搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用质子能损诊断部分电离等离子体靶中的束缚电子密度

陈燕红 王昭 周泽贤 陶科伟 金雪剑 史路林 王国东 喻佩 雷瑜 吴晓霞 程锐 杨杰

引用本文:
Citation:

利用质子能损诊断部分电离等离子体靶中的束缚电子密度

陈燕红, 王昭, 周泽贤, 陶科伟, 金雪剑, 史路林, 王国东, 喻佩, 雷瑜, 吴晓霞, 程锐, 杨杰

Diagnosis of bound electron density by measuring energy loss of proton beam in partially ionized plasma target

Chen Yan-Hong, Wang Zhao, Zhou Ze-Xian, Tao Ke-Wei, Jin Xue-Jian, Shi Lu-Lin, Wang Guo-Dong, Yu Pei, Lei Yu, Wu Xiao-Xia, Cheng Rui, Yang Jie
PDF
HTML
导出引用
  • 部分电离等离子体是惯性约束聚变燃料及天体等离子体中的重要组成部分, 该等离子体的输运及流体力学等性质受到束缚电子的显著影响, 然而当前基于光谱学的技术手段难以对其进行高精度诊断. 本文基于中国科学院近代物理研究所低能离子束与等离子体相互作用实验平台, 精确测量了100 keV质子束穿过部分电离氢等离子体靶后的能损, 该能损是质子同靶区内自由电子与束缚电子碰撞共同作用的结果. 利用已有的能损理论模型, 结合激光干涉诊断获得的自由电子密度信息, 最终得到了部分电离氢等离子体靶中沿离子路径上的束缚电子密度, 并给出了该等离子体的离化度参数. 该离子束诊断技术具有在线、原位、分辨率高等优势, 为解决部分电离等离子体内部束缚电子密度的诊断问题提供了新的途径.
    Partially ionized plasma contains the bound electrons, which have an effect on the instability of the plasma. The evolution process of bound electron density cannot be obtained by using the existing optical method used for diagnosing the free electron density. In this work, we carry out a high-precision experiment: the energy loss of a 100 keV proton beam penetrating through the partially ionized hydrogen plasma target is measured on the platform of ion beam-plasma interaction at the Institute of Modern Physics, Chinese Academy of Sciences. The bound electron density is obtained according to the energy loss model of Bethe theory. The free electron density is measured by laser interferometry and the electron tempercture is obtained from the measured spectrum (Te = 0.68 eV; nfe = 2.41×1017 cm–2). It is found that the bound electron density decreases during plasma lifetime. The diagnosis of bound electron density by measuring energy loss of ion beam has the advantages of on-line, in-situ and high resolution, thus providing a new way to solve the problem about measuring the bound electron density in partially ionized plasma. A COMSOL simulation reveals that the high-temperature free electrons will be ejected quickly out of the plasma area through a mechanical diaphragm, thus reducing the total number of free electrons. In order to maintain a relatively high degree of ionization in this plasma, in principle, more and more bound electrons are ionized into free electrons, the density of bound electrons decreases correspondingly. The simulation result accords well with our experimental data. Based on this finding, more detailed plasma target parameter is obtained, which is helpful in deepening the understanding of the interaction process between ion beam and plasma. In future, more researches of low low-energy highly-charged ions-plasma interaction will be conducted.
      通信作者: 程锐, chengrui@impcas.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2022YFA1602500)和国家自然科学基金国际(地区)合作与交流项目(批准号: 12120101005)资助的课题.
      Corresponding author: Cheng Rui, chengrui@impcas.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2022YFA1602500) and the International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 12120101005).
    [1]

    Peacock N J, Robinson D C, Forrest M J, Wilcock P D, Sannikov V V 1969 Nature 224 488Google Scholar

    [2]

    Sun D X, Su M G, Dong C Z 2013 Eur. Phys. J. Appl. Phys. 61 30802Google Scholar

    [3]

    David C, Avizonis P, Weichel H, Pyatt K 1996 IEEE J. Quant. Elect. 2 493Google Scholar

    [4]

    Weber B, Fulghum S 1997 Rev. Sci. Instrum. 68 1227Google Scholar

    [5]

    Rocca J J, Hammarsten E C, Jankowska E 2003 Phys. Plas. 10 2031Google Scholar

    [6]

    José L B, Igor A, Manuel C, Turlough D, Robert F P, Holly G, Maxim K, Elena K, Ildar F S, Roberto S, Enrique V S, Teimuraz Z 2018 Space. Sci. Rev. 214 58Google Scholar

    [7]

