搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子体系自由能地貌图的变分分析及AI算法实现

杜泊船 田圃

引用本文:
Citation:

分子体系自由能地貌图的变分分析及AI算法实现

杜泊船, 田圃

Variational analysis and AI algorithm implementation of free energy landscapes of molecular system

Du Bo-Chuan, Tian Pu
PDF
HTML
导出引用
  • 精确描述复杂分子体系的自由能地貌图是理解和操控其行为, 并进一步实现分子设计制造工业化的重要基础. 刻画高维空间自由能地貌图的主要挑战是其往往在不同时空间尺度上具有多个层次, 每个层次都可能有不止一个亚稳态被相应的自由能垒分开, 且跨越路径有可能不止一条. 另外很多体系涉及非线性行为, 这使得理论解析和直接使用分子模拟都有很大困难. 针对这些挑战, 多年来研究者们发展了多种多样的增强采样方法, 但往往需要很多经验选择和操作, 从而一方面使得研究进程较为缓慢, 另一方面也让误差控制成为困难. 变分虽然在物理、统计和工程中已经被广泛应用并取得巨大成功, 但在复杂分子体系中的应用却随着神经网络的发展刚刚开始. 本文将对这些探索性工作的主要方向、进展和局限进行简要总结, 也对将来的可能发展给出展望, 希望能够激发更多对基于变分的分子体系自由能地貌图人工智能算法的关注和努力, 促进大分子药物、分子生物机器等实践应用的发展.
    Accurate description of the free energy landscape (FES) is the basis for understanding complex molecular systems, and for further realizing molecular design, manufacture and industrialization. Major challenges include multiple metastable states, which usually are separated by high potential barriers and are not linearly separable, and may exist at multiple levels of time and spatial scales. Consequently FES is not suitable for analytical analysis and brute force simulation. To address these challenges, many enhanced sampling methods have been developed. However, utility of them usually involves many empirical choices, which hinders research advancement, and also makes error control very unimportant. Although variational calculus has been widely applied and achieved great success in physics, engineering and statistics, its application in complex molecular systems has just begun with the development of neural networks. This brief review is to summarize the background, major developments, current limitations, and prospects of applying variation in this field. It is hoped to facilitate the AI algorithm development for complex molecular systems in general, and to promote the further methodological development in this line of research in particular.
      通信作者: 田圃, tianpu@jlu.edu.cn
    • 基金项目: 吉林大学“学科交叉融合创新”项目(批准号: JLUXKJC2021ZZ05)资助的课题.
      Corresponding author: Tian Pu, tianpu@jlu.edu.cn
    • Funds: Project supported by the Interdisciplinary Integration and Innovation Project of JLU, China (Grant No. JLUXKJC2021ZZ05).
    [1]

    Thomas C, Tampe R 2020 Annu. Rev. Biochem. 89 605Google Scholar

    [2]

    Jiang F, Doudna J A 2017 Annu. Rev. Biophys. 46 505Google Scholar

    [3]

    Latorraca N R, Venkatakrishnan A J, Dror R O 2017 Chem. Rev. 117 139Google Scholar

    [4]

    Wei G, Xi W, Nussinov R, Ma B 2016 Chem. Rev. 116 6516Google Scholar

    [5]

    Dignon G L, Best R B, Mittal J 2020 Annu. Rev. Phys. Chem. 71 53Google Scholar

    [6]

    Choi J M, Holehouse A S, Pappu R V 2020 Annu. Rev. Biophys. 49 107Google Scholar

    [7]

    Sponer J, Bussi G, Krepl M, et al. 2018 Chem. Rev. 118 4177Google Scholar

    [8]

    Bussi G, Laio A 2020 Nat. Rev. Phys. 2 200Google Scholar

    [9]

    Mobley D L, Gilson M K 2017 Annu. Rev. Biophys. 46 531Google Scholar

    [10]

    Rodnina M V, Beringer M, Wintermeyer W 2007 Trends Biochem. Sci. 32 20Google Scholar

    [11]

    Bernardi R C, Melo M C R, Schulten K 2015 Biochim. Biophys. Acta 1850 872Google Scholar

    [12]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141Google Scholar

    [13]

    Faraldo-Gomez J D, Roux B 2007 J. Comput. Chem. 28 1634Google Scholar

    [14]

    Laio A, Parrinello M 2002 Proc. Natl. Acad. Sci. U. S. A. 99 12562Google Scholar

    [15]

    Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603Google Scholar

    [16]

    Maragliano L, Vanden-Eijnden E 2006 Chem. Phys. Lett. 426 168Google Scholar

    [17]

    Abrams J B, Tuckerman M E 2008 J. Phys. Chem. B 112 15742Google Scholar

    [18]

    Darve E, Rodriguez-Gomez D, Pohorille A 2008 J. Chem. Phys. 128 144120Google Scholar

    [19]

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    [20]

    Carter E A, Ciccotti G, Hynes J T, Kapral R 1989 Chem. Phys. Lett. 156 472Google Scholar

    [21]

    Sprik M, Ciccotti G 1998 J. Chem. Phys. 109 7737Google Scholar

    [22]

    Zwanzig R W 1954 J. Chem. Phys. 22 1420Google Scholar

    [23]

    Kirkwood J G 1935 J. Chem. Phys. 3 300Google Scholar

    [24]

