-
Kagome材料为研究电子关联效应、拓扑物态、非常规超导电性和几何阻挫等新奇物理现象提供了良好的平台. 最近, Kagome超导体AV3Sb5 (A = K, Rb, Cs)在凝聚态物理领域引起了广泛关注和研究, 国内外多个课题组通过化学掺杂对其物性进行有效调控, 为进一步理解和认识该体系材料提供了巨大帮助. 本文综述了AV3Sb5掺杂研究的最新进展, 对这一快速发展材料体系的掺杂效应进行了总结, 以促进Kagome超导体AV3Sb5的进一步探索和研究. 具体地说, 回顾了CsV3Sb5中Nb, Ta, Ti和Sn的原子掺杂, 以及Cs, O等元素表面掺杂对材料量子效应和电子能带结构的影响, 讨论了掺杂对物性调控的物理机制. 为进一步理解和研究该材料体系的电荷密度波、时间反演对称性破缺、超导电性等丰富量子效应提供相关基础.Material with Kagome lattice provides an excellent platform for studying electronic correlation effects, topological states of matter, unconventional superconductivity, and geometric frustration. The recently discovered Kagome superconductors AV3Sb5 (A = K, Rb, Cs) have attracted widespread attention in the field of condensed matter physics, and many efforts have been made to elucidate their novel physical properties, such as charge density wave, unconventional superconductivity, and band topology. Meanwhile, many groups have effectively tuned these novel properties through chemical doping, offering a good opportunity for further understanding the materials of this system. In this paper, we comprehensively review the latest research progress of the doping effect of this rapidly developed AV3Sb5 system, with the objective of further promoting the in-depth research into Kagome superconductor. Specifically, we review the chemical doping in CsV3Sb5 with elements such as Nb, Ta, Ti, and Sn, and the surface doping with elements Cs or O as well, and describe their influences on the novel quantum properties, especially superconductivity, charge density wave, and electronic band structure of the material. Furthermore, the intricate physical mechanism of doping manipulation is discussed, in order to provide a basic knowledge for further understanding and studying the rich quantum effects of the system, such as charge density waves, time reversal symmetry breaking, and superconductivity.
-
Keywords:
- Kagome lattice /
- chemical doping /
- superconductivity /
- charge density wave
1. 引 言
螺旋波已经在许多可激发系统中被观察到[1-4], 如心肌组织、化学介质、大脑组织、视网膜的表面等. 在很多情况下人体内的螺旋波是有害的, 例如螺旋波在视网膜的表面会引起偏头痛, 在大脑内部形成会引起癫痫, 在心肌组织中会引起心律失常[5-8]. 在过去的几十年里, 学者们也在多种模型中研究了螺旋波动力学. 如2008年Wang等[9]在神经元网络模型下研究了延迟因子对螺旋波的影响. 2012年Zhou等[10]在Bar模型下研究了三层耦合可激发介质对螺旋波的控制作用. 同年Ma等[11]利用细胞网络模型模拟了大脑皮层中出现的螺旋波. 2013年Wang和Ma[12]利用分布式电流去控制心肌组织中的螺旋波. 2015年Xu等[13]研究了非均匀耦合下神经网络内有序波的诱发问题. 2018年Li等[14]在Luo-Rudy模型下研究了心肌细胞中的钠电流对螺旋波的控制作用.
据1990—2017年间中国过早死亡原因调查报告显示, 心脏疾病在致人死亡的因素中排名第二[15]. 心脏中的螺旋波会导致心律失常, 严重时危及生命[16]. 要治疗心律失常疾病就要成功消除心脏中的螺旋波信号. 当心脏中存在缺陷(如血管和疤痕)时, 螺旋波往往倾向于钉扎在缺陷上, 这为螺旋波的消除带来麻烦. 要消除钉扎在缺陷上的螺旋波, 需得先使其成为一个自由旋转的螺旋波(这个过程被称为螺旋波脱钉), 之后再对其进行消除.
心脏中的缺陷边界在电场的作用下, 细胞内外离子会重新分布. 此时的缺陷边界处存在去极化和超极化区域. 当去极化超过一定的阈值时, 缺陷边界处有激发波产生. 这一效应被称为异质性波发射[17,18](wave emission from heterogeneities, WEH). 缺陷上有钉扎的螺旋波时, 在激发波与钉扎波的相互作用下, 原始钉扎波可能会离开缺陷成功脱钉. 传统抗心动起搏过速(anti-tachycardia pacing, ATP)方法是目前临床中治疗心律失常的常用方法[19]. 但是ATP方法只能凭借医者本身的临床经验去选择植入电极的位置, 这也在一定程度上限制了它的治疗效果. 如今, 随着医疗水平的提高, 对心脏的了解程度进一步加深. 目前, 已有新的方法可以准确探测心脏中二维电信号[19,20], 基于这个低分辨率的二维信号, 文献[21, 22]提出的数值方法可准确地计算出缺陷的位置和尺寸. 本文利用数值模拟方式研究了径向电脉冲(pulses of radial electrical field, PREF)对螺旋波脱钉的影响.
2. 数值模拟模型与方法
采用二维Barkley模型[23]来模拟二维可激发介质中螺旋波的脱钉研究, 其动力学方程如下:
∂u∂t=1εu(1−u)(u−v+ba)+∇2u, ∂v∂t=u−v, (1) 其中
u ,v 分别为系统的快速激活变量和缓慢恢复变量;ε 决定了快变量u 的时间尺度, 这里我们固定其值为0.02 ; 参数a 和b 共同决定了系统的激发性. 模拟的二维可激发介质的长和宽的尺寸均为50 , 被分为256×256 个网格. 本文在空间上采用显式欧拉方法进行数值模拟, 在时间上采用向前的欧拉格式来求解方程. 系统的空间步长为Δx=Δy=0.195 , 时间步长为Δt=0.005 . 系统中的缺陷可以通过一个零电导率的区域实现. 区域的边界处满足零流边界条件[24]:\widehat{\boldsymbol{n}}\cdot \nabla \left(e+\boldsymbol{E}\cdot \boldsymbol{x}\right)=0 , 其中\widehat{\boldsymbol{n}} 是缺陷边界处的法向量,e 是相对于静止电位的膜电位,\boldsymbol{E} 是外加电场,\boldsymbol{x} 是边界上一个点的位置矢量.在本文中, 将利用一系列低强度的PREF进行螺旋波脱钉研究. 脉冲电场方向为从缺陷中心指向四周, 其数学形式如下:
\boldsymbol{E}\left(\boldsymbol{r},t\right)={E}_{0}\cdot {E}_{t}\left(t\right)\cdot {\boldsymbol{E}}_{r}\left(\boldsymbol{r}\right) \text{, } (2) 其中
{E_0} 用来控制径向电脉冲强度;{E}_{t}\left(t\right) 刻画了电场随时间的变化;{\boldsymbol{E}}_{r}\left(\boldsymbol{r}\right)=(1/{r}^{2})\cdot \boldsymbol{r}, 表示电场强度和方向随空间位置的变化;\boldsymbol{r} 表示从缺陷中心指向缺陷边缘上一点方向的单位矢量;r 为缺陷边缘一点到缺陷中心的距离. 因此距离缺陷中心越远处电场强度越小. 用{E}_{{\rm{R}}}={E}_{0}/{R}_{{\rm{h}}}^{2} 表示电场在缺陷边界处的强度, 其中{R}_{{\rm{h}}} 表示缺陷半径.考虑两种随时间变化的电场: 单次径向电脉冲(single pulse of radial electrical field, SPREF)和多次径向电脉冲(multiple pulses of radial electrical field, MPREF). 其中SPREF随时间变化的关系可以被描述为
{E}_{t}\left(t\right)=\left\{\begin{aligned} &1,\;{t}_{0}\leqslant t\leqslant {t}_{0}+{t}_{{\rm{D}}}\text{, }\\ &0,\;t < {t}_{0}\;{\rm or}\;t > {t}_{0}+{t}_{{\rm{D}}}\text{, }\end{aligned}\right. (3) 其中
{t}_{0} 为加入电场的时刻,{t}_{{\rm{D}}} 为电脉冲持续的时间. MPREF随时间变化的形式为{E}_{t}(t) = \left\{\begin{array}{ll} {\rm{sin}}\left[{\omega }_{{\rm{e}}}(t-t_0)\right],& {t}_{0}\leqslant t\leqslant {t}_{0}+n{T}_{{\rm{e}}},\\ & \left(n=1,{\rm{ }}2,\;3,\cdots \right), \\ 0, & t < {t}_{0}\;{\rm or}\;t > {t}_{0}+n{T}_{{\rm{e}}}\\ & \left(n=1,{\rm{ }}2,\;3,\cdots \right), \end{array}\right. (4) 其中
{t}_{0} 为加入电场的时刻,{T}_{{\rm{e}}} 为MPREF的周期,{\omega }_{{\rm{e}}} 为MPREF的频率, 且有{T}_{{\rm{e}}}= {2{\text{π}}}/{{\omega }_{{\rm{e}}}} . 在本文的3.2节中使用了三个完整周期的正弦电场, 故n=3 的MPREF的作用时间为3{T}_{{\rm{e}}} .3. 结果与讨论
3.1 使用SPREF方法脱钉
若缺陷上钉扎有螺旋波, 则在SPREF的作用下缺陷边界处会被激发出一个不完整的靶波, 如图1所示. 从图1可以看出, 残缺的靶波具有两个端点, 分别记为E端和F端.
