-
偶氮苯分子因存在顺反两种异构体而表现出不同的电输运性质. 为了揭示电极的机械作用对偶氮苯分子的几何结构以及电输运性质的影响, 基于第一性原理计算研究了偶氮苯分子在电极挤压和拉伸作用下的结构变化规律, 并利用非平衡格林函数方法计算了偶氮苯分子结在拉伸和压缩过程中以及分子在不同形状电极之间的电输运性质. 结果表明, 顺式和反式偶氮苯分子在电极作用下都具有较稳定的几何结构. 其中顺式偶氮苯分子在电极拉至超过反式偶氮苯分子结平衡电极距离0.1 nm时仍保持为顺式结构. 而反式偶氮苯分子在电极挤压下虽然发生了弯曲, 但当电极距离压缩至短于顺式偶氮苯分子结0.2 nm时, 中间的C—N—N—C二面角仍然保持反式结构. 在低偏压下, 两电极若为平面电极, 则反式偶氮苯分子的电导高于顺式偶氮苯分子; 若分子连接于两锥形电极尖端, 则顺式偶氮苯分子结的电导更高. 特别值得关注的是两种偶氮苯分子的导电能力随电极距离的变化正好相反, 顺式偶氮苯分子结的电导随电极距离拉伸而增大, 反式偶氮苯分子结的电导则随电极距离的压缩而增大. 偶氮苯分子结的电导在电极距离变化时最大变化幅度可达10倍以上.The azobenzene molecular junction has aroused much interest of scientists due to its switching property arising from its photoinduced isomerism. Owing to the existence of the cis and trans isomers, the electronic transport properties of the azobenzene molecules are promised to show significant differences. The experimental investigations indicate that the cis azobenzene molecule commonly shows high conductance, while the trans azobenzene molecule shows low conductance. However, the computations give the opposite results. To reveal this significant difference, the effects of electrode mechanical modulation on the geometries and electronic transports of the azobenzene molecules are studied. The effects of the electrode geometries on the electronic transports of the azobenzene molecular junctions are also investigated. The electrode compressing process and the electrode stretching process of the azobenzene molecular junctions are simulated based on the first principles calculations. The electronic transport properties are further calculated by using non-equilibrium Green’s function (NEGF) method. The numerical results show that the structures of the cis and trans azobenzenes with sulfur anchors are stable in the stretching process and compressing process of electrode. For the cis azobenzene molecular junction, the cis geometry remains unchanged until the electrode distance is stretched to about 0.1 nm longer than the stable electrode distance of the trans azobenzene molecular junction. Though the trans azobenzene molecule is bent when squeezed by the electrodes, the C—N—N—C dihedral still maintains its trans structure even when the electrode distance is compressed to about 0.2 nm shorter than the stable electrode distance of the cis azobenzene molecular junctions. It is intriguing that the conductance values of cis and trans azobenzene molecular junctions vary inversely with the electrode distance. The conductance value of the cis azobenzene molecular junction increases with the elongating of the electrode distance, while the conductance value of the trans azobenzene molecular junction increases with the compression of the electrode. The conductance is very sensitive to the electrode distance for both the cis azobenzene molecular junction and the trans azobenzene molecular junctions, which can change more than 10 times with the change of the electrode distance. In the lower bias regime, the conductance of the trans azobenzene is higher than that of the cis one if the two electrodes are planar. However, when the molecule is sandwiched between two pyramid-shaped electrodes, the condutance of the cis azobenzene is higher. Thus, the higher conductance of cis azobenzene may be caused either by the pyramid-shaped electrodes or by the large electrode distance.