    Cao S Q, Su M G, Sun D X, Min Q, Dong C Z 2016 Chin. Phys. Lett. 33 045201Google Scholar

    [8]

    Tan W Q, Liu Y Y, Li X Y, Yuan P, Zhao H, Li Z C, Zheng J 2021 J. Appl. Phys. 129 043302Google Scholar

    [9]

    Zhang S, Chen C, Lan T, Ding W X, Zhuang G, Mao W Z, Lan S J, Wu J, Xu H Q, Deng T J, Zhu J F, Wu J R, Zu Y M, Kong D F, Zhang S B, Yao Y, Wei Z A, Liu Z X, Zhou H Y, Wang H, Wen X H, Liu A, Xie J L, Li H, Xiao C J, Liu W D 2020 Rev. Sci. Instrum. 91 063501Google Scholar

    [10]

    Xu G, Barriga-Carrasco M D, Blazevic A, Borovkov B, Casas D, Cistakov K, Gavrilin R, Iberler M, Jacoby J, Loisch G, Morales R, Mäder R, Qin S X, Rienecker T, Rosmej O, Savin S, Schönlein A, Weyrich K, Wiechula J, Wieser J, Xiao G Q, Zhao Y T 2017 Phys. Rev. Lett. 119 204801Google Scholar

    [11]

    Bethe H 1930 Annalen Phys. (Leipzig) 397 325Google Scholar

    [12]

    Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D 2018 Laser Part. Beams 36 98Google Scholar

    [13]

    史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根 2023 物理学报 72 133401Google Scholar

    Shi L L, Cheng R, Wang Z, Cao S Q, Yang J, Zhou Z X, Chen Y H, Wang G D, Hui D X, Jin X J, Wu X X, Lei Y, Wang Y Y, Su M G 2023 Acta Phys. Sin. 72 133401Google Scholar

    [14]

    王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 物理学报 72 043401Google Scholar

    Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta Phys. Sin. 72 043401Google Scholar

    [15]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [16]

    骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar

    Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar

    [17]

    Kuznetsov A P, Byalkovskii O A, Gavrilin R O, Golubev A A, Gubskii K L, Rudskoi I V, Savin S M, Turtikov V I, Khudomyasov A V 2013 Plasma Phys. Rep. 39 248Google Scholar

    [18]

    Cheng R, Zhao Y T, Zhou X M, Li Y F, Wang Y Y, Lei Y, Sun Y B, Wang X, Yu Y, Ren J R, Liu S D, Xiao G Q, Hoffmann D H H 2013 Phys. Scr. T156 014074Google Scholar

    [19]

    Kuznetsov A P, Golubev A A, Kozin G I, Mutin T Y, Savelov A S, Fertman A D 2006 Instrum. Exp. Tech. 49 247Google Scholar

    [20]

    Zhang H C, Lu J, Shen Z H, Ni X W 2009 Opt. Commun. 282 1720Google Scholar

    [21]

    Hanif M, Salik M 2014 J. Russ. Laser Res. 35 230Google Scholar

    [22]

    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press) p281

    [23]

    NIST Atomic Spectra Database, Kramida A, Ralchenko Y, Reader J, NIST ASD Team https://physics.nist.gov/asd [2023-8-17]

    [24]

    Chandrasekhar S 1943 Rev. Mod. Phys. 15 1Google Scholar

    [25]

    Zhang Y N, Liu C L, Cheng R, Zhao Y T, He B 2020 Phys. Plas. 27 093107Google Scholar

    [26]

    Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 23 82Google Scholar

    [27]

    Gus’kov S Y, Zmitrenko N V, Il’in D V, Levkovskii A A, Rozanov V B, Sherman V E 2009 Laser Plas. 35 771Google Scholar

    [28]

    Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Yang J, Ma X W 2021 Laser Part. Beams 2021 e15Google Scholar

    [29]

    McKenna K F, York T M 1977 Phys. Fluids 20 1556Google Scholar

    [30]

    Commisso R J, Bartsch R R, Ekdahl C A, Freese K B, McKenna K F, Guthrie Miller, Siemon R E 1981 Phys. Fluids 24 1919Google Scholar

    [31]

    Schneider W 1972 Zeitschrift Phys. 252 147Google Scholar

  • 图 1  中国科学院近代物理研究所的离子束与等离子体相互作用实验平台

    Fig. 1.  Experimental setups of ions beam-plasmas interaction at the Institute of Modern Physics, Chinese Academy of Sciences.