图 1 SPREF使螺旋波成功脱钉的过程(此时系统参数 ,a=0.8 , 缺陷半径b=0.07 . 在{R}_{{\rm{h}}}=10 时刻加入强度t=22 的SPREF, 电场持续时间{E}_{0}=4.0 ){t}_{{\rm{D}}}=0.6 Fig. 1. A successful unpinning process with SPREF. The parameters used are ,a=0.8 . The radius of the obstacleb=0.07 . A SPREF with magnitude{R}_{{\rm{h}}}=10 is applied at{E}_{0}=4.0 and lasts fort=22 .{t}_{{\rm{D}}}=0.6 图1显示了利用SPREF将钉扎螺旋波从缺陷中分离出来(脱钉)的过程. 在图1中, 钉扎螺旋波绕缺陷旋转. 当
t=22 时加入SPREF. 随后, 在SPREF的作用下缺陷边界处产生激发波. 由于边界处钉扎螺旋波刚经过的位置正处于不应期(如图1中t=23 子图阴影部分所示), 所以激发波的形状为残缺的靶波. 激发波的E端与原始钉扎螺旋波相互碰撞并融合为一个波. 由于受到缺陷边界处不应期的影响, 激发波的F端不能继续沿着缺陷边界传播, 进而从缺陷脱离. 箭头表示波的传播方向. 脱钉后的螺旋波端点轨迹为黄色的圆形(t=50 ).利用均匀电场(uniform electric field, UEF)[24]、旋转电场(rotate electric pulses, REP)[25]和圆极化电场(circularly polarized electric field, CPEF)[26]方法脱钉时, 成功的关键由激发波和钉扎螺旋波的相位共同决定的, 只有加入电场的时机合适才能迅速脱钉[25-27]. 而我们的方法在理论上则不存在最佳相位的问题. 残缺的靶波被激发出来时, 它的F端直接碰到缺陷边界处的不应期, 所以PREF方法加入电场的时机和原始钉扎螺旋波的相位与脱钉的成功率无关.
当系统参数
a=0.8 和b=0.01 时, 系统的激发性较强, 模拟显示的脱钉过程如图2所示. 在图2中,t=19.5 时刻钉扎螺旋波会暂时脱离缺陷. 随后, 在t=20.5 时刻F 端会再次钉扎到缺陷上, 导致脱钉失败.研究发现可使钉扎螺旋波成功脱钉的最小电场在缺陷边界处的强度
{E}_{{\rm{R}}} 随着系统参数b 改变. 图3中的红线和蓝线分别对应参数a=1.0 和a= 0.8 时可成功脱钉的临界线. 两条曲线的上方是SPREF可以成功使螺旋波脱钉的区域, 而曲线下方表示电场强度太低导致SPREF不能使螺旋波成功脱钉. 从图3可看出, 随着系统参数b 值的减小, 系统的激发性逐渐增强, 脱钉所需的临界电场强度也在缓慢增加. 当b 值分别减小到0.03 和0.085 时, 脱钉所需的缺陷边界处的临界电场强度{E_R} 急剧增加. 之后当b 值分别小于0.02 和0.08 时, 无论强度多大的电场都不能使螺旋波成功脱钉. 以上结果表明, SPREF方法只能在激发性较弱的区域才能使钉扎螺旋波脱钉. 这一结论与采用ATP方法和UEF方法脱钉的模拟结果一致[26,28].图 3 最小电场在缺陷边界处的强度 随系统参数{E}_{{\rm{R}}} 变化的曲线(其他参数为b ,a=0.8 ,{R}_{{\rm{h}}}=10 ){t}_{{\rm{D}}}=0.6 Fig. 3. The minimum electric field magnitude at the boundary of the obstacle varies with the system parameter{E}_{{\rm{R}}} . Other parameters areb ,a=0.8 ,{R}_{{\rm{h}}}=10 .{t}_{{\rm{D}}}=0.6 SPREF可成功脱钉的参数区域如图4所示. 图4中蓝色的I区域表示可用UEF方法成功脱钉的参数区域; I + II(蓝色+黄色)区域为用SPREF方法可成功脱钉的区域. 在III区域SPREF方法不能成功使螺旋波脱钉. 相较于UEF方法, SPREF方法拓展了螺旋波脱钉的参数区域.