    Oberhofer H, Dellago C, Geissler P L 2005 J. Phys. Chem. B 109 6902Google Scholar

    [25]

    Chen M, Cuendet M A, Tuckerman M E 2012 J. Chem. Phys. 137 024102Google Scholar

    [26]

    Lesage A, Lelievre T, Stoltz G, Henin J 2017 J. Phys. Chem. B 121 3676Google Scholar

    [27]

    Tribello G A, Gasparotto P 2019 Front. Mol. Biosci. 6 46Google Scholar

    [28]

    Comer J, Gumbart J C, Henin J, Lelievre T, Pohorille A, Chipot C 2015 J. Phys. Chem. B 119 1129Google Scholar

    [29]

    Darve E, Pohorille A 2001 J. Chem. Phys. 115 9169Google Scholar

    [30]

    Huber T, Torda A E, van Gunsteren W F 1994 J. Comput. Aided. Mol. Des. 8 695Google Scholar

    [31]

    Wang F, Landau D P 2001 Phys. Rev. Lett. 86 2050Google Scholar

    [32]

    Valsson O, Tiwary P, Parrinello M 2016 Annu. Rev. Phys. Chem. 67 159Google Scholar

    [33]

    Husic B E, Pande V S 2018 J. Am. Chem. Soc. 140 2386Google Scholar

    [34]

    Dellago C, Bolhuis P G, Csajka F S, Chandler D 1998 J. Chem. Phys. 108 1964Google Scholar

    [35]

    Bolhuis P G, Chandler D, Dellago C, Geissler P L 2002 Annu. Rev. Phys. Chem. 53 291Google Scholar

    [36]

    van Erp T S, Moroni D, Bolhuis P G 2003 J. Chem. Phys. 118 7762Google Scholar

    [37]

    Moroni D, Bolhuis P G, van Erp T S 2004 J. Chem. Phys. 120 4055Google Scholar

    [38]

    Hummer G 2004 J. Chem. Phys. 120 516Google Scholar

    [39]

    Bolhuis P G, Swenson D W H 2021 Front. Data Comput. 4 2000237Google Scholar

    [40]

    E W, Vanden-Eijnden E 2010 Annu. Rev. Phys. Chem. 61 391Google Scholar

    [41]

    Sarich M, Banisch R, Hartmann C, Schütte C 2013 Entropy 16 258Google Scholar

    [42]

    Cybenko G 1989 Math. Control Signal Syst. 2 303Google Scholar

    [43]

    Leshno M, Lin V Y, Pinkus A, Schocken S 1993 Neural Netw. 6 861Google Scholar

    [44]

    Zhou D X 2020 Appl. Comput. Harmon. Anal. 48 787Google Scholar

    [45]

    Alzubaidi L, Zhang J, Humaidi A J, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaria J, Fadhel M A, Al-Amidie M, Farhan L 2021 J. Big Data 8 53Google Scholar

    [46]

    He K, Zhang X, Ren S, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, USA, 27–30 June, 2016 pp770–778

    [47]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I 2017 Advances in Neural Information Processing Systems Long Beach, USA, December 4–9, 2017

    [48]

    Ho J, Jain A, Abbeel P 2020 Advances in Neural Information Processing Systems Virtual pp6840–6851

    [49]

    Baydin A G, Pearlmutter B A, Radul A A, Siskind J M 2018 J. Mach. Learn. Res. 18 1Google Scholar

    [50]

    Rumelhart D, Hinton G, Williams R 1986 Nature 323 533Google Scholar

    [51]

    Michelucci U 2022 arXiv: 1312.6114 [stat. ML]

    [52]

    Kingma D P, Welling M 2019 arXiv: 1906.02691 [cs. LG]

    [53]

    Waterfall J J, Casey F P, Gutenkunst R N, Brown K S, Myers C R, Brouwer P W, Elser V, Sethna J P 2006 Phys. Rev. Lett. 97 150601Google Scholar

    [54]

    Rumelhart D E, Hinton G E, Williams R J (Anderson J A, Rosenfeld E, ed) 1988 Neurocomputing (Vol. 1) (Cambridge: The MIT Press) pp696–700

    [55]

    Arfken G B, Weber H J, Harris F E 2011 Mathematical Methods for Physicists: A Comprehensive Guide (Cambridge: Academic Press

    [56]

    Blei D M, Kucukelbir A, McAuliffe J D 2017 J. Am. Stat. Assoc. 112 859Google Scholar

    [57]

    Ganguly A, Earp S W 2021 arXiv: 2108.13083 [cs. LG]

    [58]

    Marquardt D W 1963 J. Soc. Ind. Appl. Math. 11 431Google Scholar

    [59]

    Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L 2019 Advances in Neural Information Processing Systems pp8026–8037

    [60]

    Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M 2016 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) Savannah, GA, USA, November 2–4, 2016 pp265–283

    [61]

    Ma Y, Yu D, Wu T, Wang H 2019 Front. Data Comput. 1 105Google Scholar

    [62]

    Hadji I, Wildes R P 2018 arXiv: 1803.08834 [cs. CV]

    [63]

    Ghorbani M, Prasad S, Klauda J B, Brooks B R 2022 J. Chem. Phys. 156 184103Google Scholar

    [64]

    Mardt A, Hempel T, Clementi C, Noe F 2022 Nat. Commun. 13 7101Google Scholar

    [65]