    图 2  气体放电等离子体装置结构图

    Fig. 2.  Structure diagram of the gas discharged plasma target

    图 3  (a)激光干涉成像设备示意图(M1, M2, M3为反射镜, BS1, BS2为半透半反镜, L1, L2为凸透镜); (b)氢气放电等离子体(P = 1.03 mbar, HV = 4 kV)的干涉条纹随时间的演化图像

    Fig. 3.  (a) Structure diagram of laser interference imaging equipment (M1, M2, M3 are reflectors, BS1, BS2 are semi-transparent and semi-reflective mirrors, L1, L2 are convex lenses); (b) evolution of interference fringes (P = 1.03 mbar, HV = 4 kV) over hydrogen plasma lifetime.

    图 4  激光干涉成像方式测量氢等离子体(1.03 mbar, 3—5 kV) (a)自由电子密度随时间的变化; (b)放电电流随时间的变化

    Fig. 4.  Measurement of hydrogen plasma by laser interferometric imaging (1.03 mbar, 3–5 kV): (a) Change in the density of free electrons with time; (b) variation of discharge current with time.

    图 5  放电氢等离子体(1.03 mbar, 4 kV)的温度随时间的变化

    Fig. 5.  Electron temperature of plasma (1.03 mbar, 4 kV) as a function of discharge time.

    图 6  100 keV质子束与等离子体(nfe = 2.41×1017 cm–2, nbe = 5.27×1017 cm–2)作用后的能损随电子温度的变化以及G函数随温度的变化

    Fig. 6.  Evolution of energy loss of 100 keV H ion in the plasma (nfe = 2.41×1017 cm–2, nbe = 5.27×1017 cm–2) and G function with temperature.

    图 7  (a) 100 keV质子束与部分电离氢等离子体靶(1.03 mbar, 4 kV)相互作用后的能量损失(■为实验点, ▲与 — 分别为Bethe计算的束缚电子与自由电子部分能损数值); (b)氢等离子体中的电子密度; (c)电离度随时间的变化

    Fig. 7.  (a) Evolution of energy loss of 100 keV H+ ion in the plasma (1.03 mbar, 4 kV) during plasma lifetime (■ is the experimental point of energy loss of H+, ▲与 — is the energy loss contributed by bound electron density and free electron density calculated by Bethe theory, respectively); (b) change of electron density; (c) ionization degree with time.

    图 8  (a)气体放电靶的二维模型中阳极(20 mm)和阴极区域(30 mm)区域; (b) t = 3 μs时放电过程中电势分布; (c), (d)等离子体中自由电子密度分别在t = 1.1, 3 μs时的分布

    Fig. 8.  (a) Two-dimensional model with anode (20 mm), tube wall (20 mm) and cathode (30 mm) regions of cavity; (b) potential distribution during discharge at t = 3 μs; (c), (d) free electron density of plasma in the t = 1.1, 3 μs.

  • [1]

    Peacock N J, Robinson D C, Forrest M J, Wilcock P D, Sannikov V V 1969 Nature 224 488Google Scholar

    [2]

    Sun D X, Su M G, Dong C Z 2013 Eur. Phys. J. Appl. Phys. 61 30802Google Scholar

    [3]

    David C, Avizonis P, Weichel H, Pyatt K 1996 IEEE J. Quant. Elect. 2 493Google Scholar

    [4]

    Weber B, Fulghum S 1997 Rev. Sci. Instrum. 68 1227Google Scholar

    [5]

    Rocca J J, Hammarsten E C, Jankowska E 2003 Phys. Plas. 10 2031Google Scholar

    [6]

    José L B, Igor A, Manuel C, Turlough D, Robert F P, Holly G, Maxim K, Elena K, Ildar F S, Roberto S, Enrique V S, Teimuraz Z 2018 Space. Sci. Rev. 214 58Google Scholar

    [7]

    Cao S Q, Su M G, Sun D X, Min Q, Dong C Z 2016 Chin. Phys. Lett. 33 045201Google Scholar

    [8]

    Tan W Q, Liu Y Y, Li X Y, Yuan P, Zhao H, Li Z C, Zheng J 2021 J. Appl. Phys. 129 043302Google Scholar

    [9]

    Zhang S, Chen C, Lan T, Ding W X, Zhuang G, Mao W Z, Lan S J, Wu J, Xu H Q, Deng T J, Zhu J F, Wu J R, Zu Y M, Kong D F, Zhang S B, Yao Y, Wei Z A, Liu Z X, Zhou H Y, Wang H, Wen X H, Liu A, Xie J L, Li H, Xiao C J, Liu W D 2020 Rev. Sci. Instrum. 91 063501Google Scholar

    [10]