图 4 PREF方法可以使螺旋波成功脱钉的参数空间. I区域为UEF的脱钉参数区域, I + II区域为SPREF的脱钉参数区域, I + II + III区域为MPREF的脱钉参数区域. NW表示此参数区域不存在波斑图, RW表示此参数区域不存在螺旋波, SW表示此参数区域存在螺旋波, BI表示双稳态Fig. 4. Parameter space in which spiral waves can be unpinned with PREF. Area I is the unpinning parameter area of UEF, area I + II is the unpinning parameter area of SPREF, and area I + II + III is the unpinning parameter area of MPREF. The NW, RW, SW and BI regions represent no wave, retracting waves, spiral waves, and bi-stability respectively.在Barkley模型中, 当其他参数相同时, 参数
b 的数值越大, 系统的激发性越弱. 在螺旋波存在的区域(SW区域)中, 越靠近SW和RW分界线的参数空间系统激发性越弱, 反之激发性越强. 通过模拟结果可知, 在激发性较弱的系统中脱钉相对容易[26]. 固定系统参数a=0.8 , 在电场参数相同的情况下,b 值越大螺旋波脱钉越容易. 当b 值小于0.025 时, SPREF方法不能使螺旋波成功脱钉. 这一结论与图3中的结论吻合.3.2 使用MPREF方法脱钉
其后, 应用了三个周期的正弦型MPREF脱钉. 图5为介质参数
a=0.8 ,b=0.01 时, 一次应用MPREF成功使螺旋波脱钉的过程. 从图2可知, 此参数下SPREF不能使螺旋波成功脱钉.图 5 MPREF使螺旋波成功脱钉的过程(系统参数 ,a=0.8 ,b=0.01 ,{R}_{{\rm{h}}}=10 ,{\omega }_{{\rm{e}}}={\omega }_{0} ,{\omega }_{0}=2.03 ){E}_{0}=5 Fig. 5. A successful unpinning process with MPREF. The parameters are ,a=0.8 ,b=0.01 ,{R}_{{\rm{h}}}=10 ,{\omega }_{{\rm{e}}}={\omega }_{0} ,{\omega }_{0}=2.03 .{E}_{0}=5 从图5可看出, 在
t=19 时刻第一次激发波出现. 它与原始钉扎螺旋波的相互作用和SPREF产生的激发波作用相同. 受螺旋波传播过后不应期的影响, F端暂时离开缺陷. 若只有一次正弦型的PREF, F端会再次钉扎到缺陷上. 但在MPREF作用下, 在t=22 时刻第二次激发波从缺陷边界产生, 并与螺旋波相互作用, 重复之前的过程. 在t= 25 时刻, MPREF产生的第三次激发波再次将螺旋波推离缺陷. 三次激发波作用后, 螺旋波端点被激发波推离到距缺陷足够远的位置, 不会再次钉扎到缺陷上. 至此脱钉成功. 原钉扎螺旋波变成了一个围绕自身核心旋转的自由螺旋波.t=33 时对应的图5中黄色圆圈表示脱钉后的螺旋波端点轨迹.模拟结果表明, MPREF可脱钉的参数空间为整个螺旋波存在的区域(如图4中的I+II+III区域所示). MPREF的角频率
{\omega }_{{\rm{e}}} 对脱钉能否成功起着至关重要的作用. 在激发性不同的介质中脱钉所需的临界电场在缺陷边界处的强度{E_{\rm R}} 和电场频率的关系如图6所示. 其中{\omega }_{{\rm{e}}} 是电场频率,{\omega }_{0} 是该参数介质中自由旋转的螺旋波频率. 图6中的三条连线为脱钉所需电场的临界线. 当电场的强度高于临界线时三个周期的MPREF可以让螺旋成功脱钉; 反之, 则三个周期的MPREF不能让螺旋成功脱钉. 从三组模拟结果可看出, 电场频率与自由旋转的螺旋波频率的比值{\omega }_{{\rm{e}}}/{\omega }_{0} 在1 附近时, 脱钉所需的临界电场强度最小.缺陷半径与脱钉所需的临界电场之间的关系如图7(a)所示. 此时, 缺陷边界处的电场强度高于图7(a)中蓝色线时脱钉即可成功, 低于蓝色线时脱钉失败. 从图7(a)模拟结果可以看出, 随着缺陷半径
{R}_{{\rm{h}}} 的增大, 脱钉所需的电场强度在缺陷边界处的值{E}_{{\rm{R}}} 减小. 但是在缺陷中心处电场强度{E}_{0} 随着缺陷半径的增加而增加. 这表明MPREF脱钉时, 介质中的缺陷越大, 所需的电场强度也就越大. 但只要维持使得缺陷边界处的电场强度在0.105— 0.140 之间, 即可成功脱钉. 此时中心电场强度{E}_{0} 的临界值在0.28—1.05 之间. UEF和CPEF方法脱钉的电场最优值分别为7 和1.8 [26]. 这表明采用MPREF脱钉时, 只需要强度更小的电场. MPREF作用下系统参数b 与脱钉所需的临界电场{E}_{{\rm{R}}} 的关系如图7(b)所示. 在图7(b)中, 当系统参数a= 0.8 和{R}_{{\rm{h}}}=10 时, 脱钉所需的临界电场{E}_{{\rm{R}}} 在0.1 附近. 随着系统参数b 值的增加, 即系统的激发性减弱时, 脱钉所需的临界电场强度基本保持不变.图 7 (a) 缺陷半径与临界电场强度关系图, 其中 表示径向电场在缺陷边界处的强度,{E}_{{\rm{R}}} 表示中心电场强度, 系统参数{E}_{0} ,a=0.8 ,b=0.02 ; (b) 临界电场在缺陷边界处的强度{\omega }_{{\rm{e}}}={\omega }_{0} 与系统参数{E}_{{\rm{R}}} 关系图, 系统参数b ,a=0.8 ,{R}_{{\rm{h}}}=10 {\omega }_{{\rm{e}}}={\omega }_{0} Fig. 7. (a) Relationship between obstacle radius and the magnitude of MPREF. stands for the magnitude of the field at the boundary of the obstacle, and{E}_{{\rm{R}}} is the magnitude of the field in the center of the obstacle. The parameters used are{E}_{0} ,a=0.8 ,b=0.02 . (b) Relationship between critical electric field magnitude at the boundary of the obstacle{\omega }_{{\rm{e}}}={\omega }_{0} and system parameters{E}_{{\rm{R}}} . Other parameters areb ,a=0.8 ,{R}_{{\rm{h}}}=10 .{\omega }_{{\rm{e}}}={\omega }_{0} 4. 结 论
本文针对螺旋波脱钉问题提出了PREF方法. 研究结果表明, SPREF可在弱激发区域成功脱钉, 其可脱钉的参数区域要大于ATP和UEF方法得到的脱钉参数区域. 在激发性极弱的区域中SPREF脱钉总是可以成功. 随着介质激发性的增强, SPREF最终脱钉失败. MPREF方法可在整个存在螺旋波的区域使螺旋波成功脱钉. 相比于UEF和CPEF脱钉, MPREF方法只需要强度更低的电场即可成功脱钉. 本方法弥补了ATP方法受激发位置和缺陷大小影响的缺点, 大大地提高了脱钉的成功率和适用的参数区域. 期望PREF方法可以得到更多研究者的关注, 并为临床中治疗相关心脏疾病提供一种新思路.
[1] Syozi I 1951 Prog. Theor. Phys. 6 306
Google Scholar
[2] Villain J, Bidaux R, Carton J P, et al. 1980 Phys. France 41 1263
Google Scholar
[3] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G, Lee Y S 2007 Phys. Rev. Lett. 98 107204
Google Scholar
[4] Ran Y, Hermele M, Patrick A L, Wen X G 2007 Phys. Rev. Lett. 98 117205
Google Scholar
[5] Jiang H C, Weng Z Y, Sheng D N 2008 Phys. Rev. Lett. 101 117203
Google Scholar
[6] Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003
[7] Balents L 2010 Nature 464 199
Google Scholar
[8] Yan S, Huse D A, White S R 2011 Science 332 1173
Google Scholar
[9] Norman M R 2016 Rev. Mod. Phys. 88 041002
Google Scholar
[10] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668
Google Scholar
[11] Depenbrock S, McCulloch I P, Schollwock U 2012 Phys. Rev. Lett. 109 067201
Google Scholar
[12] Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B, Xiang T 2017 Phys. Rev. Lett. 118 137202
Google Scholar
[13] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, Toberer E S 2019 Phys. Rev. Mater. 3 094407
Google Scholar
[14] Ortiz B R, Teicher S, Hu Y, Zuo J L, Sarte P M, Schueller E C, Milinda Abeykoon A M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, Wilson S D 2020 Phys. Rev. Lett. 125 247002
Google Scholar
[15] Mu C, Yin Q W, Tu Z J, Gong C S, Lei H C, Li Z, Luo J L 2021 Chin. Phys. Lett. 38 077402
Google Scholar
[16] Luo H L, Gao Q, Liu H X, Gu Y H, Wu D S, Yi C J, Jia J J, Wu S L, Luo X Y, Xu Y, Zhao L, Wang Q Y, Mao H Q, Liu G D, Zhu Z H, Shi Y G, Jiang K, Hu J P, Xu Z Y, Zhou X J 2022 Nat. Commun. 13 273
Google Scholar
[17] Xu H S, Yan Y J, Yin R T, Xia W, Fang S J, Chen Z Y, Li Y J, Yang W Q, Guo Y F, Feng D L 2021 Phys. Rev. Lett. 127 187004
Google Scholar
[18] Xu J P, Wang M X, Liu Z Y, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001
Google Scholar
[19] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q, Gao H J 2021 Nature 599 222
Google Scholar
[20] Hamidian M H, Edkins S D, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M J, Kim E A, Mackenzie A P, Fujita K, Lee J, Séamus Davis J C 2016 Nature 532 343
