搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基质${\text{VO}}_4^{3 - }$与掺杂离子Pr3+荧光强度比的新型高灵敏度光学测温研究

严涌飚 李霜 丁双双 张冰雪 孙浩 鞠泉浩 姚露

引用本文:
Citation:

基质${\text{VO}}_4^{3 - }$与掺杂离子Pr3+荧光强度比的新型高灵敏度光学测温研究

严涌飚, 李霜, 丁双双, 张冰雪, 孙浩, 鞠泉浩, 姚露

Novel high-sensitivity optical thermometry based on fluorescence intensity ratio of ${\text{VO}}_4^{3 - } $ to Pr3+

Yan Yong-Biao, Li Shuang, Ding Shuang-Shuang, Zhang Bing-Xue, Sun Hao, Ju Quan-Hao, Yao Lu
PDF
HTML
导出引用
  • 目前, 光学测温技术在传感、治疗、诊断和成像等领域取得了重大突破. 但是, 基于传统热耦合能级荧光强度比测温的灵敏度较低, 限制了其进一步的发展. 本文基于基质与掺杂离子间不同的温度依赖行为, 提出了一种新型的具有高灵敏度的测温方案. 首先, 采用固相法成功合成了YVO4:Pr3+荧光粉. 然后, 采用X射线衍射(XRD)、扫描电子显微镜和荧光分光光度计对样品的结构与发光特性进行表征. XRD结果表明Pr3+成功掺入YVO4基质. SEM结果表明样品为长方体形状微米晶颗粒, 平均颗粒大小约为2.1 μm. 在320 nm激发下, YVO4:Pr3+主要呈现出在440 nm附近的蓝光发射和606 nm的红光发射, 发光峰不存在明显的重叠. 基于${\text{VO}}_4^{3 - } $与Pr3+的发光对温度的不同响应, 实现了新的荧光强度比测温方案. 测温范围为303—353 K, 最大绝对灵敏度和相对灵敏度分别为0.651 K–1和3.112×10–2 K–1@353 K, 远高于传统的热耦合能级测温方案. 这为设计具有优异温度灵敏度和信号可辨别性的自参考光学测温材料提供了一种有前景的途径.
    It is noteworthy that since 2010, the number of published and cited scientific papers on optical thermometry has increased exponentially. Optical thermometry technology is about to make a significant process in sensing, therapy, diagnosis, and imaging. The current research mainly focuses on optical thermometry that is developing towards high-sensitivity thermometry. In this work, a new thermometry strategy is proposed based on the different temperature-dependent behaviors between the host ions and the doped ions. Firstly, YVO4:xPr3+(x = 0%–1.5%) phosphors are successfully synthesized by the solid-state method. Then, the structure and luminescence properties of the samples are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectrophotometer. The XRD results show that Pr3+ ions are successfully incorporated into the YVO4 host, and the sample has a tetragonal phase crystal structure with space group I41/amd. The SEM results show that the samples are rectangular-shaped micron particles with smooth surfaces, and the average grain size is about 2.1 μm. Under the excitation of 320 nm, the sample mainly exhibits broadband blue emission around 440 nm and red emission at 606 nm, which are attributed to the charge transfer transition of ${\text{VO}}_4^{3 - }$ and the 1D23H4 transition of Pr3+, respectively. The relationship between the luminescence of the sample and the concentration of Pr3+ is studied. It is found that the optimal doping concentration of Pr3+ is 0.5%, and a higher doping concentration will cause concentration to be quenched. The reason for quenching concentration is the electric dipole-quadrupole interaction. The luminescence peak position of the temperature-dependent spectrum of YVO4:0.5%Pr3+ is consistent with that at room temperature. As the temperature increases, the total luminescence intensity gradually decreases, which is caused by thermal quenching, and the mechanism of thermal quenching is analyzed. Since the temperature-dependent behaviors of luminescence of ${\text{VO}}_4^{3 - }$ and Pr3+ are significantly different from each other, a new fluorescence intensity ratio thermometry strategy is realized. Temperatures range is 303–353 K, and the maximum absolute sensitivity and relative sensitivity are 0.651 K–1 and 3.112×10–2 K–1 at 353 K, respectively, much higher than the traditional thermally coupled level thermometry strategy. In addition, there is no obvious overlap between the emission peaks of ${\text{VO}}_4^{3 - }$ and Pr3+, which provides a good discrimination capability for signal detection. The above results show that this work provides a promising path for designing self-reference optical thermometry materials with excellent temperature sensitivity and signal discrimination.
      通信作者: 李霜, lishuang_317@126.com
    • 基金项目: 国家自然科学基金(批准号: 62174015)资助的课题.
      Corresponding author: Li Shuang, lishuang_317@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62174015).
    [1]

