搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

润湿性影响薄液膜沸腾传热的分子动力学研究

白璞 王登甲 刘艳峰

引用本文:
Citation:

润湿性影响薄液膜沸腾传热的分子动力学研究

白璞, 王登甲, 刘艳峰

Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films

Bai Pu, Wang Deng-Jia, Liu Yan-Feng
PDF
HTML
导出引用
  • 纳米尺度下表面润湿性如何影响薄液膜沸腾传热仍是一个具有挑战性的研究. 本研究采用分子动力学方法探讨壁面润湿性影响纳米尺度薄液膜沸腾换热的机制. 结果发现: 亲水表面能够显著地提升沸腾换热性能, 有较早的沸腾起始时间, 较高的升温速率、热流密度和界面导热率, 以及较小的界面热阻. 通过建立二维表面势能模型, 揭示表面润湿性影响纳米尺度沸腾换热的机理. 亲水壁面的表面势能为–0.34 eV, 而疏水壁面的表面势能仅为–0.09 eV, 提升表面润湿性强化沸腾传热的本质原因是表面势能绝对值的提高. 此外, 通过计算分子间的相互作用能, 揭示了纳米尺度下亲疏水壁面的成核机理. 水分子-亲水壁面、水分子-疏水壁面和水分子内部的相互作用能分别为1.57, 0.26和0.48 eV/nm2. 亲水表面的界面能大于水分子内部的相互作用能, 因此亲水表面上气泡成核发生在水膜内部; 疏水表面上的界面能比水分子内部的相互作用能弱, 疏水表面的气泡成核发生在固/液界面处. 本研究揭示了表面润湿性如何影响纳米尺度薄液膜沸腾传热和气泡成核的主要机制.
    How surface wettability affects boiling heat transfer of thin liquid film on a nanoscale remains a challenging research topic. In this work, the effects of wettability on the nanoscale boiling heat transfer for a thin liquid film on hydrophilic surface and hydrophobic surface are investigated by molecular dynamics simulation. Results demonstrate that the hydrophilic surface has better heat transfer performance than the hydrophobic surface. It has a shorter boiling onset time, higher temperature, heat flux, interfacial thermal conductance, and weakened interfacial thermal resistance. The hydrophilic surface throughout has higher critical heat flux than the hydrophobic surface in both macro-system and nanoscale system. Besides, a two-dimensional surface potential energy is proposed to reveal the mechanism of wettability affecting the boiling heat transfer. The absolute value of potential energy in one regular unit of hydrophilicity (–0.34 eV) is much higher than that of hydrophobicity (–0.09 eV). That is the crucial reason why the heat transfer enhancement via improving surface wettability should be primarily the powerful surface potential energy. In addition, the interaction energy is calculated to further address the nucleation mechanism and heat transfer performance for liquid film on different wettability surfaces. The interaction energy values are ordered as Iphi (1.57 eV/nm2) > Iwater (0.48 eV/nm2) > Ipho (0.26 eV/nm2), indicating that the better heat transfer performance of hydrophilic surface is because of the large interaction energy at the solid/liquid interface. Besides, the bubble nucleation on a hydrophilic surface needs absorbing more energy and occurs inside the thin liquid film, while it needs absorbing less energy and triggering off at the solid/liquid interface with hydrophobicity. Those uncover the principal mechanisms of how wettability influences the bubble nucleation and boiling heat transfer performance on a nanoscale.
      通信作者: 白璞, bp1512905225@163.com
    • 基金项目: 陕西省科技攻关计划(批准号: 2024JC-YBQN-0515)资助的课题.
      Corresponding author: Bai Pu, bp1512905225@163.com
    • Funds: Project supported by the Key Science and Technology Program of Shaanxi Province, China (Grant No. 2024JC-YBQN-0515).
    [1]

    曹春蕾, 何孝天, 马骁婧, 徐进良 2021 物理学报 70 134703Google Scholar

    Cao C L, He X T, M X J, Xu J L 2021 Acta Phys. Sin. 70 134703Google Scholar

    [2]