Google Scholar
[21] Edkins S D, Kostin A, Fujita K, Mackenzie A P, Eisaki H, Uchida S, Sachdev S, Lawler M J, Kim E A, Séamus Davis J C, Hamidian M H 2019 Science 364 976
Google Scholar
[22] Lou R, Fedorov A, Yin Q W, Kuibarov A, Tu Z J, Gong C S, Schwier E F, Büchner B, Lei H C, Borisenko S 2022 Phys. Rev. Lett. 128 036402
Google Scholar
[23] Kang M G, Fang S A, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Di Sante D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H, Comin R 2022 Nat. Phys. 18 301
Google Scholar
[24] Kato T, Li Y, Kawakami T, et al. 2022 Commun. Mater. 3 30
Google Scholar
[25] Cho S Y, Ma H Y, Xia W, Yang Y C, Liu Z T, Huang Z, Jiang Z C, Lu X L, Liu J S, Liu Z H, Li J, Wang J H, Liu Y, Jia J F, Guo Y F, Liu J P, Shen D W 2021 Phys. Rev. Lett. 127 236401
Google Scholar
[26] Nakayama K, Li Y K, Kato T, Liu M, Wang Z W, Takahashi T, Yao Y G, Sato T 2021 Phys. Rev. B 104 L161112
Google Scholar
[27] Hu Y, Teicher S M, Ortiz B R, Luo Y, Peng S T, Huai L W, Ma J Z, Plumb N C, Wilson S D, He J F, Shi M 2022 Sci. Bull. 67 495
Google Scholar
[28] Liu Z H, Zhao N N, Yin Q W, Gong C S, Tu Z J, Li M, Song W H, Liu Z T, Shen D W, Huang Y B, Liu K, Lei H C, Wang S C 2021 Phys. Rev. X 11 041010
[29] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R, Wilson S D 2021 Phys. Rev. X 11 041030
[30] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher Samuel M L, Seshadri R, Wilson S D 2021 Phys. Rev. Mater. 5 034801
Google Scholar
[31] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, Lei H C 2021 Chin. Phys. Lett. 38 037403
Google Scholar
[32] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J Y, Shafayat Hossain M, Liu X X, Ruff J, Kautzsch L, Zhang S T, Chang G Q, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D, Hasan M Z 2021 Nat. Mater. 20 1353
Google Scholar
[33] Wang Z W, Jiang Y X, Yin J X, Li Y K, Wang G Y, Huang H L, Shao S, Liu J J, Zhu P, Shumiya N, Hossain M S, Liu H X, Shi Y G, Duan J X, Li X, Chang G Q, Dai P C, Ye Z J, Xu G, Wang Y C, Zheng H, Jia J F, Hasan M Z, Yao Y G 2021 Phys. Rev. B 104 075148
Google Scholar
[34] Xie Y F, Li Y K, Bourges P, Ivanov A, Ye Z J, Yin J X, Hasan M Z, Luo A Y, Yao Y G, Wang Z W, Xu G, Dai P C 2022 Phys. Rev. B 105 L140501
Google Scholar
[35] Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y-X, Medarde M, Wu X, Lei H C, Chang J, Dai P C, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H, Guguchia Z 2022 Nature 602 245
Google Scholar
[36] Yang S Y, Wang Y, Ortiz B R, et al. 2020 Sci. Adv. 6 eabb6003
Google Scholar
[37] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, Chen X H 2021 Phys. Rev. B 104 L041103
Google Scholar
[38] Yu L, Wang C, Zhang Y, et al. 2021 arXiv: 2107.10714 [cond-mat. supr-con]
[39] Kenney E M, Ortiz B R, Wang C N, Wilson S D, Graf M J 2021 J. Phys. : Condens. Matter 33 235801
[40] Feng X L, Jiang K, Wang Z, Hu J P 2021 Sci. Bull. 66 1384
Google Scholar
[41] Feng X L, Zhang Y, Jiang K, Hu J P 2021 Phys. Rev. B 104 165136
Google Scholar
[42] Li H Z, Wan S Y, Li H, Li Q, Gu Q Q, Yang H, Li Y K, Wang Z W, Yao Y G, Wen H H 2022 Phys. Rev. B 105 045102
[43] Xiang Y, Li Q, Li Y K, Xie W, Yang H, Wang Z W, Yao Y G, Wen H H 2021 Nat. Commun. 12 6727
Google Scholar
[44] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J, Zhao Z X 2021 Chin. Phys. Lett. 38 057403
Google Scholar
[45] Li H X, Zhang T T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J, Miao H 2021 Phys. Rev. X 11 031050
[46] Li Y K, Li Q, Fan X W, Liu J J, Feng Q, Liu M, Wang C L, Yin J X, Duan J X, Li X, Wang Z W, Wen H H, Yao Y G 2022 Phys. Rev. B 105 L180507
Google Scholar
[47] Zhong Y G, Liu J J, Wu X X, Guguchia Z, Yin J X, Mine A, Li Y K, Najafzadeh S, Das D, Mielke C, Khasanov R, Luetkens H, Suzuki T, Liu K C, Han X L, Kondo T, Hu J P, Shin S, Wang Z W, Shi X, Yao Y G, Okazaki K 2023 Nature 617 488
Google Scholar
[48] Liu M, Han T X, Hu X R, Huon A, Lee H N, Said A, Lei H C, Ortiz B R, Wilson S D, Yin J X, Hasan M Z, Wang Z Q, Tan H X, Yan B H 2022 Phys. Rev. B 106 L140501
Google Scholar
[49] Kato T, Li Y K, Nakayama K, Wang Z W, Souma S, Matsui F, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Yao Y G, Sato T 2022 Phys. Rev. Lett. 129 206402
Google Scholar
[50] Miao H, Li H, Meier W R, Huon A, Lee H N, Said A, Lei H C, Ortiz B R, Wilson S D, Yin J X, Hasan M Z, Wang Z Q, Tan H X, Yan B H 2021 Phys. Rev. B 104 195132
Google Scholar
[51] Xiao Q, Li Q Z, Liu J J, Li Y K, Xia W, Zheng X Q, Guo Y F, Wang Z W, Peng Y Y 2023 Phys. Rev. Mater. 7 074801
Google Scholar
[52] Liu Y, Wang Y, Cai Y, Hao Z Y, Ma X M, Wang L, Liu C, Chen J, Zhou L, Wang J H, Wang S M, He H T, Liu Y, Cui S T, Wang J F, Huang B, Chen C Y, Mei J W 2021 arXiv: 2110.12651 [cond-mat. supr-con]
[53] Yang H T, Huang Z H, Zhang Y H, Zhao Z, Shi J N, Luo H L, Zhao L, Qian G J, Tan H X, Hu B, Zhu K, Lu Z Y W, Zhang H, Sun J P, Cheng J G, Shen C M, Lin X, Yan B H, Zhou X J, Wang Z Q, Pennycook S J, Chen H, Dong X L, Zhou W, Gao H J 2022 Sci. Bull. 67 2176
Google Scholar
[54] Ding G F, Wo H L, Gu Y Q, Gu Y M, Zhao J 2022 Phys. Rev. B 106 235151
Google Scholar
[55] Kautzsch L, Oey Y M, Li H, Ren Z, Ortiz B R, Pokharel G, Seshadri R, Ruff J, Kongruengkit T, Harter J W, Wang Z Q, Zeljkovic I, Wilson S D 2023 npj Quantum Mater. 8 37
Google Scholar
[56] Oey Y M, Ortiz B R, Kaboudvand F, Frassineti J, Garcia E, Cong R, Sanna S, Mitrović V F, Seshadri R, Wilson S D 2022 Phys. Rev. Mater. 6 L041801
Google Scholar
[57] Li H, Zhao H, Ortiz B R, Wang Z Q, Wilson S D, Zeljkovic I 2023 Nat. Phys. 19 637