-
Keywords:
- molecular device /
- azobenzene molecular junction /
- stretching and compressing of electrode /
- molecular sensor
[1] Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar
[2] Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450Google Scholar
[3] Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039Google Scholar
[4] Wang M N, Wang T, Ojambati O S, Duffin T J, Kang K, Lee T, Scheer E, Xiang D, Nijhuis C A 2022 Nat. Rev. Chem. 6 681Google Scholar
[5] Liu R, Han Y M, Sun F, Khatri G, Kwon J, Nickle C, Wang L J, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar
[6] Zhang S R, Guo C Y, Ni L F, Hans K M, Zhang W Q, Peng S J, Zhao Z K, Guhr D C, Qi Z, Liu H T, Song M, Wang Q L, Boneberg J, Guo X F, Lee T, Scheer E, Xiang D 2021 Nano Today 39 101226Google Scholar
[7] Xiang D, Wang X L, Jia C C, Lee T, Guo X F 2016 Chem. Rev. 116 4318Google Scholar
[8] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar
[9] Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar
[10] Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar
[11] Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar
[12] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar
[13] Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar
[14] Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401Google Scholar
[15] Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar
[16] Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485Google Scholar
[17] Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar
[18] Sun F, Liu R, Liu L, Yan Y, Wang S S, Yang Z, Suo Y Q, Wang C K, Li Z L 2022 Physica E 140 115186Google Scholar
[19] Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Physica E 128 114542Google Scholar
[20] Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar
[21] Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809Google Scholar
[22] Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar
[23] Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229Google Scholar
[24] Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116Google Scholar
[25] Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar
[26] Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386Google Scholar
[27] Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763Google Scholar
[28] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar
[29] Li J, Hou S J, Yao Y R, et al. 2022 Nat. Mater. 21 917Google Scholar
[30] Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar
[31] Wang Q L, Liu R, Xiang D, et al. 2016 ACS Nano 10 9695Google Scholar
[32] Sun F, Liu L, Zheng C F, Li Y C, Yan Y, Fu X X, Wang C K, Liu R, Xu B Q, Li Z L 2023 Nanoscale 15 12586Google Scholar
[33] 索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar
Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar
[34] 刘琳, 孙峰, 李雨晨, 严岩, 刘冰心, 羊志, 邱帅, 李宗良 2023 物理学报 72 048504Google Scholar
Liu L, Sun F, Li Y C, Yan Y, Liu B X, Yang Z, Qiu S, Li Z L 2023 Acta Phys. Sin. 72 048504Google Scholar
[35] Yang Z, Sun F, Chen D H, Wang Z Q, Wang C K, Li Z L, Qiu S 2022 Chin. Phys. B 31 077202Google Scholar
[36] 丁锦廷, 胡沛佳, 郭爱敏 2023 物理学报 72 157301Google Scholar
Ding J T, Hu P J, Guo A M 2023 Acta Phys. Sin. 72 157301Google Scholar
[37] Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E, Krause J L 2004 Phys. Rev. Lett. 92 158301Google Scholar