    刘飞龙, 程彦锟, 张境恒, 唐彪, 周国富 2023 物理学报 72 208501Google Scholar

    Liu F L, Cheng Y K, Zhang J H, Tang B, Zhou G F 2023 Acta Phys. Sin. 72 208501Google Scholar

    [3]

    Xiong K N, Luo Y H, Hu Y X, Wang S F 2024 Int. J. Therm. Sci. 196 108719Google Scholar

    [4]

    Hu H T, Zhao Y X, Lai Z C, Hu C Y 2021 Int. J. Therm. Sci. 168 107096Google Scholar

    [5]

    Zhang L, Wang T, Kim S, Tan S, Jiang Y Y 2019 Appl. Phys. Lett. 115 103701Google Scholar

    [6]

    Zhang L, Wang T, Jiang Y Y, Kim S, Guo C H 2018 Int. J. Heat Mass Transfer. 122 775Google Scholar

    [7]

    Lee S W, Park S D, Bang I C 2012 Int. J. Heat Mass Transfer 55 6908Google Scholar

    [8]

    Jo H J, Kim S, Park H S, Kim M H 2014 Int. J. Multiphase Flow 62 101Google Scholar

    [9]

    张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 234702Google Scholar

    Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin. 67 234702Google Scholar

    [10]

    Wang Y H, Wang S Y, Lu G, Wang X D 2019 Int. J. Heat Mass Transfer 132 1277Google Scholar

    [11]

    Cao Q, Cui Z 2019 Numer. Heat Transfer, Part A 75 533Google Scholar

    [12]

    Hens A, Agarwal R, Biswas G 2014 Int. J. Heat Mass Transfer 71 303Google Scholar

    [13]

    Chen Y J, Chen B N, Yu B, Tao W Q, Zou Y 2020 Langmuir 36 5336Google Scholar

    [14]

    Yin X Y, Hu C Z, Bai M L, Lü J Z 2019 Int. Commun. Heat Mass Transfer 109 104390Google Scholar

    [15]

    Wang Z, Li L 2 0122 Int. J. Heat Mass Transfer 183 122059Google Scholar

    [16]

    Tian P, Ge W X, Li S S, Gao L, Jiang J H, Xu Y D 2023 Chin. Phys. Lett. 40 067802Google Scholar

    [17]

    曹炳阳, 张梓彤 2022 物理学报 71 014401Google Scholar

    Cao B Y, Zhang Z T 2022 Acta Phys. Sin. 71 014401Google Scholar

    [18]

    张龙艳, 徐进良, 雷俊鹏 2019 物理学报 68 020201Google Scholar

    Zhang L Y, Xu J L, Lei J P 2019 Acta Phys. Sin. 68 020201Google Scholar

    [19]

    Mao Y J, Zhang Y W 2014 Appl. Therm. Eng. 62 607Google Scholar

    [20]

    曹炳阳, 陈民, 过增元 2005 高等学校化学学报 26 277Google Scholar

    Cao B Y, Chen M, Guo Z Y 2005 Chem. J. Chin. Univ. 26 277Google Scholar

    [21]

    Zhong X G, Liu Y S, Yao Y C, He B, Wen B H 2023 Chin. Phys. B 32 054701Google Scholar

    [22]

    Li Y Y, Li Y, Jiao W, Chen X Q, Lu G 2021 Int. J. Heat Mass Transfer 170 120996Google Scholar

    [23]

    Dang K, Chen J, Rodgers B, Fensin S 2023 Comput. Phys. Commun. 286 108667Google Scholar

    [24]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [25]

    Deng W, Ma S H, Li W M, Liu H Q, Zhao J Y 2022 Int. J. Heat Mass Transfer 191 122856Google Scholar

    [26]

    唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋 2023 物理学报 19 196801Google Scholar

    Tang X X, Chen H Y, Wang J J, Wang Z J, Zang D Y 2023 Acta Phys. Sin. 19 196801Google Scholar