Google Scholar
[58] Oey Y M, Kaboudvand F, Ortiz B R, Seshadri R, Wilson S D 2022 Phys. Rev. Mater. 6 074802
Google Scholar
[59] Liu Y, Liu C C, Zhu Q Q, Ji L W, Wu S Q, Sun Y L, Bao J K, Jiao W H, Xu X F, Ren Z, Cao G H 2022 Phys. Rev. Mater. 6 124803
Google Scholar
[60] Zhang Z Y, Chen Z, Zhou Y, Yuan Y F, Wang S Y, Wang J, Yang H Y, An C, Zhang L L, Zhu X D, Zhou Y H, Chen X L, Zhou J H, Yang Z R 2021 Phys. Rev. B 103 224513
Google Scholar
[61] Du F, Li R, Luo S S, Gong Y, Li Y C, Jiang S, Ortiz B R, Liu Y, Xu X F, Wilson S D, Cao C, Song Y, Yuan H Q 2022 Phys. Rev. B 106 024516
Google Scholar
[62] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P, Cheng J G 2021 Phys. Rev. Lett. 126 247001
Google Scholar
[63] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J, Chen X H 2021 Nat. Commun. 12 3645
Google Scholar
[64] Du F, Luo S S, Ortiz B R, Chen Y, Duan W Y, Zhang D T, Lu X, Wilson S D, Song Y, Yuan H Q 2021 Phys. Rev. B 103 L220504
Google Scholar
[65] Zhang J F, Liu K, Lu Z Y 2021 Phys. Rev. B 104 195130
Google Scholar
[66] Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G, Chen X L 2021 Chin. Phys. Lett. 38 057402
Google Scholar
[67] Zhu C C, Yang X F, Xia W, Yin Q W, Wang L S, Zhao C C, Dai D Z, Tu C P, Song B Q, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Li S Y 2022 Phys. Rev. B 105 094507
Google Scholar
[68] LaBollita H, Botana A S 2021 Phys. Rev. B 104 205129
Google Scholar
[69] Ortiz B R, Salinas A N C, Knudtson M J, Sarte P M, Pokahrel G, Wilson S D 2023 Phys. Rev. Mater. 7 014801
Google Scholar
[70] Nakayama K, Li Y K, Kato T, Kato T, Liu M, Wang Z H, Takahashi T, Yao Y G, Sato T 2022 Phys. Rev. X 12 011001
[71] Song Y, Ying T, Chen X, Han X, Wu, X X, Schnyder A P, Huang Y, Guo J G, Chen X L 2021 Phys. Rev. Lett. 127 237001
Google Scholar
-
图 2 (a)低温不同磁场下CsV3Sb5电阻率的温度依赖关系[14]; (b)磁场平行于a轴时, CsV3Sb5奈特位移的温度依赖关系[15]; (c)低温下自旋晶格弛豫率的 Hebel-Slicheter共振峰[15]; (d)在CsV3Sb5的Cs表面(左图) 和Sb表面(右图)观察到的两种超导能隙谱[17]; (e) CsV3Sb5的STM原子形貌的傅里叶变换, 粉色圈中Q4/3a处的峰对应PDW相[19].
Fig. 2. (a) Temperature-dependent resistivity at low temperature for CsV3Sb5 under various magnetic fields[14]; (b) temperature dependence of the Knight shift for CsV3Sb5[15]; (c) Hebel-Slicheter resonance peak of the spin lattice relaxation rate at low temperature[15]; (d) two kinds of superconducting gap spectra observed on the half-Cs surface (left image) and half-Sb surface (right image) for CsV3Sb5[17]; (e) Fourier transformation of atomically resolved STM topography for CsV3Sb5, the pink cycle at Q4/3a shows the PDW phase[19].
图 3 (a) DFT计算的CsV3Sb5能带结构[14]; (b) ARPES观察到的沿ΓKM方向的电子能带结构[26]; (c) Sb表面形貌图的傅里叶变换, 显示2×2电荷序(红色阴影区域)和1×4电荷序[33]; (d) 覆盖从局域跃迁机制到偏斜散射机制的σAHE与σxx关系图, 包含多种材料与CsV3Sb5和K1–xV3Sb5的对比 [37]; (e)手性磁通相的局域轨道磁矩分布及电荷分布[40]; (f) KV3Sb5的拉曼光谱, 低温条件下在25.4 meV和27.5 meV时观察到两种新的声子模式[45]; (g)外加0.4 T和5 T磁场时, 不同温度下c轴方向的电阻率随测量角度的依赖关系[43]
Fig. 3. (a) Band structure of CsV3Sb5 calculated by DFT[14]; (b) ARPES intensity as a function of wave vector and binding energy measured along the ΓKM[26]; (c) Fourier transform of an Sb topographic image, showing 2×2 charge order vector peaks (red shaded area), and 1×4 vector peaks along Q1 direction [33]; (d) plot of σAHE versus σxx for a variety of materials compared with CsV3Sb5 and K1–xV3Sb5 spanning various regimes from the localized hopping regime to the skew scattering regime[37]; (e) local orbital magnetic moment distribution and charge distribution of chiral flux phase[40]; (f) Raman spectroscopy for KV3Sb5; two new phonon modes at 25.4 and 27.5 meV are observed below 30 K[45]; (g) angular dependent c-axis resistivity measured at different temperatures under magnetic fields of 0.4 and 5 T[43] .
图 4 (a)从1.8 K到300 K, Cs(V1–xNbx)3Sb5的面内电阻率的温度依赖关系[46]; (b) Cs(V1–xNbx)3Sb5的相图, 表明了CDW和超导之间的竞争关系[46]; (c)温度为5 K时, 去除线性正常霍尔背底后提取的反常霍尔电阻率 [46]; (d)第一性原理计算得到的CsV3Sb5和Cs(V0.93Nb0.07)3Sb5的电子能带结构; (e)上图和中图分别为CsV3Sb5和Cs(V0.93Nb0.07)3Sb5沿ΓKM方向切割的ARPES强度图, 下图为拟合点的对比图[49]
Fig. 4. (a) Temperature dependence of in-plane resistivity measured from 300 to 1.8 K for Cs(V1–xNbx)3Sb5[46]; (b) phase diagram of Cs(V1–xNbx)3Sb5, which illustrates the competition between CDW and superconductivity [46]; (c) extracted {\rho }_{yx}^{{\mathrm{A}}{\mathrm{H}}{\mathrm{E}}} taken by subtracting the local linear ordinary Hall background at 5 K[46]; (d) the electronic structure of CsV3Sb5 and Cs(V0.93Nb0.07)3Sb5 obtained through first principle calculation[46]; (e) the upper and middle figures show the ARPES intensity maps of CsV3Sb5 and Cs(V0.93Nb0.07) 3Sb5 along ΓKM, while the lower figure shows a comparison of the fitting points[49].
图 5 (a)在1.8—300 K范围内测得的Cs(V1–xTax)3Sb5面内电阻率的温度依赖关系, 插图显示了CDW转变温度; (b)超导转变温度附近Cs(V1–xTax)3Sb5的ρ(T)曲线放大图; (c) Cs(V1–xTax)3Sb5的相图; (d), (e)不同掺杂浓度Cs(V1–xTax)3Sb5 的X射线散射强度, 其中(d)为H-切割(左图沿[–2.5, 0.5, –13.5], 右图沿[–1, 0.5, –15.5]), (e)为L-切割(左图沿[–2.5, 0.5, L] , 右图沿[–1, 0.5, L])[51]
Fig. 5. (a) Temperature dependence of in-plane resistivity measured from 1.8 K to 300 K for Cs(V1–xTax)3Sb5, where the inset shows dρ/dT as a function of temperature near the CDW transition. (b) Zoomed-in views of the ρ(T) curves near the superconductivity transition temperatures for Cs(V1–xTax)3Sb5. (c) Schematic phase diagrams of Cs(V1–xTax)3Sb5 [48]. (d), (e) X-ray scattering intensity of Cs(V1–xTax)3Sb5 with different doping concentrations: the (d) H-cut (left image along [–2.5, 0.5, –13.5], right image along [–1, 0.5, –15.5]) and (e) L-cut (left image along [–2.5, 0.5, L], right image along [–1, 0.5, L])[51].
