搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金电极对偶氮苯分子结的结构及其电输运性质的力学调控作用

严岩 孙峰 羊志 孔程昱 葛云龙 陈登辉 邱帅 李宗良

引用本文:
Citation:

金电极对偶氮苯分子结的结构及其电输运性质的力学调控作用

严岩, 孙峰, 羊志, 孔程昱, 葛云龙, 陈登辉, 邱帅, 李宗良

Mechanical modulation effects of gold electrodes on geometries and electronic transport properties of azobenzene molecular junctions

Yan Yan, Sun Feng, Yang Zhi, Kong Cheng-Yu, Ge Yun-Long, Chen Deng-Hui, Qiu Shuai, Li Zong-Liang
PDF
HTML
导出引用
  • 偶氮苯分子因存在顺反两种异构体而表现出不同的电输运性质. 为了揭示电极的机械作用对偶氮苯分子的几何结构以及电输运性质的影响, 基于第一性原理计算研究了偶氮苯分子在电极挤压和拉伸作用下的结构变化规律, 并利用非平衡格林函数方法计算了偶氮苯分子结在拉伸和压缩过程中以及分子在不同形状电极之间的电输运性质. 结果表明, 顺式和反式偶氮苯分子在电极作用下都具有较稳定的几何结构. 其中顺式偶氮苯分子在电极拉至超过反式偶氮苯分子结平衡电极距离0.1 nm时仍保持为顺式结构. 而反式偶氮苯分子在电极挤压下虽然发生了弯曲, 但当电极距离压缩至短于顺式偶氮苯分子结0.2 nm时, 中间的C—N—N—C二面角仍然保持反式结构. 在低偏压下, 两电极若为平面电极, 则反式偶氮苯分子的电导高于顺式偶氮苯分子; 若分子连接于两锥形电极尖端, 则顺式偶氮苯分子结的电导更高. 特别值得关注的是两种偶氮苯分子的导电能力随电极距离的变化正好相反, 顺式偶氮苯分子结的电导随电极距离拉伸而增大, 反式偶氮苯分子结的电导则随电极距离的压缩而增大. 偶氮苯分子结的电导在电极距离变化时最大变化幅度可达10倍以上.
    The azobenzene molecular junction has aroused much interest of scientists due to its switching property arising from its photoinduced isomerism. Owing to the existence of the cis and trans isomers, the electronic transport properties of the azobenzene molecules are promised to show significant differences. The experimental investigations indicate that the cis azobenzene molecule commonly shows high conductance, while the trans azobenzene molecule shows low conductance. However, the computations give the opposite results. To reveal this significant difference, the effects of electrode mechanical modulation on the geometries and electronic transports of the azobenzene molecules are studied. The effects of the electrode geometries on the electronic transports of the azobenzene molecular junctions are also investigated. The electrode compressing process and the electrode stretching process of the azobenzene molecular junctions are simulated based on the first principles calculations. The electronic transport properties are further calculated by using non-equilibrium Green’s function (NEGF) method. The numerical results show that the structures of the cis and trans azobenzenes with sulfur anchors are stable in the stretching process and compressing process of electrode. For the cis azobenzene molecular junction, the cis geometry remains unchanged until the electrode distance is stretched to about 0.1 nm longer than the stable electrode distance of the trans azobenzene molecular junction. Though the trans azobenzene molecule is bent when squeezed by the electrodes, the C—N—N—C dihedral still maintains its trans structure even when the electrode distance is compressed to about 0.2 nm shorter than the stable electrode distance of the cis azobenzene molecular junctions. It is intriguing that the conductance values of cis and trans azobenzene molecular junctions vary inversely with the electrode distance. The conductance value of the cis azobenzene molecular junction increases with the elongating of the electrode distance, while the conductance value of the trans azobenzene molecular junction increases with the compression of the electrode. The conductance is very sensitive to the electrode distance for both the cis azobenzene molecular junction and the trans azobenzene molecular junctions, which can change more than 10 times with the change of the electrode distance. In the lower bias regime, the conductance of the trans azobenzene is higher than that of the cis one if the two electrodes are planar. However, when the molecule is sandwiched between two pyramid-shaped electrodes, the condutance of the cis azobenzene is higher. Thus, the higher conductance of cis azobenzene may be caused either by the pyramid-shaped electrodes or by the large electrode distance.
      通信作者: 李宗良, lizongliang@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974217, 12204281) 资助的课题.
      Corresponding author: Li Zong-Liang, lizongliang@sdnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217, 12204281).
    [1]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [2]

    Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450Google Scholar

    [3]

    Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [4]

    Wang M N, Wang T, Ojambati O S, Duffin T J, Kang K, Lee T, Scheer E, Xiang D, Nijhuis C A 2022 Nat. Rev. Chem. 6 681Google Scholar

    [5]

    Liu R, Han Y M, Sun F, Khatri G, Kwon J, Nickle C, Wang L J, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [6]

    Zhang S R, Guo C Y, Ni L F, Hans K M, Zhang W Q, Peng S J, Zhao Z K, Guhr D C, Qi Z, Liu H T, Song M, Wang Q L, Boneberg J, Guo X F, Lee T, Scheer E, Xiang D 2021 Nano Today 39 101226Google Scholar

    [7]

    Xiang D, Wang X L, Jia C C, Lee T, Guo X F 2016 Chem. Rev. 116 4318Google Scholar

    [8]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [9]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [10]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [11]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [12]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [13]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [14]

    Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401Google Scholar

    [15]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [16]

    Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485Google Scholar

    [17]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [18]

    Sun F, Liu R, Liu L, Yan Y, Wang S S, Yang Z, Suo Y Q, Wang C K, Li Z L 2022 Physica E 140 115186Google Scholar

    [19]

    Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Physica E 128 114542Google Scholar

    [20]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [21]

    Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [22]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [23]

    Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [24]

    Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116Google Scholar

    [25]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [26]

    Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386Google Scholar

    [27]

    Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763Google Scholar

    [28]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [29]

    Li J, Hou S J, Yao Y R, et al. 2022 Nat. Mater. 21 917Google Scholar

    [30]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [31]

    Wang Q L, Liu R, Xiang D, et al. 2016 ACS Nano 10 9695Google Scholar

    [32]

    Sun F, Liu L, Zheng C F, Li Y C, Yan Y, Fu X X, Wang C K, Liu R, Xu B Q, Li Z L 2023 Nanoscale 15 12586Google Scholar

    [33]

    索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar

    Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar

    [34]

    刘琳, 孙峰, 李雨晨, 严岩, 刘冰心, 羊志, 邱帅, 李宗良 2023 物理学报 72 048504Google Scholar

    Liu L, Sun F, Li Y C, Yan Y, Liu B X, Yang Z, Qiu S, Li Z L 2023 Acta Phys. Sin. 72 048504Google Scholar

    [35]

    Yang Z, Sun F, Chen D H, Wang Z Q, Wang C K, Li Z L, Qiu S 2022 Chin. Phys. B 31 077202Google Scholar

    [36]

    丁锦廷, 胡沛佳, 郭爱敏 2023 物理学报 72 157301Google Scholar

    Ding J T, Hu P J, Guo A M 2023 Acta Phys. Sin. 72 157301Google Scholar

    [37]

    Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E, Krause J L 2004 Phys. Rev. Lett. 92 158301Google Scholar

    [38]

    del Valle M, Gutiérrez R, Tejedor C, Cuniberti G 2007 Nat. Nanotechnol. 2 176Google Scholar

    [39]

    Kim Y, Garcia-Lekue A, Sysoiev D, Frederiksen T, Groth U, Scheer E 2012 Phys. Rev. Lett. 109 226801Google Scholar

    [40]

    Smaali K, Lenfant S, Karpe S, Oçafrain M, Blanchard P, Deresme D, Godey S, Rochefort A, Roncali J, Vuillaume D 2010 ACS Nano 4 2411Google Scholar

    [41]

    Martin S, Haiss W, Higgins S J, Nichols R J 2010 Nano Lett. 10 2019Google Scholar

    [42]

    Mativetsky J M, Pace G, Elbing M, Rampi M A, Mayor M, Samorì P 2008 J. Am. Chem. Soc. 130 9192Google Scholar

    [43]

    Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591Google Scholar

    [44]

    Jiang Z L, Wang H, Wang Y F, Sanvito S, Hou S M 2017 J. Phys. Chem. C 121 27344Google Scholar