    Perez-Hernandez G, Paul F, Giorgino T, De Fabritiis G, Noe F 2013 J. Chem. Phys. 139 015102Google Scholar

    [66]

    Wu H, Noé F 2019 J. Nonlinear Sci. 30 23Google Scholar

    [67]

    Mardt A, Pasquali L, Wu H, Noe F 2018 Nat. Commun. 9 5Google Scholar

    [68]

    Kleiman D E, Shukla D 2023 J. Chem. Theory Comput. 19 4377Google Scholar

    [69]

    Chen H, Roux B, Chipot C 2023 J. Chem. Theory Comput. 19 4414Google Scholar

    [70]

    Schütte C, Fischer A, Huisinga W, Deuflhard P 1999 J. Comput. Phys. 151 146Google Scholar

    [71]

    He Z, Chipot C, Roux B 2022 J. Phys. Chem. Lett. 13 9263Google Scholar

    [72]

    Bonati L, Zhang Y Y, Parrinello M 2019 Proc. Natl. Acad. Sci. U. S. A. 116 17641Google Scholar

    [73]

    Bittracher A, Mollenhauer M, Koltai P, Schütte C 2023 Multiscale Model. Simul. 21 449Google Scholar

    [74]

    Wang Y, Ribeiro J M L, Tiwary P 2019 Nat. Commun. 10 3573Google Scholar

    [75]

    Beyerle E R, Mehdi S, Tiwary P 2022 J. Phys. Chem. B 126 3950Google Scholar

    [76]

    Zhang J, Lei Y K, Yang Y I, Gao Y Q 2020 J. Chem. Phys. 153 174115Google Scholar

    [77]

    Kingma D P, Welling M 2013 arXiv: 1312.6114 [stat. ML]

    [78]

    Tiwary P, Berne B J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 2839Google Scholar

    [79]

    Wu H, Paul F, Wehmeyer C, Noe F 2016 Proc. Natl. Acad. Sci. U. S. A. 113 E3221Google Scholar

    [80]

    Wu H, Mey A S, Rosta E, Noé F 2014 J. Chem. Phys. 141 214106Google Scholar

    [81]

    Chodera J D, Swope W C, Noé F, Prinz J H, Shirts M R, Pande V S 2011 J. Chem. Phys. 134 244107Google Scholar

    [82]

    Prinz J H, Chodera J D, Pande V S, Swope W C, Smith J C, Noe F 2011 J. Chem. Phys. 134 244108Google Scholar

    [83]

    Rosta E, Hummer G 2015 J. Chem. Theory Comput. 11 276Google Scholar

    [84]

    Mey A S, Wu H, Noé F 2014 Phys. Rev. X 4 041018Google Scholar

    [85]

    Hinrichs N S, Pande V S 2007 J. Chem. Phys. 126 244101Google Scholar

    [86]

    Noe F 2008 J. Chem. Phys. 128 244103Google Scholar

    [87]

    Chodera J D, Noé F 2010 J. Chem. Phys. 133 265Google Scholar

    [88]

    Schütt K, Kindermans P J, Sauceda Felix H E, Chmiela S, Tkatchenko A, Müller K R 2017 Advances in Neural Information Processing Systems Long Beach, ACM, USA, 2017 pp991–1001

    [89]

    Husic B E, Charron N E, Lemm D, Wang J, Perez A, Majewski M, Kramer A, Chen Y, Olsson S, de Fabritiis G, Noe F, Clementi C 2020 J. Chem. Phys. 153 194101Google Scholar

    [90]

    Battaglia P W, Hamrick J B, Bapst V, et al. 2018 arXiv: 1806.01261 [stat. ML]

    [91]

    Kipf T N, Welling M 2016 arXiv: 1609.02907 [cs. LG]

    [92]

    Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y 2017 arXiv: 1710.10903 [stat. ML]

    [93]

    Ghorbani M, Prasad S, Klauda J B, Brooks B R 2022 arXiv:2201.04609 [physics.comp-ph]

    [94]

    Hempel T, Del Razo M J, Lee C T, Taylor B C, Amaro R E, Noe F 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2105230118Google Scholar

    [95]

    Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G 2006 J. Chem. Phys. 125 24106Google Scholar

    [96]

    Pan A C, Sezer D, Roux B 2008 J. Phys. Chem. B 112 3432Google Scholar

    [97]

    Weinan E, Ren W, Vanden-Eijnden E 2005 Chem. Phys. Lett. 413 242Google Scholar

    [98]

    Branduardi D, Gervasio F L, Parrinello M 2007 J. Chem. Phys. 126 054103Google Scholar

    [99]

    Leines G D, Ensing B 2012 Phys. Rev. Lett. 109 020601Google Scholar

    [100]

    Invernizzi M, Parrinello M 2020 J. Phys. Chem. Lett. 11 2731Google Scholar

    [101]

    Berezhkovskii A, Szabo A 2005 J. Chem. Phys. 122 14503Google Scholar

    [102]

    Langer J S 1969 Ann. Phys. 54 258Google Scholar

    [103]

    Valsson O, Parrinello M 2014 Phys. Rev. Lett. 113 090601Google Scholar

    [104]

    Bilionis I, Koutsourelakis P S 2012 J. Comput. Phys. 231 3849Google Scholar

    [105]