[38] del Valle M, Gutiérrez R, Tejedor C, Cuniberti G 2007 Nat. Nanotechnol. 2 176Google Scholar
[39] Kim Y, Garcia-Lekue A, Sysoiev D, Frederiksen T, Groth U, Scheer E 2012 Phys. Rev. Lett. 109 226801Google Scholar
[40] Smaali K, Lenfant S, Karpe S, Oçafrain M, Blanchard P, Deresme D, Godey S, Rochefort A, Roncali J, Vuillaume D 2010 ACS Nano 4 2411Google Scholar
[41] Martin S, Haiss W, Higgins S J, Nichols R J 2010 Nano Lett. 10 2019Google Scholar
[42] Mativetsky J M, Pace G, Elbing M, Rampi M A, Mayor M, Samorì P 2008 J. Am. Chem. Soc. 130 9192Google Scholar
[43] Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591Google Scholar
[44] Jiang Z L, Wang H, Wang Y F, Sanvito S, Hou S M 2017 J. Phys. Chem. C 121 27344Google Scholar
[45] Lee J, Chang H, Kim S, Bang G S, Lee H 2009 Angew. Chem. Int. Ed. 48 8501Google Scholar
[46] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar
[47] Li L, Zhang J Y, Yang C Y, et al. 2021 Small 17 2103125Google Scholar
[48] Bricks J L, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev A I, Daub J, Rurack K 2005 J. Am. Chem. Soc. 127 13522Google Scholar
[49] Samain F, Ghosh S, Teo Y N, Kool E T 2010 Angew. Chem. Int. Ed. 49 7025Google Scholar
[50] Rodriguez J A, Dvorak J, Jirsak T, Liu G, Hrbek J, Aray Y, González C 2003 J. Am. Chem. Soc. 125 276Google Scholar
[51] Wang S S, Yang Z, Sun F, Liu R, Liu L, Fu X X, Wang C K, Li Z L 2021 J. Phys. Chem. C 125 27290Google Scholar
[52] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev. A. 03 (Wallingford, CT
[53] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar
[54] 刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar
Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar
-
图 2 反式偶氮苯分子结在电极压缩过程中 (a)几何结构、体系能量, (b)电极作用力以及体系电导的变化曲线, 插图为1.85 nm电极距离下体系在C—N—N—C两面角的变化过程中出现的能垒以及转动力矩的变化; 顺式偶氮苯分子结在电极拉伸过程中(c)几何结构、能量, (d)电极作用力以及体系电导的变化曲线, 图中所有能量均以反式偶氮苯分子结的能量最低点为能量零点
Fig. 2. The variations of (a) the geometry, the energy, (b) the electrode force and the conductance in the compression process of the trans dithiol azobenzene molecular junctions, the inset shows the energy barrier and the moment of rotation arised during the change of C—N—N—C dihedral angle for dithiol azobenzene molecular junctions at 1.85 nm electrode distance; the variations of (c) the geometry, the energy, (d) the electrode force and the conductance in the elongation process of the cis dithiol azobenzene molecular junctions. The minimum energy in the energy curve in (a) is defined as the zero energy for both trans and cis azobenzene molecular junctions.
图 5 顺式和反式偶氮苯分子连接于不同形状电极之间的电输运性质 (a)—(d) 分子连接于两平面电极之间的电流、电导随偏压的变化曲线及透射谱; (e)—(h) 分子连接于两锥形电极之间的电流、电导随偏压的变化曲线及透射谱; (i)—(l) 分子连接于锥形电极和平面电极表面孤立金原子之间的电流、电导随偏压的变化曲线及透射谱
Fig. 5. The electronic transport properties of the trans and cis dithiol azobenzene molecular junctions with different electrode shapes. The variations of current and conductance versus bias voltage and the corresponding transmission spectra for the trans and cis dithiol azobenzenes sandwiching between (a)–(d) planar-shaped electrodes; (e)–(h) pyramid-shaped electrodes; (i)–(l) pyramid-shaped electrode and planar-shaped electrode with individual surface gold atom.
表 1 偶氮苯分子结压缩/拉伸过程中分子长度(DS-S), CNNC两面角以及C—N键和N—N键形成的夹角的变化