    Wang Y Z, Sun Y S, Xia Z G 2023 J. Phys. Chem. Lett. 14 178Google Scholar

    [2]

    Kesarwani V, Rai V K 2022 J. Appl. Phys. 132 113102Google Scholar

    [3]

    Shi X Y, Chen Y Q, Li G X, Qiang K R, Mao Q A, Pei L, Liu M J, Zhong J S 2023 Ceram. Int. 49 20839Google Scholar

    [4]

    Kimura K, Morinaga Y, Imada H, Katayama I, Asakawa K, Yoshioka K, Kim Y, Takeda J 2021 ACS Photonics 8 982Google Scholar

    [5]

    Chen Y Q, Guo H J, Shi Q F, Qiao J W, Cui C E, Huang P, Wang L 2023 J. Alloys Compd. 965 171401Google Scholar

    [6]

    Li L, Yang P X, Xia W D, Wang Y J, Ling F L, Cao Z M, Jiang S, Xiang G T, Zhou X J, Wang Y 2021 Ceram. Int. 47 769Google Scholar

    [7]

    Wang C L, Jin Y H, Zhang R T, Yao Q, Hu Y H 2022 J. Alloys Compd. 894 162494Google Scholar

    [8]

    Xu W, Zhao L, Shang F K, Zheng L J, Zhang Z G 2022 J. Lumin. 249 119042Google Scholar

    [9]

    Li Z J, Dong J N, Wang Q, Chen N Q, Cui W L, He Y B, Chen B L, Zhao D 2023 J. Lumin. 263 120070Google Scholar

    [10]

    吴晗, 陈浩然, 解小雨, 涂浪平, 李齐清, 孔祥贵, 常钰磊 2023 发光学报 44 1335Google Scholar

    Wu H, Chen H R, Xie X Y, Xu L P, Li Q Q, Kong X G, Chang Y L 2023 Chin. J. Lumin. 44 1335Google Scholar

    [11]

    Zhou L, Du P, Li W, Luo L, Xing G 2020 Ind. Eng. Chem. Res. 59 9989Google Scholar

    [12]

    Duan Y M, Sun Y L, Zhu H Y, Li Z H, Zhang L, Zhang G 2021 Opt. Laser Technol. 144 107429Google Scholar

    [13]

    王玉婷, 王妍, 曲征, 周少帅 2019 中国稀土学报 37 426

    Wang Y T, Wang Y, Qu Z, Zhou S S 2019 J. Rare-Earths 37 426

    [14]

    Zhou H T, Guo N, Liang Q M, Ding Y, Pan Y, Song Y Y, Ouyang R Z, Miao Y Q, Shao B Q 2019 Ceram. Int. 45 16651Google Scholar

    [15]

    Kolesnikov I E, Mamonova D V, Kurochkin M A, Kolesnikov E Y, Lähderanta E 2021 ACS Appl. Nano Mater. 4 1959Google Scholar

    [16]

    Zhou H, Gao W H, Cai P C, Zhang B Q, Li S 2020 Solid State Sci. 104 106283Google Scholar

    [17]

    Tian X Y, Wen J, Wang S M, Hu J L, Li J, Peng H X 2016 Mater. Res. Bull. 77 279Google Scholar

    [18]

    Blasse G 1968 Phys. Lett. A 28 444Google Scholar

    [19]