    [27]

    Yin X Y, Hu C Z, Bai M L, Lü J Z 2020 Int. J. Heat Mass Transfer 162 120338Google Scholar

    [28]

    Wang W R, Huang S H, Luo X S 2016 Int. J. Heat Mass Transfer 100 276Google Scholar

    [29]

    Cai J J, Gong Z Q, Tan B 2023 Int. J. Therm. Sci. 184 107966Google Scholar

    [30]

    Surblys D, Kawagoe Y, Shibahara M, Ohara T J 2019 J. Chem. Phys. 150 114705Google Scholar

    [31]

    Chen Y J, Yu B, Zou Y, Chen B N, Tao W Q 2020 Int. J. Heat Mass Transfer 158 119850Google Scholar

    [32]

    Wang B B, Xu Z M, Wang X D, Yan W M 2018 Int. J. Heat Mass Transfer 125 756Google Scholar

    [33]

    Hu H, Sun Y 2016 Int. J. Heat Mass Transfer 101 878Google Scholar

    [34]

    胡剑, 张森, 娄钦 2023 物理学报 72 176401Google Scholar

    Hu J, Zhang S, Lou Q 2023 Acta Phys. Sin. 72 176401Google Scholar

    [35]

    赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略 2022 物理学报 71 214701Google Scholar

    Zhao C, Ji X B, Yang Y H, Meng Y H, Xu J L Peng J L 2022 Acta Phys. Sin. 71 214701Google Scholar

  • 图 1  系统初始模型

    Fig. 1.  Initial snapshots of simulated system.

    图 2  水分子在亲疏水表面上相变行为的快照 (a) 亲水表面; (b) 疏水表面

    Fig. 2.  Snapshots of phase-change behavior for liquid water on (a) hydrophilic and (b) hydrophobic surfaces.

    图 3  亲疏水表面(a)气泡体积和(b)液膜体积变化图

    Fig. 3.  Variation of (a) bubble volume and (b) water film volume on hydrophilic and hydrophobic surfaces.

    图 4  (a)亲水和(b)疏水表面氧原子的径向分布函数

    Fig. 4.  Radial distribution function of O-O atoms on (a) hydrophilic and (b) hydrophobic surfaces.

    图 5  基底和水分子的温度变化图

    Fig. 5.  Temperatures of substrate wall and liquid water.

    图 6  亲疏水表面上水分子的热流密度变化图

    Fig. 6.  Heat flux for water molecules over hydrophilic and hydrophobic surfaces.

    图 7  亲疏水表面上水分子的界面热导变化图

    Fig. 7.  Interfacial thermal conductance for water molecules on hydrophilic and hydrophobic surfaces.

    图 8  亲疏水表面上水分子的界面热阻变化图

    Fig. 8.  Interfacial thermal resistances for water molecules over hydrophilic and hydrophobic surfaces.

    图 11  亲疏水表面1 nm区域内水分子数量变化图

    Fig. 11.  Variation of the number of water molecules within the 1 nm region of the hydrophilic and hydrophobic surfaces.

    图 9  水分子与铜基底的相互作用

    Fig. 9.  Interactions between water molecules and real copper surface.

    图 10  亲疏水表面的相互作用势能分布图 (a) 亲水表面; (b) 疏水表面

    Fig. 10.  Distribution of interaction potential energy for the (a) hydrophilic and (b) hydrophobic plate surfaces in a periodic cell.

    图 12  亲疏水表面铜-氧原子的VDOS

    Fig. 12.  VDOS of Cu and O for the hydrophilic and hydrophobic surfaces.

    图 13  相互作用能计算过程示意图

    Fig. 13.  Schematic computation process of interaction energy.

    表 1  原子间作用势能参数

    Table 1.  Potential energy and related parameters between particles.