Table 1. Variations of molecular length (DS-S), CNNC dihedrals and the angles between C—N and N—N bonds in the stretching and compressing processes of the azobenzene molecular junctions.
D/nm DS-S/nm CNNC/(°) CNN/(°) NNC/(°) 反式 1.66 0.70 126 109 114 1.85 0.90 144 112 114 2.05 1.12 158 115 114 2.25 1.28 180 115 115 顺式 1.93 0.87 12.0 124 124 2.13 1.05 15.3 130. 131 2.25 1.15 18.9 135 136 2.35 1.18 20.6 136 138 -
[1] Jia C C, Migliore A, Xin N, Huang S Y, Wang J Y, Yang Q, Wang S P, Chen H L, Wang D M, Feng B Y, Liu Z R, Zhang G Y, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A, Guo X F 2016 Science 352 1443Google Scholar
[2] Meng L N, Xin N, Hu C, Wang J Y, Gui B, Shi J J, Wang C, Shen C, Zhang G Y, Guo H, Meng S, Guo X F 2019 Nat. Commun. 10 1450Google Scholar
[3] Song H W, Kim Y S, Jang Y H, Jeong H J, Reed M A, Lee T 2009 Nature 462 1039Google Scholar
[4] Wang M N, Wang T, Ojambati O S, Duffin T J, Kang K, Lee T, Scheer E, Xiang D, Nijhuis C A 2022 Nat. Rev. Chem. 6 681Google Scholar
[5] Liu R, Han Y M, Sun F, Khatri G, Kwon J, Nickle C, Wang L J, Wang C K, Thompson D, Li Z L, Nijhuis C A, del Barco E 2022 Adv. Mater. 34 2202135Google Scholar
[6] Zhang S R, Guo C Y, Ni L F, Hans K M, Zhang W Q, Peng S J, Zhao Z K, Guhr D C, Qi Z, Liu H T, Song M, Wang Q L, Boneberg J, Guo X F, Lee T, Scheer E, Xiang D 2021 Nano Today 39 101226Google Scholar
[7] Xiang D, Wang X L, Jia C C, Lee T, Guo X F 2016 Chem. Rev. 116 4318Google Scholar
[8] Fan Z Q, Sun W Y, Jiang X W, Zhang Z H, Deng X Q, Tang G P, Xie H Q, Long M Q 2017 Carbon 113 18Google Scholar
[9] Zhang Y P, Chen L C, Zhang Z Q, Cao J J, Tang C, Liu J Y, Duan L L, Huo Y, Shao X F, Hong W J, Zhang H L 2018 J. Am. Chem. Soc. 140 6531Google Scholar
[10] Zhang G P, Mu Y Q, Zhao J M, Huang H, Hu G C, Li Z L, Wang C K 2019 Physica E 109 1Google Scholar
[11] Aviram A, Ratner M A 1974 Chem. Phys. Lett. 29 277Google Scholar
[12] Fan Z Q, Chen K Q 2010 Appl. Phys. Lett. 96 053509Google Scholar
[13] Hu G C, Zhang Z, Li Y, Ren J F, Wang C K 2016 Chin. Phys. B 25 057308Google Scholar
[14] Li D D, Wu D, Zhang X J, Zeng B W, Li M J, Duan H M, Yang B C, Long M Q 2018 Phys. Lett. A 382 1401Google Scholar
[15] Wei M Z, Wang Z Q, Fu X X, Hu G C, Li Z L, Wang C K, Zhang G P 2018 Physica E 103 397Google Scholar
[16] Hu G C, Zhang Z, Zhang G P, Ren J F, Wang C K 2016 Org. Electron. 37 485Google Scholar
[17] Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar
[18] Sun F, Liu R, Liu L, Yan Y, Wang S S, Yang Z, Suo Y Q, Wang C K, Li Z L 2022 Physica E 140 115186Google Scholar
[19] Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Physica E 128 114542Google Scholar
[20] Jiang J, Kula M, Lu W, Luo Y 2005 Nano Lett. 5 1551Google Scholar
[21] Xiang D, Jeong H, Kim D K, Lee T, Cheng Y J, Wang Q L, Mayer D 2013 Nano Lett. 13 2809Google Scholar
[22] Li Z L, Fu X X, Zhang G P, Wang C K 2013 Chin. J. Chem. Phys. 26 185Google Scholar
[23] Guo C Y, Chen X, Ding S Y, Mayer D, Wang Q L, Zhao Z K, Ni L F, Liu H T, Lee T, Xu B Q, Xiang D 2018 ACS Nano 12 11229Google Scholar
[24] Li Z H, Smeu M, Afsari S, Xing Y J, Ratner M A, Borguet E 2014 Angew. Chem. 126 1116Google Scholar
[25] Zou D Q, Zhao W K, Cui B, Li D M, Liu D S 2018 Phys. Chem. Chem. Phys. 20 2048Google Scholar
