搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于共享孔径技术的低RCS电磁超构表面天线设计

李桐 杨欢欢 李奇 廖嘉伟 高坤 季轲峰 曹祥玉

引用本文:
Citation:

基于共享孔径技术的低RCS电磁超构表面天线设计

李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉

Low-RCS electromagnetic metasurface antenna based on shared-aperture technique

Li Tong, Yang Huan-Huan, Li Qi, Liao Jia-Wei, Gao Kun, Ji Ke-Feng, Cao Xiang-Yu
PDF
HTML
导出引用
  • 提出一种基于共享孔径技术设计低雷达散射截面(radar cross section, RCS)电磁超构表面天线的新方法. 该方法首先设计具有低RCS性能的超构表面, 然后借鉴共享孔径技术思想, 将超构表面和传统天线的辐射结构直接共享口径紧密排列, 得到新型低RCS天线结构, 并结合电流分析和局部结构修正, 优化天线的辐射性能, 最终同时实现天线的良好辐射和宽带低RCS性能. 为了阐明该方法, 基于极化旋转机理设计了一款低RCS超构表面, 采用共享孔径思想和电流分析, 得到了一款宽带低RCS超构表面天线, 详细分析了该天线的工作机理与性能. 结果表明: 设计的天线在保证较好辐射的同时, 实现了超宽带RCS减缩, 提出的设计方法摒弃了从天线到低RCS天线的传统设计思路, 通过逆向思维, 将散射的优化问题转化为辐射的优化问题, 不仅实现了天线与超构表面的一体化设计, 还显著地降低了低RCS天线优化设计的难度, 加速了天线优化进程.
    In this paper, a novel shared-aperture method of electromagnetic metasurface and antenna is proposed to obtain low radar-cross-section (RCS) performance. In this method, the low-RCS metasurface is first designed, then this metasurface is combined with traditional antenna to obtain novel low-RCS antenna based on shared-aperture technique. Besides, the analysis and corresponding local structure modification are also conducted to ensure that the antenna has good radiation performance while reducing broadband RCS. Using this method, a dual-layer polarization rotation unit cell is first proposed and its broadband working principle is investigated by both theoretical analysis and numerical comparison. Based on this unit cell, a broadband low-RCS metasurface is constructed. Then an initial shared-aperture metasurface antenna is obtained by substituting the middle cells in the metasurface with traditional patch antenna directly. Through careful analysis of surface current in radiation mode, the gain decrease of this metasurface antenna is revealed. On this basis, a finite removal strategy is put forward and some metasurface cells in the antenna are removed by using the electric current analysis. Consequently, an improved shared-aperture metasurface antenna is proposed. This improved antenna works in a frequency range from 6.3 to 7.48 GHz, which is slightly wider than the traditional patch antenna. Its gain is also higher than that of traditional antenna, with a maximum improvement of 1 dB. Meanwhile, the apparent RCS decreases from 6 to 16 GHz for any polarized incident wave, and the reduction peak is larger than 20 dB. Finally, fabrications and measurements are conducted. The measurement results and numerical calculations are in good agreement. The well-behaved radiation performance and broadband low-RCS property of this metasurface antenna verify the effectiveness of the proposed method. Unlike most of reported design methods of low-RCS antennas directly from traditional antennas, the proposed method adopts reverse thinking to transform scattering optimization into radiation optimization, realizing the integration between metasurface and antenna, thus making low-RCS antenna design easier and faster.
      通信作者: 杨欢欢, jianye8901@126.com
    • 基金项目: 国家自然科学基金(批准号: 62371466, 62171460, 62203464)、陕西省自然科学基础研究计划(批准号: 2024JC-ZDXM-39, 20220104, 2020022)和空间微波技术国家重点实验室基金(批准号: HTKJ2022KL504004)资助的课题.
      Corresponding author: Yang Huan-Huan, jianye8901@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62371466, 62171460, 62203464), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2024JC-ZDXM-39, 20220104, 2020022), and the Foundation of National Key Laboratory of Science and Technology on Space Microwave (Grant No. HTKJ2022KL504004).
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Cui T 2017 J. Opt. 19 084004Google Scholar

    [3]

    Li T, Yang H H, Li Q, Zhu X W, Cao X Y, Gao J, Wu Z B 2019 IET Microwaves Antennas Propag. 13 185Google Scholar

    [4]

    Li T, Yang H H, Li Q, Tian J H, Gao K, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206Google Scholar

    [5]

    Zhao B, Huang C, Yang J N, Song J K, Guan C L, Luo X G 2020 IEEE Antennas Wirel. Propag. Lett. 19 982Google Scholar