    粒子 i, j qe/e σij εij/eV
    H-H +0.52 0.00 0.0000
    O-O –1.04 3.165 0.006998
    Cu-Cu 2.33 0.4096
    Cu-H 0.00 0.0000
    Cu-O(亲水) 2.75 0.034
    Cu-O(疏水) 2.75 0.009
    下载: 导出CSV
  • [1]

    曹春蕾, 何孝天, 马骁婧, 徐进良 2021 物理学报 70 134703Google Scholar

    Cao C L, He X T, M X J, Xu J L 2021 Acta Phys. Sin. 70 134703Google Scholar

    [2]

    刘飞龙, 程彦锟, 张境恒, 唐彪, 周国富 2023 物理学报 72 208501Google Scholar

    Liu F L, Cheng Y K, Zhang J H, Tang B, Zhou G F 2023 Acta Phys. Sin. 72 208501Google Scholar

    [3]

    Xiong K N, Luo Y H, Hu Y X, Wang S F 2024 Int. J. Therm. Sci. 196 108719Google Scholar

    [4]

    Hu H T, Zhao Y X, Lai Z C, Hu C Y 2021 Int. J. Therm. Sci. 168 107096Google Scholar

    [5]

    Zhang L, Wang T, Kim S, Tan S, Jiang Y Y 2019 Appl. Phys. Lett. 115 103701Google Scholar

    [6]

    Zhang L, Wang T, Jiang Y Y, Kim S, Guo C H 2018 Int. J. Heat Mass Transfer. 122 775Google Scholar

    [7]

    Lee S W, Park S D, Bang I C 2012 Int. J. Heat Mass Transfer 55 6908Google Scholar

    [8]

    Jo H J, Kim S, Park H S, Kim M H 2014 Int. J. Multiphase Flow 62 101Google Scholar

    [9]

    张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 234702Google Scholar

    Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin. 67 234702Google Scholar

    [10]

    Wang Y H, Wang S Y, Lu G, Wang X D 2019 Int. J. Heat Mass Transfer 132 1277Google Scholar

    [11]

    Cao Q, Cui Z 2019 Numer. Heat Transfer, Part A 75 533Google Scholar

    [12]

    Hens A, Agarwal R, Biswas G 2014 Int. J. Heat Mass Transfer 71 303Google Scholar

    [13]

    Chen Y J, Chen B N, Yu B, Tao W Q, Zou Y 2020 Langmuir 36 5336Google Scholar

    [14]

    Yin X Y, Hu C Z, Bai M L, Lü J Z 2019 Int. Commun. Heat Mass Transfer 109 104390Google Scholar

    [15]

    Wang Z, Li L 2 0122 Int. J. Heat Mass Transfer 183 122059Google Scholar

    [16]

    Tian P, Ge W X, Li S S, Gao L, Jiang J H, Xu Y D 2023 Chin. Phys. Lett. 40 067802Google Scholar

    [17]

    曹炳阳, 张梓彤 2022 物理学报 71 014401Google Scholar

    Cao B Y, Zhang Z T 2022 Acta Phys. Sin. 71 014401Google Scholar

    [18]

    张龙艳, 徐进良, 雷俊鹏 2019 物理学报 68 020201Google Scholar

    Zhang L Y, Xu J L, Lei J P 2019 Acta Phys. Sin. 68 020201Google Scholar

    [19]

    Mao Y J, Zhang Y W 2014 Appl. Therm. Eng. 62 607Google Scholar

    [20]

    曹炳阳, 陈民, 过增元 2005 高等学校化学学报 26 277Google Scholar

    Cao B Y, Chen M, Guo Z Y 2005 Chem. J. Chin. Univ. 26 277Google Scholar

    [21]

    Zhong X G, Liu Y S, Yao Y C, He B, Wen B H 2023 Chin. Phys. B 32 054701Google Scholar

    [22]

    Li Y Y, Li Y, Jiao W, Chen X Q, Lu G 2021 Int. J. Heat Mass Transfer 170 120996Google Scholar

    [23]