    Dempster A P, Laird N M, Rubin D B 2018 J. R. Stat. Soc. B 39 1Google Scholar

    [106]

    Bonati L, Piccini G, Parrinello M 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2113533118Google Scholar

    [107]

    Tishby N, Pereira F C, Bialek W 2000 arXiv: physics/0004057 [physics.data-an]

    [108]

    Still S 2014 Entropy 16 968Google Scholar

    [109]

    Song Y, Kingma D P 2021 arXiv: 2101.03288 [cs. LG]

    [110]

    Arjovsky M, Chintala S, Bottou L 2017 International Conference on Machine Learning Sydney pp214–223

    [111]

    Huang Y P, Xia Y, Yang L, Wei J, Yang Y I, Gao Y Q 2021 Chin. J. Chem. 40 160Google Scholar

    [112]

    Ribeiro J M L, Bravo P, Wang Y, Tiwary P 2018 J. Chem. Phys. 149 072301Google Scholar

    [113]

    Chen M 2021 Eur. Phys. J. B 94 211Google Scholar

    [114]

    Qiu Y, O'Connor M S, Xue M, Liu B, Huang X 2023 J. Chem. Theory Comput. 19 4728Google Scholar

    [115]

    Monroe J I, Shen V K 2022 J. Chem. Theory Comput. 18 3622Google Scholar

    [116]

    Ma A, Dinner A R 2005 J. Phys. Chem. B 109 6769Google Scholar

    [117]

    Chen W, Ferguson A L 2018 J. Comput. Chem. 39 2079Google Scholar

    [118]

    Chen H, Liu H, Feng H, Fu H, Cai W, Shao X, Chipot C 2022 J. Chem. Inf. Model. 62 1Google Scholar

    [119]

    Wehmeyer C, Noe F 2018 J. Chem. Phys. 148 241703Google Scholar

    [120]

    Williams M O, Kevrekidis I G, Rowley C W 2015 J. Nonlinear Sci. 25 1307Google Scholar

    [121]

    Mezić I 2005 Nonlinear Dyn. 41 309Google Scholar

    [122]

    H. Tu J, W. Rowley C, M. Luchtenburg D, L. Brunton S, Nathan Kutz J 2014 J. Comput. Dynam. 1 391Google Scholar

    [123]

    Zhang J, Chen M 2018 Phys. Rev. Lett. 121 010601Google Scholar

    [124]

    Rydzewski J, Valsson O 2021 J. Phys. Chem. A 125 6286Google Scholar

    [125]

    Belkacemi Z, Gkeka P, Lelievre T, Stoltz G 2022 J. Chem. Theory Comput. 18 59Google Scholar

    [126]

    Kikutsuji T, Mori Y, Okazaki K I, Mori T, Kim K, Matubayasi N 2022 J. Chem. Phys. 156 154108Google Scholar

    [127]

    Sun L, Vandermause J, Batzner S, Xie Y, Clark D, Chen W, Kozinsky B 2022 J Chem Theory Comput 18 2341Google Scholar

    [128]

    Wang Y, Lamim Ribeiro J M, Tiwary P 2020 Curr. Opin. Struct. Biol. 61 139Google Scholar

    [129]

    Jung H, Covino R, Arjun A, Leitold C, Dellago C, Bolhuis P G, Hummer G 2023 Nat. Comput. Sci. 3 334Google Scholar

    [130]

    Zhao L, Wang L 2023 Chin. Phys. Lett. 40 120201Google Scholar

    [131]

    Wu T, He S, Liu J, Sun S, Liu K, Han Q L, Tang Y 2023 IEEE-CAA J. Automatica Sin. 10 1122Google Scholar

    [132]

    Janson G, Valdes-Garcia G, Heo L, Feig M 2023 Nat. Commun. 14 774Google Scholar

    [133]

    Naveed H, Ullah Khan A, Qiu S, Saqib M, Anwar S, Usman M, Akhtar N, Barnes N, Mian A 2023 arXiv: 2307.06435 [cs. CL]

  • 图 1  自编码器神经网络架构示意图, 蓝色部分表示编码器(encoder)函数$ f(\cdot) $, 橙色部分表示解码器(decoder)函数$ g(\cdot) $, 维度最低的绿色表示中间隐藏层(z), 对自编码器, 损失函数是输出($ {\tilde{\boldsymbol{x}}}_{i} $)与输入$ {\boldsymbol{x}}_{i} $的差别的函数(也可以加正则化项, 如参考文献[58] (5)式所示), 每一个输入数据点对应隐藏层空间的一个点

    Fig. 1.  Schematic representation of an auto-encoder neural network. The blue part on the left represents the encoder, the orange part on the right represents the decoder, and the middle green layer is the hidden layer (z). The loss is always a function of the difference between the input and the output vectors ($ {\boldsymbol{x}}_{i} $ and $ {\tilde{\boldsymbol{x}}}_{i} $), one may add some form of regularization when necessary (e.g. Eq. (5) in Ref. [58]).

    图 2  (a) VAMPnets构建VAMP打分((10)式)的神经网络总体架构示意图; (b)丙氨酸二肽轨迹分析实例中的典型神经网络架构, 各层神经元数目为 32-22-16-9-6, 前两层使用10%的dropout, 除最后的softmax层外, 其余各层激活函数均使用Relu[67]

    Fig. 2.  (a) Schematic illustration of VAMP score construction from VAMPnets (see Eq. (10)). (b) A typical neural network architecture for analine dipeptide analysis, with the number of neurons being 32-22-16-9-6 for five layers. The first two layers utilized a 10% dropout. Relu was selected as the activation function for all layers except the last softmax layer[67].