    Van Uitert L G 1967 J. Electrochem. Soc. 114 1048Google Scholar

    [20]

    Boutinaud P, Pinel E, Oubaha M, Mahiou R, Cavalli E, Bettinelli M 2006 Opt. Mater. 28 9Google Scholar

    [21]

    Struck C W, Fonger W H 1971 J. Appl. Phys. 42 4515Google Scholar

    [22]

    吕兆承, 李营, 全桂英, 郑庆华, 周薇薇, 赵旺 2017 物理学报 66 117801Google Scholar

    Lü Z C, Li Y, Quan G Y, Zheng Q H, Zhou W W, Zhao W 2017 Acta Phys. Sin. 66 117801Google Scholar

    [23]

    唐红霞, 王昌文, 宋美霖, 王春红, 于长兴 2023 中国稀土学报 1

    Tang H X, Wang C W, Song M L, Wang C H, Yu C X 2023 J. Rare-Earths 1

    [24]

    缪菊红, 谢颖, 陈铭源, 李林珂, 韦松 2022 中国稀土学报 40 602

    Liao J H, Xie Y, Chen M Y, Li L K, Wei S 2022 J. Rare-Earths 40 602

    [25]

    夏克尔阿·热帕提, 王林香, 李晴, 柏云凤, 买买提·穆妮热 2023 物理学报 72 060701Google Scholar

    Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar

    [26]

    贾朝阳, 杨雪, 王志刚, 柴瑞鹏, 庞庆, 张翔宇, 高当丽 2023 物理学报 72 224210Google Scholar

    Jia C Y, Yang X, Wang Z G, Chai R P, Pang Q, Zhang X Y, Gao D L 2023 Acta Phys. Sin. 72 224210Google Scholar

  • 图 1  (a) YVO4:xPr3+ (x = 0%—1.5%)样品的XRD图谱及YVO4的标准卡片; (b) YVO4:0.5%Pr3+样品的XRD Rietveld精修图谱, 内插图为样品的晶体结构

    Fig. 1.  (a) XRD patterns of YVO4:xPr3+ (x = 0%–1.5%) samples, compared with the standard data of YVO4 reference pattern (JCPDS#17-341); (b) XRD Rietveld refinement pattern of YVO4:0.5%Pr3+ sample, the inset shows the crystal structure of the sample.

    图 2  YVO4:0.5%Pr3+样品在不同放大倍数下的SEM图(a), (b)和粒径分布图(c)

    Fig. 2.  SEM images under different magnifications (a), (b) and particle size distribution of YVO4:0.5%Pr3+ sample (c).

    图 3  (a) YVO4:0.5%Pr3+在606 nm监测下的激发光谱与320 nm激发下的发射光谱; (b) YVO4:Pr3+的能级跃迁图

    Fig. 3.  (a) Excitation (λem = 606 nm) and emission (λex = 320 nm) spectra of YVO4:0.5%Pr3+; (b) the level transition diagram of YVO4:0.5%Pr3+.

    图 4  (a)不同掺杂浓度的YVO4:xPr3+(x = 0.1%—1.5%)在320 nm激发下的发射光谱; (b) $ \log \left( {{{I_0^\prime } \mathord{\left/ {\vphantom {{I_0^\prime } {{I^\prime } - 1}}} \right. } {{I^\prime } - 1}}} \right) $对log(x)的线性拟合图(x≥0.3%)

    Fig. 4.  (a) Emission spectra of YVO4:xPr3+ (x = 0.1%–1.5%) with different doping concentrations under 320 nm excitation; (b) linear fit of $ \log \left( {{{I_0'} /{{I'} - 1}}} \right) $ to log(x) (x≥0.3%).

    图 5  (a) YVO4:0.5%Pr3+在303—353 K温度范围内的变温光谱(λex = 320 nm); (b) Pr3+发光热淬灭的位形坐标图

    Fig. 5.  (a) Temperature-dependent spectra of YVO4:0.5%Pr3+ in the temperature range of 303–353 K (λex = 320 nm); (b) the configuration diagram of thermal quenching of Pr3+ luminescence.