    Dang K, Chen J, Rodgers B, Fensin S 2023 Comput. Phys. Commun. 286 108667Google Scholar

    [24]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [25]

    Deng W, Ma S H, Li W M, Liu H Q, Zhao J Y 2022 Int. J. Heat Mass Transfer 191 122856Google Scholar

    [26]

    唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋 2023 物理学报 19 196801Google Scholar

    Tang X X, Chen H Y, Wang J J, Wang Z J, Zang D Y 2023 Acta Phys. Sin. 19 196801Google Scholar

    [27]

    Yin X Y, Hu C Z, Bai M L, Lü J Z 2020 Int. J. Heat Mass Transfer 162 120338Google Scholar

    [28]

    Wang W R, Huang S H, Luo X S 2016 Int. J. Heat Mass Transfer 100 276Google Scholar

    [29]

    Cai J J, Gong Z Q, Tan B 2023 Int. J. Therm. Sci. 184 107966Google Scholar

    [30]

    Surblys D, Kawagoe Y, Shibahara M, Ohara T J 2019 J. Chem. Phys. 150 114705Google Scholar

    [31]

    Chen Y J, Yu B, Zou Y, Chen B N, Tao W Q 2020 Int. J. Heat Mass Transfer 158 119850Google Scholar

    [32]

    Wang B B, Xu Z M, Wang X D, Yan W M 2018 Int. J. Heat Mass Transfer 125 756Google Scholar

    [33]

    Hu H, Sun Y 2016 Int. J. Heat Mass Transfer 101 878Google Scholar

    [34]

    胡剑, 张森, 娄钦 2023 物理学报 72 176401Google Scholar

    Hu J, Zhang S, Lou Q 2023 Acta Phys. Sin. 72 176401Google Scholar

    [35]

    赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略 2022 物理学报 71 214701Google Scholar

    Zhao C, Ji X B, Yang Y H, Meng Y H, Xu J L Peng J L 2022 Acta Phys. Sin. 71 214701Google Scholar

  • [1] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [2] 李春曦, 马成, 叶学民. 薄液滴在润湿性受限轨道上的热毛细迁移特性. 物理学报, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [3] 于航, 张冉, 杨帆, 李桦. 气体-表面相互作用中动量和能量分量间转化机制的分子动力学研究. 物理学报, 2021, 70(2): 024702. doi: 10.7498/aps.70.20201192
    [4] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [5] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [7] 叶学民, 张湘珊, 李明兰, 李春曦. 液滴在不同润湿性表面上蒸发时的动力学特性. 物理学报, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [8] 熊其玉, 董磊, 焦云龙, 刘小君, 刘焜. 应用激光蚀刻不同微织构表面的润湿性. 物理学报, 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [9] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟. 物理学报, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [10] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [11] 姚祎, 周哲玮, 胡国辉. 有结构壁面上液滴运动特征的耗散粒子动力学模拟. 物理学报, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [12] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟. 物理学报, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [13] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [14] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 物理学报, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [15] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [16] 宁建平, 吕晓丹, 赵成利, 秦尤敏, 贺平逆, Bogaerts A., 苟富君. 样品温度对CF3+ 与Si表面相互作用影响的分子动力学模拟. 物理学报, 2010, 59(10): 7225-7231. doi: 10.7498/aps.59.7225
    [17] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] 张 超, 王永亮, 颜 超, 张庆瑜. 替位杂质对低能Pt原子与Pt(111)表面相互作用影响的分子动力学模拟. 物理学报, 2006, 55(6): 2882-2891. doi: 10.7498/aps.55.2882
    [19] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
    [20] 张超, 吕海峰, 张庆瑜. 低能Pt原子与Pt(111)表面相互作用的分子动力学模拟. 物理学报, 2002, 51(10): 2329-2334. doi: 10.7498/aps.51.2329
计量
  • 文章访问数:  2255
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 修回日期:  2024-02-04
  • 上网日期:  2024-03-13
  • 刊出日期:  2024-05-05

/

返回文章
返回