, Jiang X, Marra A, Grinkemeyer B, Kwon M, Ebert M, Cherek J, Lichtman M T, Gillette M, Gilbert J, Bowman D, Ballance T, Campbell C, Dahl E D, Crawford O, Blunt N S, Rogers B, Noel T, Saffman M 2022 Nature 604 457
Google Scholar
[10] Weiss D S, Saffman M 2017 Phys. Today 70 44
Google Scholar
[11] Wu X L, Liang X H, Tian Y Q, Yang F, Chen C, Liu Y C, Tey M K, You L 2021 Chin. Phys. B 30 020305
Google Scholar
[12] Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615 231
Google Scholar
[13] 王良伟, 刘方德, 李云达, 韩伟, 孟增明, 张靖 2023 物理学报 72 064201
Google Scholar
Wang L W, Liu F D, Li Y D, Han W, Meng Z M, Zhang J 2023 Acta Phys. Sin. 72 064201
Google Scholar
[14] Trisnadi J, Zhang M, Weiss L, Chin C 2022 Rev. Sci. Instrum. 93 083203
Google Scholar
[15] Raithel G, Duspayev A, Dash B, Carrasco S C, Goerz M H, Vuletić V, Malinovsky V S 2023 Quantum Sci. Technol. 8 014001
Google Scholar
[16] Rispoli M, Lukin A, Schittko R, Kim S, Tai M E, Léonard J, Greiner M 2019 Nature 573 385
Google Scholar
[17] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Léonard J, Greiner M 2019 Science 364 256
Google Scholar
[18] Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M, Greiner M 2016 Science 353 794
Google Scholar
[19] Gemelke N, Zhang X B, Hung C L, Chin C 2009 Nature 460 995
Google Scholar
[20] Preiss P M, Ma R C, Tai M E, Simon J, Greiner M 2015 Phys. Rev. A 91 041602
Google Scholar
[21] Gempel M W, Hartmann T, Schulze T A, Voges K K, Zenesini A, Ospelkaus S 2019 Rev. Sci. Instrum. 90 053201
Google Scholar
[22] Knottnerus I H A, Pyatchenkov S, Onishchenko O, Urech A, Schreck F, Siviloglou G A 2020 Opt. Express 28 11106
Google Scholar
[23] Li S K, Li G, Yang P F, Wang Z H, Zhang P F, Zhang T C 2020 Opt. Express 28 36122
Google Scholar
[24] Li X, Zhou F, Ke M, Xu P, He X D, Wang J, Zhan M S 2018 Appl. Opt. 57 7584
Google Scholar
[25] Bennie L M, Starkey P T, Jasperse M, Billington C J, Anderson R P, Turner L D 2013 Opt. Express 21 9011
Google Scholar
[26] Shen C Y, Chen C, Wu X L, Dong S, Cui Y, You L, Tey M K 2020 Rev. Sci. Instrum. 91 063202
Google Scholar
[27] Li S K, Li G, Wu W, Fan Q, Tian Y L, Yang P, Zhang P F, Zhang T C 2020 Rev. Sci. Instrum. 91 043104
Google Scholar
[28] Pritchard J D, Isaacs J A, Saffman M 2016 Rev. Sci. Instrum. 87 073107
Google Scholar
[29] Müller T 2011 Ph. D. Dissertation (Zurich: ETH Zurich
[30] 徐睆垚, 徐亮, 沈先春, 徐寒杨, 孙永丰, 刘文清, 刘建国 2021 物理学报 70 184201
Google Scholar
Xu H Y, Xu L, Shen X C, Xu H Y, Sun Y F, Liu W Q, Liu J G 2021 Acta Phys. Sin. 70 184201
Google Scholar
[31] Fischer R, Tadic-Galeb B, Yoder P 2008 Optical System Design (2nd Ed.) (New York: McGraw-Hill Education) pp136–137
[32] Knottnerus I 2018 M. S. Thesis (Amsterdam: University of Amsterdam
[33] Alt W 2002 Optik 113 142
Google Scholar
[34] Gross H, Zügge H, Peschka M, Blechinger F 2006 Image Quality Criteria (Weinheim: Wiley-VCH) pp91–99
[35] Öttl T 2019 M. S. Thesis (Innsbruck: University of Innsbruck
计量
- 文章访问数: 2872
- PDF下载量: 135
- 被引次数: 0