    [45]

    Lee J, Chang H, Kim S, Bang G S, Lee H 2009 Angew. Chem. Int. Ed. 48 8501Google Scholar

    [46]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [47]

    Li L, Zhang J Y, Yang C Y, et al. 2021 Small 17 2103125Google Scholar

    [48]

    Bricks J L, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev A I, Daub J, Rurack K 2005 J. Am. Chem. Soc. 127 13522Google Scholar

    [49]

    Samain F, Ghosh S, Teo Y N, Kool E T 2010 Angew. Chem. Int. Ed. 49 7025Google Scholar

    [50]

    Rodriguez J A, Dvorak J, Jirsak T, Liu G, Hrbek J, Aray Y, González C 2003 J. Am. Chem. Soc. 125 276Google Scholar

    [51]

    Wang S S, Yang Z, Sun F, Liu R, Liu L, Fu X X, Wang C K, Li Z L 2021 J. Phys. Chem. C 125 27290Google Scholar

    [52]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev. A. 03 (Wallingford, CT

    [53]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [54]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

  • 图 1  (a) 反式和 (b) 顺式偶氮苯分子结示意图

    Fig. 1.  The schematic structures of the (a) trans and (b) cis dithiol azobenzene molecular junctions.

    图 2  反式偶氮苯分子结在电极压缩过程中 (a)几何结构、体系能量, (b)电极作用力以及体系电导的变化曲线, 插图为1.85 nm电极距离下体系在C—N—N—C两面角的变化过程中出现的能垒以及转动力矩的变化; 顺式偶氮苯分子结在电极拉伸过程中(c)几何结构、能量, (d)电极作用力以及体系电导的变化曲线, 图中所有能量均以反式偶氮苯分子结的能量最低点为能量零点

    Fig. 2.  The variations of (a) the geometry, the energy, (b) the electrode force and the conductance in the compression process of the trans dithiol azobenzene molecular junctions, the inset shows the energy barrier and the moment of rotation arised during the change of C—N—N—C dihedral angle for dithiol azobenzene molecular junctions at 1.85 nm electrode distance; the variations of (c) the geometry, the energy, (d) the electrode force and the conductance in the elongation process of the cis dithiol azobenzene molecular junctions. The minimum energy in the energy curve in (a) is defined as the zero energy for both trans and cis azobenzene molecular junctions.

    图 3  不同电极距离下 (a) 反式和(b)顺式偶氮苯分子的透射谱

    Fig. 3.  The transmission spectra of the (a) trans and (b) cis dithiol azobenzene molecular junctions with different electrode distance.

    图 4  不同电极距离下反式和顺式偶氮苯分子结中对偏压窗附近透射峰起主要贡献的分子轨道的空间分布

    Fig. 4.  The spatial distributions of the molecular orbitals of the trans and cis dithiol azobenzene molecular junctions with different electrode distance which show main contributions to the transmission peaks near bias windows.

    图 5  顺式和反式偶氮苯分子连接于不同形状电极之间的电输运性质 (a)—(d) 分子连接于两平面电极之间的电流、电导随偏压的变化曲线及透射谱; (e)—(h) 分子连接于两锥形电极之间的电流、电导随偏压的变化曲线及透射谱; (i)—(l) 分子连接于锥形电极和平面电极表面孤立金原子之间的电流、电导随偏压的变化曲线及透射谱

    Fig. 5.  The electronic transport properties of the trans and cis dithiol azobenzene molecular junctions with different electrode shapes. The variations of current and conductance versus bias voltage and the corresponding transmission spectra for the trans and cis dithiol azobenzenes sandwiching between (a)–(d) planar-shaped electrodes; (e)–(h) pyramid-shaped electrodes; (i)–(l) pyramid-shaped electrode and planar-shaped electrode with individual surface gold atom.

    表 1  偶氮苯分子结压缩/拉伸过程中分子长度(DS-S), CNNC两面角以及C—N键和N—N键形成的夹角的变化

    Table 1.  Variations of molecular length (DS-S), CNNC dihedrals and the angles between C—N and N—N bonds in the stretching and compressing processes of the azobenzene molecular junctions.