图 6 (a), (b) Cs(V0.93Nb0.07)3Sb5和Cs(V0.86Ta0.14)3Sb5样品超导能隙的动量依赖关系示意图; (c) TCDW, Tc与晶格膨胀率的依赖关系的相图, 晶格膨胀率是由于化学替代引起的; (d) Tc以下和以上Cs(V0.86Ta0.14)3Sb5的零场µSR时间谱; (e)零场μ子自旋弛豫率在Tc附近的温度依赖关系; 表明在CDW被完全抑制时, Cs(V0.86Ta0.14)3Sb5的超导电性具有时间反演对称性破缺的特性[47]
Fig. 6. (a), (b) Schematic momentum dependence of the SC gap magnitude of the Cs(V0.93Nb0.07)3Sb5 and Cs(V0.86Ta0.14)3Sb5 samples, respectively; (c) schematic phase diagram in which TCDW and Tc are plotted as function of the lattice expansion due to the chemical substitutions; (d) zero-Field (ZF) µSR time spectra for Cs(V0.86Ta0.14)3Sb5 below and above Tc; (e) temperature dependence of the zero-field muon spin relaxation rate in the temperature range across Tc, which indicates that time-reversal symmetry breaking in the superconducting state of the Cs(V0.86Ta0.14)3Sb5 sample with CDW fully suppressed[47].
图 7 (a), (b) Cs(V0.987Ti0.013)3Sb5和Cs(V0.95Ti0.05)3Sb5样品Sb表面电子态的傅里叶变换, 前者存在2×2的 CDW态, 后者CDW态消失[53]; (c)第一性原理计算得到的Cs(V1–xTix)3Sb5能带结构[53]; (d), (e)两课题组得到的Cs(V1–xTix)3Sb5的相图[52,53]; (f)在CsV3Sb5(黑色曲线)和CsV3–xTixSb5 (x = 0.03, 0.04, 0.15和0.27分别对应于蓝色、绿色和深绿色曲线)样品的Sb表面上获得的空间平均dI/dV谱, 随着Ti掺杂从V形变为U形[53]
Fig. 7. (a), (b) Fourier transform was performed on the Sb surface electronic states of Cs(V0.987Ti0.013)3Sb5 and Cs(V0.95Ti0.05)3Sb5, the former shows the presence of 2×2 CDW states and the latter disappearing[53]; (c) the bands of Cs(V1–xTix)3Sb5 by first-principles calculations[53]; (d), (e) phase diagrams of Cs(V1–xTix)3Sb5 for two research groups[52,53]; (f) spatially-averaged dI/dV spectra obtained on the Sb surfaces of the CsV3Sb5 (black curve) and CsV3–xTixSb5 samples (x = 0.03, 0.04, 0.15 and 0.27, corresponding to blue, green, and dark green curves, respectively), showing a transition from V-shape to U-shape symmetry through Ti substitution[53]
图 8 (a) Cs(V1–xCrx)3Sb5的电子掺杂相图[54]; (b)通过减去5 K的线性霍尔背底提取Cs(V1–xCrx)3Sb5 (x = 0到x = 0.09)样品的反常霍尔电阻率[54]; (c) CsV3–xMoxSb5的相图[48]
Fig. 8. (a) Electron doping phase diagram Cs(V1–xCrx)3Sb5[54]; (b) the extracted anomalous Hall resistivity by subtracting the local linear ordinary Hall background at 5 K for chromium doping content from x = 0 to x = 0.09[54]; (c) the electron doping phase diagram CsV3–xMoxSb5[48].
图 9 (a) CsV3Sb5–xSnx(x ≤ 0.06)的dM/dT随温度依赖曲线, CDW转变温度随着Sn掺杂降低, 高浓度Sn掺杂样品CDW转变消失[56]; (b) CsV3Sb4Sn的能带结构, 其中一个位于Kagome平面内的Sb原子被Sn取代[56]; (c) CsV3Sb4Sn的能带结构, 其中一个位于Kagome平面外的Sb原子被Sn取代[56]; (d)—(f)在T = 11 K时CsV3Sb5–xSnx样品的X射线散射强度图, 其中(d)和(e)分别是x = 0.025样品(H, K, 1.5)和(H, 1.5, L)平面的X射线散射强度图, (f) x = 0.15样品(H, K, –0.5)平面的X射线散射强度图[55]
Fig. 9. (a) dM/dT -T for CsV3Sb5–xSnx (x ≤ 0.06), show a decrease in CDW transition temperature, and this transition disappears for higher Sn concentration[56]; (b) calculation of the band structure of CsV3Sb4Sn where one Sn has been substituted within the Kagome layer[56]; (c) calculation of the band structure of CsV3Sb4Sn where one Sn has been substituted at a Sb site outside of the Kagome layer[56]; (d)–(f) X-ray scattering intensities for CsV3Sb5–xSnx samples at 11 K, in which (d) and (e) are the X-ray scattering intensity in (H, K, 1.5)-plane and (H, 1.5, L)-plane, respectively, for the x = 0.025 sample, while (f) is the X-ray scattering intensities in the (H, K, –0.5)-plane for the x = 0.15 sample[55].
图 10 (a) CsV3Sb5–xSnx的空穴掺杂相图[56]; (b)高压下CsV3Sb5的相图[63]; (c) CsV3Sb5样品超导转变温度的压强依赖关系[63]; (d) T = 0 K时上临界场的压强依赖性[63]; (e)能带结构随空穴掺杂的演变和(f)两个范霍夫奇点相对于费米能级的位置[68]; (g) CsV3Sb5和CsV3(Sb0.977As0.023)5电阻率的温度依赖性; (h)超导转变温度附近的放大图; (i)在CDW转变温度附近的电阻率的导数[59]
Fig. 10. (a) Hole-doping phase diagram for CsV3Sb5–xSnx [56]; (b) phase diagram of CsV3Sb5 under high pressure[63]; (c) pressure dependence of superconducting transition temperature for CsV3Sb5 samples[63]; (d) the pressure dependence of the upper critical field at T = 0 K[63]; (e) evolution of energy band structure with hole doping and (f) the position of two van Hove singularities relative to Fermi level[68]; (g) temperature dependence of resistivity for CsV3Sb5 and CsV3(Sb0.977As0.023)5; (h) amplification around the superconducting transition; (i) the derivative of resistivity around the CDW transition[59].
图 11 (a), (b) KxRbyCszV3Sb5 (x + y + z = 1)样品的 (a) CDW转变和(b)超导转变三元相图: 使用dM(T )/dT数据中的峰值提取到CDW转变温度TCDW; 使用电输运数据中零电阻率点提取超导转变温度Tc. (c), (d)将KxRbyCszV3Sb5(x+y+z =1)样品的 (c) TCDW和 (d) Tc与KV3Sb5, RbV3Sb5和CsV3Sb5三种母体的转变温度按照掺杂比例线性插值的数据进行比较[69]
Fig. 11. (a) CDW transition and (b) superconducting transition ternary phase diagram of KxRbyCszV3Sb5 (x + y + z = 1). The CDW transition temperature TCDW data extracted using the peak in the d(MT )/dT data, the superconducting transition temperature Tc data extracted using zero resistivity points from electrical transport data. The (c) TCDW and (d) Tc of KxRbyCszV3Sb5 (x + y + z = 1) is compared with the linear interpolation of transition temperature of the parent KV3Sb5, RbV3Sb5, and CsV3Sb5[69].