    图 6  (a) YVO4:0.5%Pr3+的FIR(I440/I606)随温度的变化; (b)绝对灵敏度Sa和相对灵敏度Sr随温度的变化; (c)连续5个循环的FIR变化

    Fig. 6.  (a) FIR (I440/I606) of YVO4:0.5%Pr3+ versus temperature; (b) temperature dependence of absolute sensitivity Sa and relative sensitivity Sr; (c) variation of the FIR value in 5 consecutive cycles.

    表 1  YVO4:0.5%Pr3+样品在XRD Rietveld精修后的相关参数

    Table 1.  Corresponding parameters of XRD Rietveld refinement for YVO4:0.5%Pr3+ sample.

    相结构 空间群 晶胞参数 体积/Å3 质量因子
    四方相 I41/amd a = b = 7.125 Å
    c = 6.296 Å
    α = β = γ = 90º
    319.63 Rp = 4.60
    Rwp = 5.84
    Re = 3.01
    χ2 = 3.76
    下载: 导出CSV

    表 2  基于FIR测温荧光粉的灵敏度

    Table 2.  Sensitivities of phosphors based on FIR thermometry.

    Strategies Materials λex/nm Sa/K–1 Sr/(10–2 K–1) Temperature range/K Ref.
    TCLs YVO4:1%Er3+ 345 0.0102 1.070 303—573 [23]
    NaYF4:Yb3+/Er3+/Tm3+ 980 0.2974 1.174 293—573 [24]
    Bi2WO6:Tm3+, Yb3+ 980 0.0025 0.144 298—573 [25]
    Li0.9K0.1NbO3:Pr3+, Er3+ 380 0.0054 1.120 297—443 [26]
    808 0.0112 1.284
    980 0.0083 1.106
    Dual-mode SrMoO4:Pr3+ 449 0.0452 0.98 298—498 [6]
    GdVO4:0.5%Sm3+ 310 1.6 300—480 [13]
    YVO4:0.5%Pr3+ 320 0.6510 3.112 303—353 This work
    下载: 导出CSV
  • [1]

    Wang Y Z, Sun Y S, Xia Z G 2023 J. Phys. Chem. Lett. 14 178Google Scholar

    [2]

    Kesarwani V, Rai V K 2022 J. Appl. Phys. 132 113102Google Scholar

    [3]

    Shi X Y, Chen Y Q, Li G X, Qiang K R, Mao Q A, Pei L, Liu M J, Zhong J S 2023 Ceram. Int. 49 20839Google Scholar

    [4]

    Kimura K, Morinaga Y, Imada H, Katayama I, Asakawa K, Yoshioka K, Kim Y, Takeda J 2021 ACS Photonics 8 982Google Scholar

    [5]

    Chen Y Q, Guo H J, Shi Q F, Qiao J W, Cui C E, Huang P, Wang L 2023 J. Alloys Compd. 965 171401Google Scholar

    [6]

    Li L, Yang P X, Xia W D, Wang Y J, Ling F L, Cao Z M, Jiang S, Xiang G T, Zhou X J, Wang Y 2021 Ceram. Int. 47 769Google Scholar

    [7]

    Wang C L, Jin Y H, Zhang R T, Yao Q, Hu Y H 2022 J. Alloys Compd. 894 162494Google Scholar

    [8]

    Xu W, Zhao L, Shang F K, Zheng L J, Zhang Z G 2022 J. Lumin. 249 119042Google Scholar

    [9]

    Li Z J, Dong J N, Wang Q, Chen N Q, Cui W L, He Y B, Chen B L, Zhao D 2023 J. Lumin. 263 120070Google Scholar

    [10]

    吴晗, 陈浩然, 解小雨, 涂浪平, 李齐清, 孔祥贵, 常钰磊 2023 发光学报 44 1335Google Scholar

    Wu H, Chen H R, Xie X Y, Xu L P, Li Q Q, Kong X G, Chang Y L 2023 Chin. J. Lumin. 44 1335Google Scholar