    Xu G, Barriga-Carrasco M D, Blazevic A, Borovkov B, Casas D, Cistakov K, Gavrilin R, Iberler M, Jacoby J, Loisch G, Morales R, Mäder R, Qin S X, Rienecker T, Rosmej O, Savin S, Schönlein A, Weyrich K, Wiechula J, Wieser J, Xiao G Q, Zhao Y T 2017 Phys. Rev. Lett. 119 204801Google Scholar

    [11]

    Bethe H 1930 Annalen Phys. (Leipzig) 397 325Google Scholar

    [12]

    Cheng R, Zhou X M, Wang Y Y, Lei Y, Chen Y H, Ma X W, Xiao G Q, Zhao Y T, Ren J R, Huo D 2018 Laser Part. Beams 36 98Google Scholar

    [13]

    史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根 2023 物理学报 72 133401Google Scholar

    Shi L L, Cheng R, Wang Z, Cao S Q, Yang J, Zhou Z X, Chen Y H, Wang G D, Hui D X, Jin X J, Wu X X, Lei Y, Wang Y Y, Su M G 2023 Acta Phys. Sin. 72 133401Google Scholar

    [14]

    王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰 2023 物理学报 72 043401Google Scholar

    Wang G D, Cheng R, Wang Z, Zhou Z X, Luo X H, Shi L L, Chen Y H, Lei Y, Wang Y Y, Yang J 2023 Acta Phys. Sin. 72 043401Google Scholar

    [15]

    Zhao Y T, Zhang Y N, Cheng R, He B, Liu C L, Zhou X M, Lei Y, Wang Y Y, Ren J R, Wang X, Chen Y H, Xiao G Q, Savin S M, Gavrilin R, Golubev A A, Hoffmann H H 2021 Phys. Rev. Lett. 126 115001Google Scholar

    [16]

    骆夏晖, 程锐, 王国东, 周泽贤, 王昭, 杨杰 2022 原子核物理评论 39 490Google Scholar

    Luo X H, Cheng R, Wang G D, Zhou Z X, Wang Z, Yang J 2022 Nucl. Phys. Rev. 39 490Google Scholar

    [17]

    Kuznetsov A P, Byalkovskii O A, Gavrilin R O, Golubev A A, Gubskii K L, Rudskoi I V, Savin S M, Turtikov V I, Khudomyasov A V 2013 Plasma Phys. Rep. 39 248Google Scholar

    [18]

    Cheng R, Zhao Y T, Zhou X M, Li Y F, Wang Y Y, Lei Y, Sun Y B, Wang X, Yu Y, Ren J R, Liu S D, Xiao G Q, Hoffmann D H H 2013 Phys. Scr. T156 014074Google Scholar

    [19]

    Kuznetsov A P, Golubev A A, Kozin G I, Mutin T Y, Savelov A S, Fertman A D 2006 Instrum. Exp. Tech. 49 247Google Scholar

    [20]

    Zhang H C, Lu J, Shen Z H, Ni X W 2009 Opt. Commun. 282 1720Google Scholar

    [21]

    Hanif M, Salik M 2014 J. Russ. Laser Res. 35 230Google Scholar

    [22]

    Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press) p281

    [23]

    NIST Atomic Spectra Database, Kramida A, Ralchenko Y, Reader J, NIST ASD Team https://physics.nist.gov/asd [2023-8-17]

    [24]

    Chandrasekhar S 1943 Rev. Mod. Phys. 15 1Google Scholar

    [25]

    Zhang Y N, Liu C L, Cheng R, Zhao Y T, He B 2020 Phys. Plas. 27 093107Google Scholar

    [26]

    Kreussler S, Varelas C, Brandt W 1981 Phys. Rev. B 23 82Google Scholar

    [27]

    Gus’kov S Y, Zmitrenko N V, Il’in D V, Levkovskii A A, Rozanov V B, Sherman V E 2009 Laser Plas. 35 771Google Scholar

    [28]

    Lei Y, Cheng R, Zhao Y T, Zhou X M, Wang Y Y, Chen Y H, Wang Z, Yang J, Ma X W 2021 Laser Part. Beams 2021 e15Google Scholar

    [29]

    McKenna K F, York T M 1977 Phys. Fluids 20 1556Google Scholar

    [30]

    Commisso R J, Bartsch R R, Ekdahl C A, Freese K B, McKenna K F, Guthrie Miller, Siemon R E 1981 Phys. Fluids 24 1919Google Scholar

    [31]