    表 1  复杂分子体系低维隐空间的变分方法简要总结, 表中所述集合空间问题类别是指引言中提到的三类问题

    Table 1.  A brief summary of variational methods for low-dimensional hidden spaces in complex molecular systems. The category of collective space problems mentioned in the table refers to the three types of problems defined in the introduction.

    变分方法 主要目标 关注的集合空间
    问题类别
    特点或主要局限
    频谱分
    解分析
    基组线
    性组合
    给定构象子状态空间划分下求解集合变量和子态间转换速率 第1类、第2类 马尔可夫假设与线性基组局限, 需要人工划分构象空间子状态
    神经网
    络实现
    从给定轨迹中直接求解子态划分和对应转换速率 第2类 马尔可夫假设, 没有解析表示的特征函数, 需要人工调整架构测试不同聚类数量
    自由能垒跨越概率时间关
    联函数
    基组线
    性组合
    在选定基组空间的线性组合基础上求解状态转换路径和其上的自由能垒跨越概率 第3类 基组线性组合局限, 需要定义始末态
    神经网
    络实现
    在和给定始末态一致的神经网络函数空间求解状态转换路径和其上的自由能垒跨越概率 第3类 需要定义始末态
    基于偏置
    势变分
    基组线
    性组合
    利用偏置势增强采样在基组线性组合空间快速求解给定集合变量方向自由能主要能量谷地 第2类 泛函受基组选择限制
    神经网
    络实现
    利用偏置势增强采样在神经网络函数空间快速求解给定集合变量方向自由能主要能量谷地 第2类 泛函导数求解的采样需求导致偏置势(和对应自由能)的精度紧密相关, 收敛受KL散度非对称性限制
    Lumpability 和
    Decomposability
    优化集合变量 第1类 有明确误差控制, 方差取决于隐空间维度, 两种定义的一致性要求可逆过程
    信息瓶颈模型 求解信息瓶颈对应集合空间CV表示, 并利用偏置势加速自由能面采样 第2类 线性编码过程假设局限
    变分自适应 结合粗粒化信息加速采样求解自由能面 第2类 总体架构较为复杂
    变分自编码器 通过集合变量空间加速采样求解自由能面和聚类转化路径 第2类、第3类 特别关注隐空间
    下载: 导出CSV
  • [1]

    Thomas C, Tampe R 2020 Annu. Rev. Biochem. 89 605Google Scholar

    [2]

    Jiang F, Doudna J A 2017 Annu. Rev. Biophys. 46 505Google Scholar

    [3]

    Latorraca N R, Venkatakrishnan A J, Dror R O 2017 Chem. Rev. 117 139Google Scholar

    [4]

    Wei G, Xi W, Nussinov R, Ma B 2016 Chem. Rev. 116 6516Google Scholar

    [5]

    Dignon G L, Best R B, Mittal J 2020 Annu. Rev. Phys. Chem. 71 53Google Scholar

    [6]

    Choi J M, Holehouse A S, Pappu R V 2020 Annu. Rev. Biophys. 49 107Google Scholar

    [7]

    Sponer J, Bussi G, Krepl M, et al. 2018 Chem. Rev. 118 4177Google Scholar

    [8]

    Bussi G, Laio A 2020 Nat. Rev. Phys. 2 200Google Scholar

    [9]

    Mobley D L, Gilson M K 2017 Annu. Rev. Biophys. 46 531Google Scholar

    [10]

    Rodnina M V, Beringer M, Wintermeyer W 2007 Trends Biochem. Sci. 32 20Google Scholar

    [11]

    Bernardi R C, Melo M C R, Schulten K 2015 Biochim. Biophys. Acta 1850 872Google Scholar

    [12]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141Google Scholar

    [13]

    Faraldo-Gomez J D, Roux B 2007 J. Comput. Chem. 28 1634Google Scholar

    [14]

    Laio A, Parrinello M 2002 Proc. Natl. Acad. Sci. U. S. A. 99 12562Google Scholar

    [15]

    Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603Google Scholar

    [16]

    Maragliano L, Vanden-Eijnden E 2006 Chem. Phys. Lett. 426 168Google Scholar

    [17]

    Abrams J B, Tuckerman M E 2008 J. Phys. Chem. B 112 15742Google Scholar

    [18]

    Darve E, Rodriguez-Gomez D, Pohorille A 2008 J. Chem. Phys. 128 144120Google Scholar

    [19]

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    [20]

    Carter E A, Ciccotti G, Hynes J T, Kapral R 1989 Chem. Phys. Lett. 156 472Google Scholar

    [21]

    Sprik M, Ciccotti G 1998 J. Chem. Phys. 109 7737Google Scholar

    [22]

    Zwanzig R W 1954 J. Chem. Phys. 22 1420Google Scholar

    [23]

    Kirkwood J G 1935 J. Chem. Phys. 3 300Google Scholar

    [24]

    Oberhofer H, Dellago C, Geissler P L 2005 J. Phys. Chem. B 109 6902Google Scholar

    [25]

    Chen M, Cuendet M A, Tuckerman M E 2012 J. Chem. Phys. 137 024102Google Scholar

    [26]