    [11]

    Zhou L, Du P, Li W, Luo L, Xing G 2020 Ind. Eng. Chem. Res. 59 9989Google Scholar

    [12]

    Duan Y M, Sun Y L, Zhu H Y, Li Z H, Zhang L, Zhang G 2021 Opt. Laser Technol. 144 107429Google Scholar

    [13]

    王玉婷, 王妍, 曲征, 周少帅 2019 中国稀土学报 37 426

    Wang Y T, Wang Y, Qu Z, Zhou S S 2019 J. Rare-Earths 37 426

    [14]

    Zhou H T, Guo N, Liang Q M, Ding Y, Pan Y, Song Y Y, Ouyang R Z, Miao Y Q, Shao B Q 2019 Ceram. Int. 45 16651Google Scholar

    [15]

    Kolesnikov I E, Mamonova D V, Kurochkin M A, Kolesnikov E Y, Lähderanta E 2021 ACS Appl. Nano Mater. 4 1959Google Scholar

    [16]

    Zhou H, Gao W H, Cai P C, Zhang B Q, Li S 2020 Solid State Sci. 104 106283Google Scholar

    [17]

    Tian X Y, Wen J, Wang S M, Hu J L, Li J, Peng H X 2016 Mater. Res. Bull. 77 279Google Scholar

    [18]

    Blasse G 1968 Phys. Lett. A 28 444Google Scholar

    [19]

    Van Uitert L G 1967 J. Electrochem. Soc. 114 1048Google Scholar

    [20]

    Boutinaud P, Pinel E, Oubaha M, Mahiou R, Cavalli E, Bettinelli M 2006 Opt. Mater. 28 9Google Scholar

    [21]

    Struck C W, Fonger W H 1971 J. Appl. Phys. 42 4515Google Scholar

    [22]

    吕兆承, 李营, 全桂英, 郑庆华, 周薇薇, 赵旺 2017 物理学报 66 117801Google Scholar

    Lü Z C, Li Y, Quan G Y, Zheng Q H, Zhou W W, Zhao W 2017 Acta Phys. Sin. 66 117801Google Scholar

    [23]

    唐红霞, 王昌文, 宋美霖, 王春红, 于长兴 2023 中国稀土学报 1

    Tang H X, Wang C W, Song M L, Wang C H, Yu C X 2023 J. Rare-Earths 1

    [24]

    缪菊红, 谢颖, 陈铭源, 李林珂, 韦松 2022 中国稀土学报 40 602

    Liao J H, Xie Y, Chen M Y, Li L K, Wei S 2022 J. Rare-Earths 40 602

    [25]

    夏克尔阿·热帕提, 王林香, 李晴, 柏云凤, 买买提·穆妮热 2023 物理学报 72 060701Google Scholar

    Arepati X, Wang L X, Li Q, Bai Y F, Munire M 2023 Acta Phys. Sin. 72 060701Google Scholar

    [26]

    贾朝阳, 杨雪, 王志刚, 柴瑞鹏, 庞庆, 张翔宇, 高当丽 2023 物理学报 72 224210Google Scholar

    Jia C Y, Yang X, Wang Z G, Chai R P, Pang Q, Zhang X Y, Gao D L 2023 Acta Phys. Sin. 72 224210Google Scholar