    Schneider W 1972 Zeitschrift Phys. 252 147Google Scholar

  • [1] 吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平. 高超声速模型尾迹电子密度二维分布反演方法. 物理学报, 2022, 71(11): 115202. doi: 10.7498/aps.70.20212345
    [2] 王雪娟, 许伟群, 王海通, 杨静, 袁萍, 张其林, 化乐彦, 张袁瞰. 闪电M分量光谱特征及通道温度和电子密度特性. 物理学报, 2021, 70(9): 099202. doi: 10.7498/aps.70.20201875
    [3] 陈燕红, 程锐, 张敏, 周贤明, 赵永涛, 王瑜玉, 雷瑜, 麻鹏鹏, 王昭, 任洁茹, 马新文, 肖国青. 利用质子能损检测气体靶区有效靶原子密度的实验研究. 物理学报, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [4] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [5] 聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸. 中纬度地区电离层偶发E层对量子卫星通信性能的影响. 物理学报, 2017, 66(7): 070302. doi: 10.7498/aps.66.070302
    [6] 王新波, 李永东, 崔万照, 李韵, 张洪太, 张小宁, 刘纯亮. 基于临界电子密度的多载波微放电全局阈值分析. 物理学报, 2016, 65(4): 047901. doi: 10.7498/aps.65.047901
    [7] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [8] 杨 涓, 许映乔, 朱良明. 局域环境中微波等离子体电子密度诊断实验研究. 物理学报, 2008, 57(3): 1788-1791. doi: 10.7498/aps.57.1788
    [9] 韩敬华, 冯国英, 杨李茗, 张秋慧, 贾 俊, 李 刚, 朱启华, 周寿桓. 纳秒激光脉冲在空气中聚焦的临界自由电子密度问题. 物理学报, 2008, 57(10): 6304-6310. doi: 10.7498/aps.57.6304
    [10] 孙友梅, 刘 杰, 张崇宏, 王志光, 金运范, 段敬来, 宋 银. 快重离子辐照聚酰亚胺潜径迹的电子能损效应. 物理学报, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [11] 王 琛, 王 伟, 孙今人, 方智恒, 吴 江, 傅思祖, 马伟新, 顾 援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵 平, 易 葵, 林尊琪, 王占山, 王洪昌, 周 斌, 陈玲燕. 利用x射线激光干涉诊断等离子体电子密度. 物理学报, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [12] 郝作强, 俞 进, 张 杰, 远晓辉, 郑志远, 杨 辉, 王兆华, 令维军, 魏志义. 用声学诊断方法测量激光等离子体通道的长度与电子密度. 物理学报, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [13] 郭建亭, 李玉芳, 熊良钺, 叶恒强. 合金元素Zr韧化不同计量比Ni3Al合金的微观机制. 物理学报, 2005, 54(4): 1868-1873. doi: 10.7498/aps.54.1868
    [14] 张 红, 程新路, 杨向东, 谢方军, 张继彦, 杨国洪. 金等离子体平均离化度随电子温度变化关系的研究. 物理学报, 2003, 52(12): 3098-3101. doi: 10.7498/aps.52.3098
    [15] 黄文忠, 张覃鑫, 何绍堂, 谷渝秋, 尤永录, 江文勉. 利用类铜离子谱线诊断银等离子体电子密度. 物理学报, 1995, 44(11): 1783-1787. doi: 10.7498/aps.44.1783
    [16] 王晓, 蔡建华. 三维紧束缚电子气的等离激元理论. 物理学报, 1993, 42(7): 1149-1156. doi: 10.7498/aps.42.1149
    [17] 王晓;蔡建华. 三维紧束缚电子气的等离激元理论. 物理学报, 1991, 40(7): 1149-1156. doi: 10.7498/aps.40.1149
    [18] 于宜君. 热锂束荧光探测电子密度. 物理学报, 1990, 39(12): 1921-1927. doi: 10.7498/aps.39.1921
    [19] 章辉煌, 林尊琪, 何兴法, 张正泉, 王笑琴, 逯其荣, 谷忠民, 庄亦飞, 崔季秀, 余文炎, 李家明, 龚美霞, 张小秋, 雷志远, 杨斌洲, 赵卫. Mg微管靶喷口电子密度及X射线谱的时间分辨特性. 物理学报, 1989, 38(11): 1838-1844. doi: 10.7498/aps.38.1838
    [20] 程成, 孙威, 唐传舜. 脉冲激光等离子体中时间分辨的电子温度和电子密度. 物理学报, 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
计量
  • 文章访问数:  2027
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2023-12-27
  • 上网日期:  2024-01-16
  • 刊出日期:  2024-04-05

/

返回文章
返回