    D/nmDS-S/nmCNNC/(°)CNN/(°)NNC/(°)
    反式1.660.70126109114
    1.850.90144112114
    2.051.12158115114
    2.251.28180115115
    顺式1.930.8712.0124124
    2.131.0515.3130.131
    2.251.1518.9135136
    2.351.1820.6136138
    下载: 导出CSV
  • [1]

    Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar

    [2]

    Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450Google Scholar

    [3]

    Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039Google Scholar

    [4]

    Wang M N, Wang T, Ojambati O S, Duffin T J, Kang K, Lee T, Scheer E, Xiang D, Nijhuis C A 2022 Nat. Rev. Chem. 6 681Google Scholar

    [5]

    Liu R, Han Y M, Sun F, Khatri G, Kwon J, Nickle C, Wang L J, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar

    [6]

    Zhang S R, Guo C Y, Ni L F, Hans K M, Zhang W Q, Peng S J, Zhao Z K, Guhr D C, Qi Z, Liu H T, Song M, Wang Q L, Boneberg J, Guo X F, Lee T, Scheer E, Xiang D 2021 Nano Today 39 101226Google Scholar

    [7]

    Xiang D, Wang X L, Jia C C, Lee T, Guo X F 2016 Chem. Rev. 116 4318Google Scholar

    [8]

    Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar

    [9]

    Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar

    [10]

    Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar

    [11]

    Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar

    [12]

    Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar

    [13]

    Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar

    [14]

    Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401Google Scholar

    [15]

    Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar

    [16]

    Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485Google Scholar

    [17]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [18]

    Sun F, Liu R, Liu L, Yan Y, Wang S S, Yang Z, Suo Y Q, Wang C K, Li Z L 2022 Physica E 140 115186Google Scholar

    [19]

    Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Physica E 128 114542Google Scholar

    [20]

    Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar

    [21]

    Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809Google Scholar

    [22]

    Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar

    [23]

    Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229Google Scholar

    [24]

    Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116Google Scholar

    [25]

    Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar

    [26]

    Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386Google Scholar

    [27]

    Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763Google Scholar

    [28]

    Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar

    [29]

    Li J, Hou S J, Yao Y R, et al. 2022 Nat. Mater. 21 917Google Scholar

    [30]

    Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar

    [31]

    Wang Q L, Liu R, Xiang D, et al. 2016 ACS Nano 10 9695Google Scholar

    [32]

    Sun F, Liu L, Zheng C F, Li Y C, Yan Y, Fu X X, Wang C K, Liu R, Xu B Q, Li Z L 2023 Nanoscale 15 12586Google Scholar

    [33]

    索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar

    Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar

    [34]

    刘琳, 孙峰, 李雨晨, 严岩, 刘冰心, 羊志, 邱帅, 李宗良 2023 物理学报 72 048504Google Scholar

    Liu L, Sun F, Li Y C, Yan Y, Liu B X, Yang Z, Qiu S, Li Z L 2023 Acta Phys. Sin. 72 048504Google Scholar

    [35]

    Yang Z, Sun F, Chen D H, Wang Z Q, Wang C K, Li Z L, Qiu S 2022 Chin. Phys. B 31 077202Google Scholar

    [36]

    丁锦廷, 胡沛佳, 郭爱敏 2023 物理学报 72 157301Google Scholar

    Ding J T, Hu P J, Guo A M 2023 Acta Phys. Sin. 72 157301Google Scholar

    [37]

    Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E, Krause J L 2004 Phys. Rev. Lett. 92 158301Google Scholar

    [38]

    del Valle M, Gutiérrez R, Tejedor C, Cuniberti G 2007 Nat. Nanotechnol. 2 176Google Scholar

    [39]

    Kim Y, Garcia-Lekue A, Sysoiev D, Frederiksen T, Groth U, Scheer E 2012 Phys. Rev. Lett. 109 226801Google Scholar

    [40]

    Smaali K, Lenfant S, Karpe S, Oçafrain M, Blanchard P, Deresme D, Godey S, Rochefort A, Roncali J, Vuillaume D 2010 ACS Nano 4 2411Google Scholar

    [41]

    Martin S, Haiss W, Higgins S J, Nichols R J 2010 Nano Lett. 10 2019Google Scholar

    [42]

    Mativetsky J M, Pace G, Elbing M, Rampi M A, Mayor M, Samorì P 2008 J. Am. Chem. Soc. 130 9192Google Scholar