图 12 (a) CsV3Sb5的能带结构, 不同颜色代表了不同轨道能带的特征; (b)母体和Cs处理后样品在Γ点附近的ARPES强度的比较[70]; (c)在T = 120 K沿ΓKM方向测得的ARPES强度与波矢、结合能的依赖关系; (d)与(c)相同, 但是Cs处理后的样品; (e) CsV3Sb5随空穴掺杂含量变化的相图[71]
Fig. 12. (a) Band structure of CsV3Sb5, the orbital characters of different bands are represented by different colors; (b) comparison of the ARPES intensity around the Γ point between pristine and Cs-dosed samples[70]; (c) ARPES intensity as a function of wave vector and binding energy, measured at T = 120 K along the ΓKM for pristine sample; (d) the same as (c), but for Cs-dosed sample; (e) phase diagram of CsV3Sb5 with the variation of hole-doping content[71].
表 1 不同位置、不同元素掺杂CsV3Sb5 的掺杂效应
Table 1. Doping effect of CsV3Sb5 by different elements on different atomic sites.
掺杂位置 掺杂元素 电荷密度波 超导 反常霍尔效应 能带结构及费米面位置变化 掺杂类型 掺杂极限/% V Nb 抑制 增强 抑制 Γ点电子口袋扩张, 范霍夫奇点上移 等价掺杂 7 V Ta 抑制 增强 抑制 Γ点电子口袋扩张, 范霍夫奇点上移 等价掺杂 14 V Ti 抑制 待定 抑制 费米面降低, Γ点电子口袋减小, 范霍夫奇点上移 空穴 10 V Mo 增强 抑制 — — 电子 3.5 V Cr 抑制 抑制 抑制 — 电子 25 Sb Sn 抑制 双穹顶状 — 费米面降低, Γ点电子口袋减小, 范霍夫奇点上移 空穴 20 Sb As 抑制 增强 抑制 — 等价掺杂 2.3 Cs K 抑制 抑制 — — 等价掺杂 100 Cs Rb 抑制 增强 — — 等价掺杂 100 表面 Cs 抑制 — — 费米面上升, Γ点电子口袋扩张 电子 — 表面 O 抑制 穹顶状 — 范霍夫奇点上移, Γ点电子口袋减小 空穴 — -
[1] Syozi I 1951 Prog. Theor. Phys. 6 306
Google Scholar
[2] Villain J, Bidaux R, Carton J P, et al. 1980 Phys. France 41 1263
Google Scholar
[3] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G, Lee Y S 2007 Phys. Rev. Lett. 98 107204
Google Scholar
[4] Ran Y, Hermele M, Patrick A L, Wen X G 2007 Phys. Rev. Lett. 98 117205
Google Scholar
[5] Jiang H C, Weng Z Y, Sheng D N 2008 Phys. Rev. Lett. 101 117203
Google Scholar
[6] Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003
[7] Balents L 2010 Nature 464 199
Google Scholar
[8] Yan S, Huse D A, White S R 2011 Science 332 1173
Google Scholar
[9] Norman M R 2016 Rev. Mod. Phys. 88 041002
Google Scholar
[10] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, Senthil T 2020 Science 367 eaay0668
Google Scholar
[11] Depenbrock S, McCulloch I P, Schollwock U 2012 Phys. Rev. Lett. 109 067201
Google Scholar
[12] Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B, Xiang T 2017 Phys. Rev. Lett. 118 137202
Google Scholar
[13] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, Toberer E S 2019 Phys. Rev. Mater. 3 094407
Google Scholar
[14] Ortiz B R, Teicher S, Hu Y, Zuo J L, Sarte P M, Schueller E C, Milinda Abeykoon A M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, Wilson S D 2020 Phys. Rev. Lett. 125 247002
Google Scholar
[15] Mu C, Yin Q W, Tu Z J, Gong C S, Lei H C, Li Z, Luo J L 2021 Chin. Phys. Lett. 38 077402
Google Scholar
[16] Luo H L, Gao Q, Liu H X, Gu Y H, Wu D S, Yi C J, Jia J J, Wu S L, Luo X Y, Xu Y, Zhao L, Wang Q Y, Mao H Q, Liu G D, Zhu Z H, Shi Y G, Jiang K, Hu J P, Xu Z Y, Zhou X J 2022 Nat. Commun. 13 273
Google Scholar
[17] Xu H S, Yan Y J, Yin R T, Xia W, Fang S J, Chen Z Y, Li Y J, Yang W Q, Guo Y F, Feng D L 2021 Phys. Rev. Lett. 127 187004
Google Scholar
[18] Xu J P, Wang M X, Liu Z Y, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001
Google Scholar
[19] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q, Gao H J 2021 Nature 599 222
Google Scholar
[20] Hamidian M H, Edkins S D, Joo S H, Kostin A, Eisaki H, Uchida S, Lawler M J, Kim E A, Mackenzie A P, Fujita K, Lee J, Séamus Davis J C 2016 Nature 532 343
Google Scholar
[21] Edkins S D, Kostin A, Fujita K, Mackenzie A P, Eisaki H, Uchida S, Sachdev S, Lawler M J, Kim E A, Séamus Davis J C, Hamidian M H 2019 Science 364 976
Google Scholar
[22] Lou R, Fedorov A, Yin Q W, Kuibarov A, Tu Z J, Gong C S, Schwier E F, Büchner B, Lei H C, Borisenko S 2022 Phys. Rev. Lett. 128 036402
Google Scholar
[23] Kang M G, Fang S A, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Di Sante D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H, Comin R 2022 Nat. Phys. 18 301
Google Scholar
[24] Kato T, Li Y, Kawakami T, et al. 2022 Commun. Mater. 3 30
Google Scholar
[25] Cho S Y, Ma H Y, Xia W, Yang Y C, Liu Z T, Huang Z, Jiang Z C, Lu X L, Liu J S, Liu Z H, Li J, Wang J H, Liu Y, Jia J F, Guo Y F, Liu J P, Shen D W 2021 Phys. Rev. Lett. 127 236401
Google Scholar
[26] Nakayama K, Li Y K, Kato T, Liu M, Wang Z W, Takahashi T, Yao Y G, Sato T 2021 Phys. Rev. B 104 L161112
Google Scholar
[27] Hu Y, Teicher S M, Ortiz B R, Luo Y, Peng S T, Huai L W, Ma J Z, Plumb N C, Wilson S D, He J F, Shi M 2022 Sci. Bull. 67 495
Google Scholar
[28] Liu Z H, Zhao N N, Yin Q W, Gong C S, Tu Z J, Li M, Song W H, Liu Z T, Shen D W, Huang Y B, Liu K, Lei H C, Wang S C 2021 Phys. Rev. X 11 041010
[29] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R, Wilson S D 2021 Phys. Rev. X 11 041030
[30] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher Samuel M L, Seshadri R, Wilson S D 2021 Phys. Rev. Mater. 5 034801
Google Scholar
[31] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, Lei H C 2021 Chin. Phys. Lett. 38 037403
Google Scholar
[32] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, Xu G, Guguchia Z, He J Y, Shafayat Hossain M, Liu X X, Ruff J, Kautzsch L, Zhang S T, Chang G Q, Belopolski I, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Wang Z Q, Thomale R, Neupert T, Wilson S D, Hasan M Z 2021 Nat. Mater. 20 1353
Google Scholar
[33] Wang Z W, Jiang Y X, Yin J X, Li Y K, Wang G Y, Huang H L, Shao S, Liu J J, Zhu P, Shumiya N, Hossain M S, Liu H X, Shi Y G, Duan J X, Li X, Chang G Q, Dai P C, Ye Z J, Xu G, Wang Y C, Zheng H, Jia J F, Hasan M Z, Yao Y G 2021 Phys. Rev. B 104 075148
