-
提出一种基于共享孔径技术设计低雷达散射截面(radar cross section, RCS)电磁超构表面天线的新方法. 该方法首先设计具有低RCS性能的超构表面, 然后借鉴共享孔径技术思想, 将超构表面和传统天线的辐射结构直接共享口径紧密排列, 得到新型低RCS天线结构, 并结合电流分析和局部结构修正, 优化天线的辐射性能, 最终同时实现天线的良好辐射和宽带低RCS性能. 为了阐明该方法, 基于极化旋转机理设计了一款低RCS超构表面, 采用共享孔径思想和电流分析, 得到了一款宽带低RCS超构表面天线, 详细分析了该天线的工作机理与性能. 结果表明: 设计的天线在保证较好辐射的同时, 实现了超宽带RCS减缩, 提出的设计方法摒弃了从天线到低RCS天线的传统设计思路, 通过逆向思维, 将散射的优化问题转化为辐射的优化问题, 不仅实现了天线与超构表面的一体化设计, 还显著地降低了低RCS天线优化设计的难度, 加速了天线优化进程.In this paper, a novel shared-aperture method of electromagnetic metasurface and antenna is proposed to obtain low radar-cross-section (RCS) performance. In this method, the low-RCS metasurface is first designed, then this metasurface is combined with traditional antenna to obtain novel low-RCS antenna based on shared-aperture technique. Besides, the analysis and corresponding local structure modification are also conducted to ensure that the antenna has good radiation performance while reducing broadband RCS. Using this method, a dual-layer polarization rotation unit cell is first proposed and its broadband working principle is investigated by both theoretical analysis and numerical comparison. Based on this unit cell, a broadband low-RCS metasurface is constructed. Then an initial shared-aperture metasurface antenna is obtained by substituting the middle cells in the metasurface with traditional patch antenna directly. Through careful analysis of surface current in radiation mode, the gain decrease of this metasurface antenna is revealed. On this basis, a finite removal strategy is put forward and some metasurface cells in the antenna are removed by using the electric current analysis. Consequently, an improved shared-aperture metasurface antenna is proposed. This improved antenna works in a frequency range from 6.3 to 7.48 GHz, which is slightly wider than the traditional patch antenna. Its gain is also higher than that of traditional antenna, with a maximum improvement of 1 dB. Meanwhile, the apparent RCS decreases from 6 to 16 GHz for any polarized incident wave, and the reduction peak is larger than 20 dB. Finally, fabrications and measurements are conducted. The measurement results and numerical calculations are in good agreement. The well-behaved radiation performance and broadband low-RCS property of this metasurface antenna verify the effectiveness of the proposed method. Unlike most of reported design methods of low-RCS antennas directly from traditional antennas, the proposed method adopts reverse thinking to transform scattering optimization into radiation optimization, realizing the integration between metasurface and antenna, thus making low-RCS antenna design easier and faster.
-
Keywords:
- electromagnetic metasurface /
- antenna /
- shared-aperture technique /
- low radar cross section
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[2] Cui T 2017 J. Opt. 19 084004Google Scholar
[3] Li T, Yang H H, Li Q, Zhu X W, Cao X Y, Gao J, Wu Z B 2019 IET Microwaves Antennas Propag. 13 185Google Scholar
[4] Li T, Yang H H, Li Q, Tian J H, Gao K, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206Google Scholar
[5] Zhao B, Huang C, Yang J N, Song J K, Guan C L, Luo X G 2020 IEEE Antennas Wirel. Propag. Lett. 19 982Google Scholar
[6] Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96Google Scholar
[7] Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. Express Briefs 70 76Google Scholar
[8] Xi Y, Jiang W, Wei K, Hong T, Gong S X 2023 IEEE Trans. Antennas Propag. 71 422Google Scholar
[9] Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar
[10] Wang C, Li Y F, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2019 IEEE Trans. Antennas Propag. 67 6508Google Scholar
[11] Huang C, Pan W B, Ma X L, Luo X G 2016 IEEE Antennas Wirel. Propag. Lett. 15 448Google Scholar
[12] Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar
[13] Ha T D, Zhu L, AlSaab N, Chen P Y, Guo J L 2023 IEEE Trans. Antennas Propag. 71 67Google Scholar
[14] Zhang T Z, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wirel. Propag. Lett. 22 665Google Scholar
[15] Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar
[16] Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar
[17] 冯奎胜, 李娜, 杨欢欢 2021 物理学报 70 194101Google Scholar
Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101Google Scholar
[18] Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar
[19] Zhang Z C, Huang M, Chen Y K, Qu S W, Hu J, Yang S W 2020 IEEE Trans. Antennas Propag. 68 7927Google Scholar
[20] Tan Y, Yuan N, Yang Y, Fu Y Q 2011 Electron Lett. 47 582Google Scholar
[21] Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar
[22] Liu Y, Liu Z S, Wang Q, Jia Y T 2021 IEEE Trans. Antennas Propag. 69 8955Google Scholar
[23] Liu J, Li J Y, Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834Google Scholar
[24] Yao W, Gao H T, Tian Y, Wu J, Guo L Y, Huang X J 2023 IEEE Trans. Antennas Propag. 71 5663Google Scholar
[25] Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar
[26] Zhu L, Sun J W, Hao Z Y, Kuai X L, Zhang H H, Cao Q S 2023 IEEE Trans. Antennas Propag. 22 975Google Scholar
[27] Guo Q X, Chen Q, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 768Google Scholar
[28] Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar
[29] Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar
[30] Wang P F, Jia Y T, Hu W Y, Liu Y, Lei H Y, Sun H B, Cui T J 2023 IEEE Trans. Antennas Propag. 71 5626Google Scholar
[31] Ren J Y, Jiang W, Gong S X 2018 IEEE Microwaves Antennas Propag. 12 1793Google Scholar
[32] Jia Y T, Liu T, Zhang W B, Wang J, Liao G S 2018 IEEE Access 6 23561Google Scholar
-
图 6 天线辐射性能对比 (a) 反射系数; (b) 增益; (c)—(f) 三维辐射方向图, 其中(c), (e) 传统天线, (d), (f) 共享孔径天线2; (g), (h) 二维辐射方向图
Fig. 6. Radiation performance comparison of the antennas: (a) Reflection coefficient; (b) gain; (c)–(f) 3D radiation patterns, (c), (e) conventional antenna, (d), (f) shared-aperture antenna 2; (g), (h) 2D radiation patterns.