    [43]

    Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591Google Scholar

    [44]

    Jiang Z L, Wang H, Wang Y F, Sanvito S, Hou S M 2017 J. Phys. Chem. C 121 27344Google Scholar

    [45]

    Lee J, Chang H, Kim S, Bang G S, Lee H 2009 Angew. Chem. Int. Ed. 48 8501Google Scholar

    [46]

    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar

    [47]

    Li L, Zhang J Y, Yang C Y, et al. 2021 Small 17 2103125Google Scholar

    [48]

    Bricks J L, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev A I, Daub J, Rurack K 2005 J. Am. Chem. Soc. 127 13522Google Scholar

    [49]

    Samain F, Ghosh S, Teo Y N, Kool E T 2010 Angew. Chem. Int. Ed. 49 7025Google Scholar

    [50]

    Rodriguez J A, Dvorak J, Jirsak T, Liu G, Hrbek J, Aray Y, González C 2003 J. Am. Chem. Soc. 125 276Google Scholar

    [51]

    Wang S S, Yang Z, Sun F, Liu R, Liu L, Fu X X, Wang C K, Li Z L 2021 J. Phys. Chem. C 125 27290Google Scholar

    [52]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev. A. 03 (Wallingford, CT

    [53]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [54]

    刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar

    Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar

  • [1] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运. 物理学报, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理. 物理学报, 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [3] 刘琳, 孙峰, 李雨晨, 严岩, 刘冰心, 羊志, 邱帅, 李宗良. 金电极与吡啶末端连接界面结构的力学变化过程理论研究. 物理学报, 2023, 72(4): 048504. doi: 10.7498/aps.72.20222081
    [4] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究. 物理学报, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [5] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [6] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [7] 樊帅伟, 王日高. 电极位置和截面尺寸对分子器件输运性质的调控. 物理学报, 2018, 67(21): 213101. doi: 10.7498/aps.67.20180974
    [8] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性. 物理学报, 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [9] 闫瑞, 吴泽文, 谢稳泽, 李丹, 王音. 导线非共线的分子器件输运性质的第一性原理研究. 物理学报, 2018, 67(9): 097301. doi: 10.7498/aps.67.20172221
    [10] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [11] 陈鹰, 胡慧芳, 王晓伟, 张照锦, 程彩萍. B/N掺杂类直三角石墨烯纳米带器件引起的整流效应. 物理学报, 2015, 64(19): 196101. doi: 10.7498/aps.64.196101
    [12] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究. 物理学报, 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [13] 安义鹏, 杨传路, 王美山, 马晓光, 王德华. C20F20分子电子输运性质的第一性原理研究. 物理学报, 2010, 59(3): 2010-2015. doi: 10.7498/aps.59.2010
    [14] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算. 物理学报, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [15] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰, 赵明文. 官能团对分子器件电输运特性的影响. 物理学报, 2008, 57(5): 3148-3154. doi: 10.7498/aps.57.3148
    [16] 夏蔡娟, 房常峰, 胡贵超, 李冬梅, 刘德胜, 解士杰. 分子的位置取向对分子器件电输运特性的影响. 物理学报, 2007, 56(8): 4884-4890. doi: 10.7498/aps.56.4884
    [17] 王利光, 陈 蕾, 郁鼎文, 李 勇, Terence K. S. W.. 单分子器件与电极间耦合界面对电子传输的影响. 物理学报, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [18] 邹 斌, 李宗良, 王传奎, 薛其坤. 电极距离对分子器件电输运特性的影响. 物理学报, 2005, 54(3): 1341-1346. doi: 10.7498/aps.54.1341
    [19] 李宗良, 王传奎, 罗毅, 薛其坤. 电极维度对单分子器件伏-安特性的影响. 物理学报, 2004, 53(5): 1490-1495. doi: 10.7498/aps.53.1490
    [20] 胡皆汉. 环偶氮甲烷型分子的振动均方振幅矩阵. 物理学报, 1965, 21(8): 1494-1499. doi: 10.7498/aps.21.1494
计量
  • 文章访问数:  1937
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 修回日期:  2024-01-24
  • 上网日期:  2024-02-04
  • 刊出日期:  2024-04-20

/

返回文章
返回