    [6]

    Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96Google Scholar

    [7]

    Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. Express Briefs 70 76Google Scholar

    [8]

    Xi Y, Jiang W, Wei K, Hong T, Gong S X 2023 IEEE Trans. Antennas Propag. 71 422Google Scholar

    [9]

    Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar

    [10]

    Wang C, Li Y F, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2019 IEEE Trans. Antennas Propag. 67 6508Google Scholar

    [11]

    Huang C, Pan W B, Ma X L, Luo X G 2016 IEEE Antennas Wirel. Propag. Lett. 15 448Google Scholar

    [12]

    Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [13]

    Ha T D, Zhu L, AlSaab N, Chen P Y, Guo J L 2023 IEEE Trans. Antennas Propag. 71 67Google Scholar

    [14]

    Zhang T Z, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wirel. Propag. Lett. 22 665Google Scholar

    [15]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar

    [16]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar

    [17]

    冯奎胜, 李娜, 杨欢欢 2021 物理学报 70 194101Google Scholar

    Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101Google Scholar

    [18]

    Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar

    [19]

    Zhang Z C, Huang M, Chen Y K, Qu S W, Hu J, Yang S W 2020 IEEE Trans. Antennas Propag. 68 7927Google Scholar

    [20]

    Tan Y, Yuan N, Yang Y, Fu Y Q 2011 Electron Lett. 47 582Google Scholar

    [21]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar

    [22]

    Liu Y, Liu Z S, Wang Q, Jia Y T 2021 IEEE Trans. Antennas Propag. 69 8955Google Scholar

    [23]

    Liu J, Li J Y, Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834Google Scholar

    [24]

    Yao W, Gao H T, Tian Y, Wu J, Guo L Y, Huang X J 2023 IEEE Trans. Antennas Propag. 71 5663Google Scholar

    [25]

    Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar

    [26]

    Zhu L, Sun J W, Hao Z Y, Kuai X L, Zhang H H, Cao Q S 2023 IEEE Trans. Antennas Propag. 22 975Google Scholar

    [27]

    Guo Q X, Chen Q, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 768Google Scholar

    [28]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar

    [29]

    Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar

    [30]

    Wang P F, Jia Y T, Hu W Y, Liu Y, Lei H Y, Sun H B, Cui T J 2023 IEEE Trans. Antennas Propag. 71 5626Google Scholar

    [31]

    Ren J Y, Jiang W, Gong S X 2018 IEEE Microwaves Antennas Propag. 12 1793Google Scholar

    [32]

    Jia Y T, Liu T, Zhang W B, Wang J, Liao G S 2018 IEEE Access 6 23561Google Scholar

  • 图 1  极化旋转表面  (a) 单元透视图; (b) 单元俯视图; (c) 表面俯视图

    Fig. 1.  Polarization rotation metasurface: (a) Perspective view; (b) top view of unit cell; (c) top view of proposed surface.

    图 2  极化旋转表面性能  (a) 单元反射幅度; (b) 单元反射性能分析; (c) 电流分析; (d) 表面单站RCS

    Fig. 2.  Performance of proposed polarization conversion metasurface: (a) Reflection amplitude of uint cell; (b) reflection performance analysis of unit cell; (c) surface current analysis; (d) RCS of proposed surface.

    图 3  超构表面与天线共享孔径设计流程  (a) 超构表面; (b) 传统天线; (c) 共享孔径天线1; (d) 共享孔径天线2

    Fig. 3.  Shared aperture of metasurface and antenna: (a) Metasurface; (b) conventional antenna; (c) shared-aperture antenna 1; (d) shared-aperture antenna 2.

    图 4  传统天线与共享孔径天线1的辐射性能对比  (a) 反射系数; (b) 增益

    Fig. 4.  Radiation performance comparison of shared-aperture antenna 1 with conventional antenna: (a) Reflection coefficient; (b) gain.

    图 5  天线表面电流分析  (a), (d) 传统天线; (b), (e) 共享孔径天线1; (c), (f) 共享孔径天线2

    Fig. 5.  Surface current analysis: (a), (d) Conventional antenna; (b), (e) shared-aperture antenna 1; (c), (f) shared-aperture antenna 2

    图 6  天线辐射性能对比  (a) 反射系数; (b) 增益; (c)—(f) 三维辐射方向图, 其中(c), (e) 传统天线, (d), (f) 共享孔径天线2; (g), (h) 二维辐射方向图

    Fig. 6.  Radiation performance comparison of the antennas: (a) Reflection coefficient; (b) gain; (c)–(f) 3D radiation patterns, (c), (e) conventional antenna, (d), (f) shared-aperture antenna 2; (g), (h) 2D radiation patterns.