  • [1] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性. 物理学报, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [2] 吴健雄, 程腾, 张青川, 高杰, 伍小平. 光学读出红外成像中面光源影响下的光学检测灵敏度研究. 物理学报, 2013, 62(22): 220703. doi: 10.7498/aps.62.220703
    [3] 余阳, 刘自军, 陈乔乔, 戴能利, 李进延, 杨旅云. Dy3+掺杂硼硅酸盐玻璃的发光特性. 物理学报, 2013, 62(1): 017804. doi: 10.7498/aps.62.017804
    [4] 齐智坚, 黄维刚. 白光LED用Ca3Si3O9:Dy3+荧光粉的制备及其发光性能. 物理学报, 2013, 62(19): 197801. doi: 10.7498/aps.62.197801
    [5] 王锐, 王玉山. Delta-P1近似漫反射光学模型的二阶参量灵敏度. 物理学报, 2012, 61(18): 184202. doi: 10.7498/aps.61.184202
    [6] 田会娟, 牛萍娟. 基于混合漫射近似的空间分辨漫反射光学参量灵敏度的研究. 物理学报, 2012, 61(18): 184214. doi: 10.7498/aps.61.184214
    [7] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪. 物理学报, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [8] 韩颖, 侯蓝田, 夏长明, 周桂耀, 侯峙云. 镱铝共掺石英玻璃的制备及其发光特性的研究. 物理学报, 2011, 60(5): 054212. doi: 10.7498/aps.60.054212
    [9] 苗瑞霞, 张玉明, 汤晓燕, 张义门. 4H-SiC中基面位错发光特性研究. 物理学报, 2011, 60(3): 037808. doi: 10.7498/aps.60.037808
    [10] 李盼来, 王志军, 杨志平, 郭庆林. Ba3Tb(BO3)3 ∶Ce3+:一种白光LED用绿色荧光粉. 物理学报, 2011, 60(4): 047804. doi: 10.7498/aps.60.047804
    [11] 曹仕秀, 韩涛, 涂铭旌. Eu2+掺杂浓度对Ca2MgSi2O7∶Eu2+荧光粉发光特性的影响. 物理学报, 2011, 60(12): 127802. doi: 10.7498/aps.60.127802
    [12] 李曙光, 周翔, 曹晓超, 盛继腾, 徐云飞, 王兆英, 林强. 全光学高灵敏度铷原子磁力仪的研究. 物理学报, 2010, 59(2): 877-882. doi: 10.7498/aps.59.877
    [13] 王泽锋, 胡永明, 孟洲, 罗洪, 倪明. 四阶声低通滤波光纤水听器的声压灵敏度频响特性. 物理学报, 2009, 58(10): 7034-7043. doi: 10.7498/aps.58.7034
    [14] 王志军, 李盼来, 王颖, 杨志平, 郭庆林. 白光LED用LiBaBO3:Eu2+材料发光特性研究. 物理学报, 2009, 58(2): 1257-1260. doi: 10.7498/aps.58.1257
    [15] 李盼来, 王志军, 王颖, 杨志平, 郭庆林, 李旭, 杨艳民, 傅广生. Ce3+在LiBaBO3中的发光特性及晶体学格位. 物理学报, 2009, 58(8): 5831-5835. doi: 10.7498/aps.58.5831
    [16] 马明星, 朱达川, 涂铭旌. Eu2+的掺杂浓度对BaAl2Si2O8:Eu2+荧光粉发光特性的影响. 物理学报, 2009, 58(8): 5826-5830. doi: 10.7498/aps.58.5826
    [17] 马明星, 朱达川, 涂铭旌. H3BO3对BaAl2Si2O8:Eu2+蓝色荧光粉物相组成和发光特性的影响. 物理学报, 2009, 58(9): 6512-6517. doi: 10.7498/aps.58.6512
    [18] 王志军, 李盼来, 王 刚, 杨志平, 郭庆林. Ca2SiO4:Dy3+材料的制备及其发光特性. 物理学报, 2008, 57(7): 4575-4579. doi: 10.7498/aps.57.4575
    [19] 李成仁, 明成国, 李淑凤, 丁建华, 王宝成, 张 丽. 镱铒共掺Al2O3薄膜上转换机理及其温度特性. 物理学报, 2008, 57(10): 6604-6608. doi: 10.7498/aps.57.6604
    [20] 刘小兵, 史向华, 廖太长, 任 鹏, 柳 玥, 柳 毅, 熊祖洪, 丁训民, 侯晓远. 声空化物理化学综合法制备发光多孔硅薄膜的微结构与发光特性. 物理学报, 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
计量
  • 文章访问数:  1931
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-03
  • 修回日期:  2024-01-27
  • 上网日期:  2024-03-08
  • 刊出日期:  2024-05-05

/

返回文章
返回