[26] Xu B Q, Xiao X Y, Yang X M, Zang L, Tao N J 2005 J. Am. Chem. Soc. 127 2386Google Scholar
[27] Li X T, Li H M, Zuo X, Kang L, Li D M, Cui B, Liu D S 2018 J. Phys. Chem. C 122 21763Google Scholar
[28] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z, Wang C K 2017 Chin. Phys. B 26 098508Google Scholar
[29] Li J, Hou S J, Yao Y R, et al. 2022 Nat. Mater. 21 917Google Scholar
[30] Liu R, Bi J J, Xie Z, Yin K K, Wang D Y, Zhang G P, Xiang D, Wang C K, Li Z L 2018 Phys. Rev. Appl. 9 054023Google Scholar
[31] Wang Q L, Liu R, Xiang D, et al. 2016 ACS Nano 10 9695Google Scholar
[32] Sun F, Liu L, Zheng C F, Li Y C, Yan Y, Fu X X, Wang C K, Liu R, Xu B Q, Li Z L 2023 Nanoscale 15 12586Google Scholar
[33] 索雨晴, 刘然, 孙峰, 牛乐乐, 王双双, 刘琳, 李宗良 2020 物理学报 69 208502Google Scholar
Suo Y Q, Liu R, Sun F, Niu L L, Wang S S, Liu L, Li Z L 2020 Acta Phys. Sin. 69 208502Google Scholar
[34] 刘琳, 孙峰, 李雨晨, 严岩, 刘冰心, 羊志, 邱帅, 李宗良 2023 物理学报 72 048504Google Scholar
Liu L, Sun F, Li Y C, Yan Y, Liu B X, Yang Z, Qiu S, Li Z L 2023 Acta Phys. Sin. 72 048504Google Scholar
[35] Yang Z, Sun F, Chen D H, Wang Z Q, Wang C K, Li Z L, Qiu S 2022 Chin. Phys. B 31 077202Google Scholar
[36] 丁锦廷, 胡沛佳, 郭爱敏 2023 物理学报 72 157301Google Scholar
Ding J T, Hu P J, Guo A M 2023 Acta Phys. Sin. 72 157301Google Scholar
[37] Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E, Krause J L 2004 Phys. Rev. Lett. 92 158301Google Scholar
[38] del Valle M, Gutiérrez R, Tejedor C, Cuniberti G 2007 Nat. Nanotechnol. 2 176Google Scholar
[39] Kim Y, Garcia-Lekue A, Sysoiev D, Frederiksen T, Groth U, Scheer E 2012 Phys. Rev. Lett. 109 226801Google Scholar
[40] Smaali K, Lenfant S, Karpe S, Oçafrain M, Blanchard P, Deresme D, Godey S, Rochefort A, Roncali J, Vuillaume D 2010 ACS Nano 4 2411Google Scholar
[41] Martin S, Haiss W, Higgins S J, Nichols R J 2010 Nano Lett. 10 2019Google Scholar
[42] Mativetsky J M, Pace G, Elbing M, Rampi M A, Mayor M, Samorì P 2008 J. Am. Chem. Soc. 130 9192Google Scholar
[43] Motta S D, Donato E D, Negri F, Orlandi G, Fazzi D, Castiglioni C 2009 J. Am. Chem. Soc. 131 6591Google Scholar
[44] Jiang Z L, Wang H, Wang Y F, Sanvito S, Hou S M 2017 J. Phys. Chem. C 121 27344Google Scholar
[45] Lee J, Chang H, Kim S, Bang G S, Lee H 2009 Angew. Chem. Int. Ed. 48 8501Google Scholar
[46] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nat. Mater. 6 652Google Scholar
[47] Li L, Zhang J Y, Yang C Y, et al. 2021 Small 17 2103125Google Scholar
[48] Bricks J L, Kovalchuk A, Trieflinger C, Nofz M, Büschel M, Tolmachev A I, Daub J, Rurack K 2005 J. Am. Chem. Soc. 127 13522Google Scholar
[49] Samain F, Ghosh S, Teo Y N, Kool E T 2010 Angew. Chem. Int. Ed. 49 7025Google Scholar
[50] Rodriguez J A, Dvorak J, Jirsak T, Liu G, Hrbek J, Aray Y, González C 2003 J. Am. Chem. Soc. 125 276Google Scholar
[51] Wang S S, Yang Z, Sun F, Liu R, Liu L, Fu X X, Wang C K, Li Z L 2021 J. Phys. Chem. C 125 27290Google Scholar
[52] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 16 Rev. A. 03 (Wallingford, CT
[53] Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar
[54] 刘然, 包德亮, 焦扬, 万令文, 李宗良, 王传奎 2014 物理学报 63 068501Google Scholar
Liu R, Bao D L, Jiao Y, Wan L W, Li Z L, Wang C K 2014 Acta Phys. Sin. 63 068501Google Scholar
计量
- 文章访问数: 1964
- PDF下载量: 70
- 被引次数: 0