    Lesage A, Lelievre T, Stoltz G, Henin J 2017 J. Phys. Chem. B 121 3676Google Scholar

    [27]

    Tribello G A, Gasparotto P 2019 Front. Mol. Biosci. 6 46Google Scholar

    [28]

    Comer J, Gumbart J C, Henin J, Lelievre T, Pohorille A, Chipot C 2015 J. Phys. Chem. B 119 1129Google Scholar

    [29]

    Darve E, Pohorille A 2001 J. Chem. Phys. 115 9169Google Scholar

    [30]

    Huber T, Torda A E, van Gunsteren W F 1994 J. Comput. Aided. Mol. Des. 8 695Google Scholar

    [31]

    Wang F, Landau D P 2001 Phys. Rev. Lett. 86 2050Google Scholar

    [32]

    Valsson O, Tiwary P, Parrinello M 2016 Annu. Rev. Phys. Chem. 67 159Google Scholar

    [33]

    Husic B E, Pande V S 2018 J. Am. Chem. Soc. 140 2386Google Scholar

    [34]

    Dellago C, Bolhuis P G, Csajka F S, Chandler D 1998 J. Chem. Phys. 108 1964Google Scholar

    [35]

    Bolhuis P G, Chandler D, Dellago C, Geissler P L 2002 Annu. Rev. Phys. Chem. 53 291Google Scholar

    [36]

    van Erp T S, Moroni D, Bolhuis P G 2003 J. Chem. Phys. 118 7762Google Scholar

    [37]

    Moroni D, Bolhuis P G, van Erp T S 2004 J. Chem. Phys. 120 4055Google Scholar

    [38]

    Hummer G 2004 J. Chem. Phys. 120 516Google Scholar

    [39]

    Bolhuis P G, Swenson D W H 2021 Front. Data Comput. 4 2000237Google Scholar

    [40]

    E W, Vanden-Eijnden E 2010 Annu. Rev. Phys. Chem. 61 391Google Scholar

    [41]

    Sarich M, Banisch R, Hartmann C, Schütte C 2013 Entropy 16 258Google Scholar

    [42]

    Cybenko G 1989 Math. Control Signal Syst. 2 303Google Scholar

    [43]

    Leshno M, Lin V Y, Pinkus A, Schocken S 1993 Neural Netw. 6 861Google Scholar

    [44]

    Zhou D X 2020 Appl. Comput. Harmon. Anal. 48 787Google Scholar

    [45]

    Alzubaidi L, Zhang J, Humaidi A J, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaria J, Fadhel M A, Al-Amidie M, Farhan L 2021 J. Big Data 8 53Google Scholar

    [46]

    He K, Zhang X, Ren S, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition Las Vegas, USA, 27–30 June, 2016 pp770–778

    [47]

    Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I 2017 Advances in Neural Information Processing Systems Long Beach, USA, December 4–9, 2017

    [48]

    Ho J, Jain A, Abbeel P 2020 Advances in Neural Information Processing Systems Virtual pp6840–6851

    [49]

    Baydin A G, Pearlmutter B A, Radul A A, Siskind J M 2018 J. Mach. Learn. Res. 18 1Google Scholar

    [50]

    Rumelhart D, Hinton G, Williams R 1986 Nature 323 533Google Scholar

    [51]

    Michelucci U 2022 arXiv: 1312.6114 [stat. ML]

    [52]

    Kingma D P, Welling M 2019 arXiv: 1906.02691 [cs. LG]

    [53]

    Waterfall J J, Casey F P, Gutenkunst R N, Brown K S, Myers C R, Brouwer P W, Elser V, Sethna J P 2006 Phys. Rev. Lett. 97 150601Google Scholar

    [54]

    Rumelhart D E, Hinton G E, Williams R J (Anderson J A, Rosenfeld E, ed) 1988 Neurocomputing (Vol. 1) (Cambridge: The MIT Press) pp696–700

    [55]

    Arfken G B, Weber H J, Harris F E 2011 Mathematical Methods for Physicists: A Comprehensive Guide (Cambridge: Academic Press

    [56]

    Blei D M, Kucukelbir A, McAuliffe J D 2017 J. Am. Stat. Assoc. 112 859Google Scholar

    [57]

    Ganguly A, Earp S W 2021 arXiv: 2108.13083 [cs. LG]

    [58]

    Marquardt D W 1963 J. Soc. Ind. Appl. Math. 11 431Google Scholar

    [59]

    Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L 2019 Advances in Neural Information Processing Systems pp8026–8037

    [60]

    Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M 2016 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16) Savannah, GA, USA, November 2–4, 2016 pp265–283

    [61]

    Ma Y, Yu D, Wu T, Wang H 2019 Front. Data Comput. 1 105Google Scholar

    [62]

    Hadji I, Wildes R P 2018 arXiv: 1803.08834 [cs. CV]

    [63]

    Ghorbani M, Prasad S, Klauda J B, Brooks B R 2022 J. Chem. Phys. 156 184103Google Scholar

    [64]

    Mardt A, Hempel T, Clementi C, Noe F 2022 Nat. Commun. 13 7101Google Scholar

    [65]

    Perez-Hernandez G, Paul F, Giorgino T, De Fabritiis G, Noe F 2013 J. Chem. Phys. 139 015102Google Scholar

    [66]