Google Scholar
[34] Xie Y F, Li Y K, Bourges P, Ivanov A, Ye Z J, Yin J X, Hasan M Z, Luo A Y, Yao Y G, Wang Z W, Xu G, Dai P C 2022 Phys. Rev. B 105 L140501
Google Scholar
[35] Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y-X, Medarde M, Wu X, Lei H C, Chang J, Dai P C, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H, Guguchia Z 2022 Nature 602 245
Google Scholar
[36] Yang S Y, Wang Y, Ortiz B R, et al. 2020 Sci. Adv. 6 eabb6003
Google Scholar
[37] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, Chen X H 2021 Phys. Rev. B 104 L041103
Google Scholar
[38] Yu L, Wang C, Zhang Y, et al. 2021 arXiv: 2107.10714 [cond-mat. supr-con]
[39] Kenney E M, Ortiz B R, Wang C N, Wilson S D, Graf M J 2021 J. Phys. : Condens. Matter 33 235801
[40] Feng X L, Jiang K, Wang Z, Hu J P 2021 Sci. Bull. 66 1384
Google Scholar
[41] Feng X L, Zhang Y, Jiang K, Hu J P 2021 Phys. Rev. B 104 165136
Google Scholar
[42] Li H Z, Wan S Y, Li H, Li Q, Gu Q Q, Yang H, Li Y K, Wang Z W, Yao Y G, Wen H H 2022 Phys. Rev. B 105 045102
[43] Xiang Y, Li Q, Li Y K, Xie W, Yang H, Wang Z W, Yao Y G, Wen H H 2021 Nat. Commun. 12 6727
Google Scholar
[44] Ni S L, Ma S, Zhang Y H, Yuan J, Yang H T, Lu Z Y W, Wang N N, Sun J P, Zhao Z, Li D, Liu S B, Zhang H, Chen H, Jin K, Cheng J G, Yu L, Zhou F, Dong X L, Hu J P, Gao H J, Zhao Z X 2021 Chin. Phys. Lett. 38 057403
Google Scholar
[45] Li H X, Zhang T T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J, Miao H 2021 Phys. Rev. X 11 031050
[46] Li Y K, Li Q, Fan X W, Liu J J, Feng Q, Liu M, Wang C L, Yin J X, Duan J X, Li X, Wang Z W, Wen H H, Yao Y G 2022 Phys. Rev. B 105 L180507
Google Scholar
[47] Zhong Y G, Liu J J, Wu X X, Guguchia Z, Yin J X, Mine A, Li Y K, Najafzadeh S, Das D, Mielke C, Khasanov R, Luetkens H, Suzuki T, Liu K C, Han X L, Kondo T, Hu J P, Shin S, Wang Z W, Shi X, Yao Y G, Okazaki K 2023 Nature 617 488
Google Scholar
[48] Liu M, Han T X, Hu X R, Huon A, Lee H N, Said A, Lei H C, Ortiz B R, Wilson S D, Yin J X, Hasan M Z, Wang Z Q, Tan H X, Yan B H 2022 Phys. Rev. B 106 L140501
Google Scholar
[49] Kato T, Li Y K, Nakayama K, Wang Z W, Souma S, Matsui F, Kitamura M, Horiba K, Kumigashira H, Takahashi T, Yao Y G, Sato T 2022 Phys. Rev. Lett. 129 206402
Google Scholar
[50] Miao H, Li H, Meier W R, Huon A, Lee H N, Said A, Lei H C, Ortiz B R, Wilson S D, Yin J X, Hasan M Z, Wang Z Q, Tan H X, Yan B H 2021 Phys. Rev. B 104 195132
Google Scholar
[51] Xiao Q, Li Q Z, Liu J J, Li Y K, Xia W, Zheng X Q, Guo Y F, Wang Z W, Peng Y Y 2023 Phys. Rev. Mater. 7 074801
Google Scholar
[52] Liu Y, Wang Y, Cai Y, Hao Z Y, Ma X M, Wang L, Liu C, Chen J, Zhou L, Wang J H, Wang S M, He H T, Liu Y, Cui S T, Wang J F, Huang B, Chen C Y, Mei J W 2021 arXiv: 2110.12651 [cond-mat. supr-con]
[53] Yang H T, Huang Z H, Zhang Y H, Zhao Z, Shi J N, Luo H L, Zhao L, Qian G J, Tan H X, Hu B, Zhu K, Lu Z Y W, Zhang H, Sun J P, Cheng J G, Shen C M, Lin X, Yan B H, Zhou X J, Wang Z Q, Pennycook S J, Chen H, Dong X L, Zhou W, Gao H J 2022 Sci. Bull. 67 2176
Google Scholar
[54] Ding G F, Wo H L, Gu Y Q, Gu Y M, Zhao J 2022 Phys. Rev. B 106 235151
Google Scholar
[55] Kautzsch L, Oey Y M, Li H, Ren Z, Ortiz B R, Pokharel G, Seshadri R, Ruff J, Kongruengkit T, Harter J W, Wang Z Q, Zeljkovic I, Wilson S D 2023 npj Quantum Mater. 8 37
Google Scholar
[56] Oey Y M, Ortiz B R, Kaboudvand F, Frassineti J, Garcia E, Cong R, Sanna S, Mitrović V F, Seshadri R, Wilson S D 2022 Phys. Rev. Mater. 6 L041801
Google Scholar
[57] Li H, Zhao H, Ortiz B R, Wang Z Q, Wilson S D, Zeljkovic I 2023 Nat. Phys. 19 637
Google Scholar
[58] Oey Y M, Kaboudvand F, Ortiz B R, Seshadri R, Wilson S D 2022 Phys. Rev. Mater. 6 074802
Google Scholar
[59] Liu Y, Liu C C, Zhu Q Q, Ji L W, Wu S Q, Sun Y L, Bao J K, Jiao W H, Xu X F, Ren Z, Cao G H 2022 Phys. Rev. Mater. 6 124803
Google Scholar
[60] Zhang Z Y, Chen Z, Zhou Y, Yuan Y F, Wang S Y, Wang J, Yang H Y, An C, Zhang L L, Zhu X D, Zhou Y H, Chen X L, Zhou J H, Yang Z R 2021 Phys. Rev. B 103 224513
Google Scholar
[61] Du F, Li R, Luo S S, Gong Y, Li Y C, Jiang S, Ortiz B R, Liu Y, Xu X F, Wilson S D, Cao C, Song Y, Yuan H Q 2022 Phys. Rev. B 106 024516
Google Scholar
[62] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P, Cheng J G 2021 Phys. Rev. Lett. 126 247001
Google Scholar
[63] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J, Chen X H 2021 Nat. Commun. 12 3645
Google Scholar
[64] Du F, Luo S S, Ortiz B R, Chen Y, Duan W Y, Zhang D T, Lu X, Wilson S D, Song Y, Yuan H Q 2021 Phys. Rev. B 103 L220504
Google Scholar
[65] Zhang J F, Liu K, Lu Z Y 2021 Phys. Rev. B 104 195130
Google Scholar
[66] Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G, Chen X L 2021 Chin. Phys. Lett. 38 057402
Google Scholar
[67] Zhu C C, Yang X F, Xia W, Yin Q W, Wang L S, Zhao C C, Dai D Z, Tu C P, Song B Q, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Li S Y 2022 Phys. Rev. B 105 094507
Google Scholar
[68] LaBollita H, Botana A S 2021 Phys. Rev. B 104 205129
Google Scholar
[69] Ortiz B R, Salinas A N C, Knudtson M J, Sarte P M, Pokahrel G, Wilson S D 2023 Phys. Rev. Mater. 7 014801
Google Scholar
[70] Nakayama K, Li Y K, Kato T, Kato T, Liu M, Wang Z H, Takahashi T, Yao Y G, Sato T 2022 Phys. Rev. X 12 011001
[71] Song Y, Ying T, Chen X, Han X, Wu, X X, Schnyder A P, Huang Y, Guo J G, Chen X L 2021 Phys. Rev. Lett. 127 237001
Google Scholar
计量
- 文章访问数: 4624
- PDF下载量: 308