图 9 斜入射下天线双站RCS对比 (a) θinc = 30°, φinc = 0°, θsca = 30°, φsca = 180°; (b) θinc = 30°, φinc = 90°, θsca = 30°, φsca = 270°; (c) θinc = 30°, φinc = 315°, θsca = 30°, φsca = 135°; (d) θinc = 60°, φinc = 0°, θsca = 30°, φsca = 180°; (e) θinc = 60°, φinc = 90°, θsca = 30°, φsca = 270°; (f) θinc = 60°, φinc = 315°, θsca = 30°, φsca = 135°
Fig. 9. Bistatic RCS under different polarized oblique incidences: (a) θinc = 30°, φinc = 0°, θsca = 30°, φsca = 180°; (b) θinc = 30°, φinc = 90°, θsca = 30°, φsca = 270°; (c) θinc = 30°, φinc = 315°, θsca = 30°, φsca = 135°; (d) θinc = 60°, φinc = 0°, θsca = 30°, φsca = 180°; (e) θinc = 60°, φinc = 90°, θsca = 30°, φsca = 270°; (f) θinc = 60°, φinc = 315°, θsca = 30°, φsca = 135°.
表 1 本文设计共享孔径天线2与已有文献天线比较
Table 1. Comparison of shared-aperture antenna 2 in this work and antennas in previous work.
-
[1] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[2] Cui T 2017 J. Opt. 19 084004Google Scholar
[3] Li T, Yang H H, Li Q, Zhu X W, Cao X Y, Gao J, Wu Z B 2019 IET Microwaves Antennas Propag. 13 185Google Scholar
[4] Li T, Yang H H, Li Q, Tian J H, Gao K, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206Google Scholar
[5] Zhao B, Huang C, Yang J N, Song J K, Guan C L, Luo X G 2020 IEEE Antennas Wirel. Propag. Lett. 19 982Google Scholar
[6] Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96Google Scholar
[7] Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. Express Briefs 70 76Google Scholar
[8] Xi Y, Jiang W, Wei K, Hong T, Gong S X 2023 IEEE Trans. Antennas Propag. 71 422Google Scholar
[9] Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar
[10] Wang C, Li Y F, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2019 IEEE Trans. Antennas Propag. 67 6508Google Scholar
[11] Huang C, Pan W B, Ma X L, Luo X G 2016 IEEE Antennas Wirel. Propag. Lett. 15 448Google Scholar
[12] Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar
[13] Ha T D, Zhu L, AlSaab N, Chen P Y, Guo J L 2023 IEEE Trans. Antennas Propag. 71 67Google Scholar
[14] Zhang T Z, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wirel. Propag. Lett. 22 665Google Scholar
[15] Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar
[16] Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar
[17] 冯奎胜, 李娜, 杨欢欢 2021 物理学报 70 194101Google Scholar
Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101Google Scholar
[18] Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar
[19] Zhang Z C, Huang M, Chen Y K, Qu S W, Hu J, Yang S W 2020 IEEE Trans. Antennas Propag. 68 7927Google Scholar
[20] Tan Y, Yuan N, Yang Y, Fu Y Q 2011 Electron Lett. 47 582Google Scholar
[21] Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar
[22] Liu Y, Liu Z S, Wang Q, Jia Y T 2021 IEEE Trans. Antennas Propag. 69 8955Google Scholar
[23] Liu J, Li J Y, Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834Google Scholar
[24] Yao W, Gao H T, Tian Y, Wu J, Guo L Y, Huang X J 2023 IEEE Trans. Antennas Propag. 71 5663Google Scholar
[25] Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar
[26] Zhu L, Sun J W, Hao Z Y, Kuai X L, Zhang H H, Cao Q S 2023 IEEE Trans. Antennas Propag. 22 975Google Scholar
[27] Guo Q X, Chen Q, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 768Google Scholar
[28] Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar
[29] Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar
[30] Wang P F, Jia Y T, Hu W Y, Liu Y, Lei H Y, Sun H B, Cui T J 2023 IEEE Trans. Antennas Propag. 71 5626Google Scholar
[31] Ren J Y, Jiang W, Gong S X 2018 IEEE Microwaves Antennas Propag. 12 1793Google Scholar
[32] Jia Y T, Liu T, Zhang W B, Wang J, Liao G S 2018 IEEE Access 6 23561Google Scholar
计量
- 文章访问数: 2020
- PDF下载量: 72
- 被引次数: 0