    Wu H, Noé F 2019 J. Nonlinear Sci. 30 23Google Scholar

    [67]

    Mardt A, Pasquali L, Wu H, Noe F 2018 Nat. Commun. 9 5Google Scholar

    [68]

    Kleiman D E, Shukla D 2023 J. Chem. Theory Comput. 19 4377Google Scholar

    [69]

    Chen H, Roux B, Chipot C 2023 J. Chem. Theory Comput. 19 4414Google Scholar

    [70]

    Schütte C, Fischer A, Huisinga W, Deuflhard P 1999 J. Comput. Phys. 151 146Google Scholar

    [71]

    He Z, Chipot C, Roux B 2022 J. Phys. Chem. Lett. 13 9263Google Scholar

    [72]

    Bonati L, Zhang Y Y, Parrinello M 2019 Proc. Natl. Acad. Sci. U. S. A. 116 17641Google Scholar

    [73]

    Bittracher A, Mollenhauer M, Koltai P, Schütte C 2023 Multiscale Model. Simul. 21 449Google Scholar

    [74]

    Wang Y, Ribeiro J M L, Tiwary P 2019 Nat. Commun. 10 3573Google Scholar

    [75]

    Beyerle E R, Mehdi S, Tiwary P 2022 J. Phys. Chem. B 126 3950Google Scholar

    [76]

    Zhang J, Lei Y K, Yang Y I, Gao Y Q 2020 J. Chem. Phys. 153 174115Google Scholar

    [77]

    Kingma D P, Welling M 2013 arXiv: 1312.6114 [stat. ML]

    [78]

    Tiwary P, Berne B J 2016 Proc. Natl. Acad. Sci. U. S. A. 113 2839Google Scholar

    [79]

    Wu H, Paul F, Wehmeyer C, Noe F 2016 Proc. Natl. Acad. Sci. U. S. A. 113 E3221Google Scholar

    [80]

    Wu H, Mey A S, Rosta E, Noé F 2014 J. Chem. Phys. 141 214106Google Scholar

    [81]

    Chodera J D, Swope W C, Noé F, Prinz J H, Shirts M R, Pande V S 2011 J. Chem. Phys. 134 244107Google Scholar

    [82]

    Prinz J H, Chodera J D, Pande V S, Swope W C, Smith J C, Noe F 2011 J. Chem. Phys. 134 244108Google Scholar

    [83]

    Rosta E, Hummer G 2015 J. Chem. Theory Comput. 11 276Google Scholar

    [84]

    Mey A S, Wu H, Noé F 2014 Phys. Rev. X 4 041018Google Scholar

    [85]

    Hinrichs N S, Pande V S 2007 J. Chem. Phys. 126 244101Google Scholar

    [86]

    Noe F 2008 J. Chem. Phys. 128 244103Google Scholar

    [87]

    Chodera J D, Noé F 2010 J. Chem. Phys. 133 265Google Scholar

    [88]

    Schütt K, Kindermans P J, Sauceda Felix H E, Chmiela S, Tkatchenko A, Müller K R 2017 Advances in Neural Information Processing Systems Long Beach, ACM, USA, 2017 pp991–1001

    [89]

    Husic B E, Charron N E, Lemm D, Wang J, Perez A, Majewski M, Kramer A, Chen Y, Olsson S, de Fabritiis G, Noe F, Clementi C 2020 J. Chem. Phys. 153 194101Google Scholar

    [90]

    Battaglia P W, Hamrick J B, Bapst V, et al. 2018 arXiv: 1806.01261 [stat. ML]

    [91]

    Kipf T N, Welling M 2016 arXiv: 1609.02907 [cs. LG]

    [92]

    Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y 2017 arXiv: 1710.10903 [stat. ML]

    [93]

    Ghorbani M, Prasad S, Klauda J B, Brooks B R 2022 arXiv:2201.04609 [physics.comp-ph]

    [94]

    Hempel T, Del Razo M J, Lee C T, Taylor B C, Amaro R E, Noe F 2021 Proc. Natl. Acad. Sci. U. S. A. 118 e2105230118Google Scholar

    [95]

    Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G 2006 J. Chem. Phys. 125 24106Google Scholar

    [96]

    Pan A C, Sezer D, Roux B 2008 J. Phys. Chem. B 112 3432Google Scholar

    [97]

    Weinan E, Ren W, Vanden-Eijnden E 2005 Chem. Phys. Lett. 413 242Google Scholar

    [98]

    Branduardi D, Gervasio F L, Parrinello M 2007 J. Chem. Phys. 126 054103Google Scholar

    [99]

    Leines G D, Ensing B 2012 Phys. Rev. Lett. 109 020601Google Scholar

    [100]

    Invernizzi M, Parrinello M 2020 J. Phys. Chem. Lett. 11 2731Google Scholar

    [101]

    Berezhkovskii A, Szabo A 2005 J. Chem. Phys. 122 14503Google Scholar

    [102]

    Langer J S 1969 Ann. Phys. 54 258Google Scholar

    [103]

    Valsson O, Parrinello M 2014 Phys. Rev. Lett. 113 090601Google Scholar

    [104]

    Bilionis I, Koutsourelakis P S 2012 J. Comput. Phys. 231 3849Google Scholar

    [105]

    Dempster A P, Laird N M, Rubin D B 2018 J. R. Stat. Soc. B 39 1Google Scholar

    [106]

    Bonati L, Piccini G, Parrinello M 2021 Proc. Natl. Acad. Sci. U.S.A. 118 e2113533118Google Scholar

    [107]

    Tishby N, Pereira F C, Bialek W 2000 arXiv: physics/0004057 [physics.data-an]

    [108]

    Still S 2014 Entropy 16 968Google Scholar

    [109]

    Song Y, Kingma D P 2021 arXiv: 2101.03288 [cs. LG]

    [110]

    Arjovsky M, Chintala S, Bottou L 2017 International Conference on Machine Learning Sydney pp214–223

    [111]

    Huang Y P, Xia Y, Yang L, Wei J, Yang Y I, Gao Y Q 2021 Chin. J. Chem. 40 160Google Scholar

    [112]

    Ribeiro J M L, Bravo P, Wang Y, Tiwary P 2018 J. Chem. Phys. 149 072301Google Scholar

    [113]

    Chen M 2021 Eur. Phys. J. B 94 211Google Scholar

    [114]

    Qiu Y, O'Connor M S, Xue M, Liu B, Huang X 2023 J. Chem. Theory Comput. 19 4728Google Scholar

    [115]

    Monroe J I, Shen V K 2022 J. Chem. Theory Comput. 18 3622Google Scholar

    [116]

    Ma A, Dinner A R 2005 J. Phys. Chem. B 109 6769Google Scholar

    [117]

    Chen W, Ferguson A L 2018 J. Comput. Chem. 39 2079Google Scholar

    [118]

    Chen H, Liu H, Feng H, Fu H, Cai W, Shao X, Chipot C 2022 J. Chem. Inf. Model. 62 1Google Scholar

    [119]

    Wehmeyer C, Noe F 2018 J. Chem. Phys. 148 241703Google Scholar

    [120]

    Williams M O, Kevrekidis I G, Rowley C W 2015 J. Nonlinear Sci. 25 1307Google Scholar

    [121]

    Mezić I 2005 Nonlinear Dyn. 41 309Google Scholar

    [122]

    H. Tu J, W. Rowley C, M. Luchtenburg D, L. Brunton S, Nathan Kutz J 2014 J. Comput. Dynam. 1 391Google Scholar

    [123]

    Zhang J, Chen M 2018 Phys. Rev. Lett. 121 010601Google Scholar

    [124]

    Rydzewski J, Valsson O 2021 J. Phys. Chem. A 125 6286Google Scholar

    [125]

    Belkacemi Z, Gkeka P, Lelievre T, Stoltz G 2022 J. Chem. Theory Comput. 18 59Google Scholar

    [126]

    Kikutsuji T, Mori Y, Okazaki K I, Mori T, Kim K, Matubayasi N 2022 J. Chem. Phys. 156 154108Google Scholar

    [127]

    Sun L, Vandermause J, Batzner S, Xie Y, Clark D, Chen W, Kozinsky B 2022 J Chem Theory Comput 18 2341Google Scholar

    [128]

    Wang Y, Lamim Ribeiro J M, Tiwary P 2020 Curr. Opin. Struct. Biol. 61 139Google Scholar

    [129]

    Jung H, Covino R, Arjun A, Leitold C, Dellago C, Bolhuis P G, Hummer G 2023 Nat. Comput. Sci. 3 334Google Scholar

    [130]

    Zhao L, Wang L 2023 Chin. Phys. Lett. 40 120201Google Scholar

    [131]

    Wu T, He S, Liu J, Sun S, Liu K, Han Q L, Tang Y 2023 IEEE-CAA J. Automatica Sin. 10 1122Google Scholar

    [132]

    Janson G, Valdes-Garcia G, Heo L, Feig M 2023 Nat. Commun. 14 774Google Scholar

    [133]

    Naveed H, Ullah Khan A, Qiu S, Saqib M, Anwar S, Usman M, Akhtar N, Barnes N, Mian A 2023 arXiv: 2307.06435 [cs. CL]

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 马锐垚, 王鑫, 李树, 勇珩, 上官丹骅. 基于神经网络的粒子输运问题高效计算方法. 物理学报, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [3] 杨莹, 曹怀信. 量子混合态的两种神经网络表示. 物理学报, 2023, 72(11): 110301. doi: 10.7498/aps.72.20221905
    [4] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 物理学报, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [5] 李靖, 孙昊. 识别Z玻色子喷注的卷积神经网络方法. 物理学报, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [6] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波. 利用神经网络识别高分子链在表面的吸附相变. 物理学报, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [7] 谭康伯, 路宏敏, 苏涛. 等离子环境中带电体能量的Collin变分. 物理学报, 2018, 67(20): 209401. doi: 10.7498/aps.67.20180504
    [8] 谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲. 电磁诱导透明暗孤子的耗散变分束缚分析. 物理学报, 2018, 67(6): 064207. doi: 10.7498/aps.67.20172567
    [9] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 物理学报, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [10] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输. 物理学报, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [11] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 物理学报, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [12] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [13] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [14] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [15] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究. 物理学报, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [16] 行鸿彦, 徐 伟. 混沌背景中微弱信号检测的神经网络方法. 物理学报, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  2516
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-14
  • 修回日期:  2024-01-18
  • 上网日期:  2024-02-01
  • 刊出日期:  2024-03-20

/

返回文章
返回