    图 7  天线RCS对比  (a) x极化; (b) y极化

    Fig. 7.  RCS comparison of the antennas: (a) x polarization; (b) y polarization.

    图 8  天线散射方向图对比 (a)—(d) 传统天线; (e)—(h) 共享孔径天线2

    Fig. 8.  Scattering patterns comparison of the antennas: (a)–(d) Conventional antenna; (e)–(h) shared-aperture antenna 2.

    图 9  斜入射下天线双站RCS对比  (a) θinc = 30°, φinc = 0°, θsca = 30°, φsca = 180°; (b) θinc = 30°, φinc = 90°, θsca = 30°, φsca = 270°; (c) θinc = 30°, φinc = 315°, θsca = 30°, φsca = 135°; (d) θinc = 60°, φinc = 0°, θsca = 30°, φsca = 180°; (e) θinc = 60°, φinc = 90°, θsca = 30°, φsca = 270°; (f) θinc = 60°, φinc = 315°, θsca = 30°, φsca = 135°

    Fig. 9.  Bistatic RCS under different polarized oblique incidences: (a) θinc = 30°, φinc = 0°, θsca = 30°, φsca = 180°; (b) θinc = 30°, φinc = 90°, θsca = 30°, φsca = 270°; (c) θinc = 30°, φinc = 315°, θsca = 30°, φsca = 135°; (d) θinc = 60°, φinc = 0°, θsca = 30°, φsca = 180°; (e) θinc = 60°, φinc = 90°, θsca = 30°, φsca = 270°; (f) θinc = 60°, φinc = 315°, θsca = 30°, φsca = 135°.

    图 10  天线样件实物  (a) 传统天线; (b) 共享孔径天线2

    Fig. 10.  Picture of fabricated antennas: (a) Conventional antenna; (b) shared-aperture antenna 2.

    图 11  实测天线的|S11|曲线

    Fig. 11.  Measured |S11| of fabricated antennas.

    图 12  6.7 GHz实测天线方向图  (a) E面; (b) H

    Fig. 12.  Measured radiation patterns at 6.7 GHz: (a) E plane; (b) H plane.

    图 13  共享孔径天线2单站RCS减缩曲线

    Fig. 13.  Monostatic RCS reduction of shared-aperture antenna 2.

    表 1  本文设计共享孔径天线2与已有文献天线比较

    Table 1.  Comparison of shared-aperture antenna 2 in this work and antennas in previous work.

    对象 设计思路 设计方法 尺寸增加 辐射带宽拓宽 增益提升 带内/带外RCS减缩 设计复杂度
    [23] 辐射→低散射 加载超表面 仅带外
    [32] 辐射→低散射 加载超表面 带内+带外
    [28] 辐射散射一体 激励超表面 带内
    [30] 辐射散射一体 激励超表面 带内+带外
    [29] 低散射→辐射 激励超表面 带内+带外
    [31] 低散射→辐射 激励超表面 带内+带外
    本文 低散射→辐射 共享孔径 带内+带外
    下载: 导出CSV
  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Cui T 2017 J. Opt. 19 084004Google Scholar

    [3]

    Li T, Yang H H, Li Q, Zhu X W, Cao X Y, Gao J, Wu Z B 2019 IET Microwaves Antennas Propag. 13 185Google Scholar

    [4]

    Li T, Yang H H, Li Q, Tian J H, Gao K, Li S J, Cao X Y 2024 IEEE Antennas Wirel. Propag. Lett. 23 1206Google Scholar

    [5]

    Zhao B, Huang C, Yang J N, Song J K, Guan C L, Luo X G 2020 IEEE Antennas Wirel. Propag. Lett. 19 982Google Scholar

    [6]

    Dhumal A, Mahesh S B, Bhardwaj A, Saikia M, Malik S, Srivastava K V 2023 IEEE Trans. Electromagn. Compat. 65 96Google Scholar

    [7]

    Ghosh S, Ghosh J, Singh M S, Sarkhel A 2023 IEEE Trans. Circuits Syst. Express Briefs 70 76Google Scholar

    [8]

    Xi Y, Jiang W, Wei K, Hong T, Gong S X 2023 IEEE Trans. Antennas Propag. 71 422Google Scholar

    [9]

    Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar

    [10]

    Wang C, Li Y F, Feng M C, Wang J F, Ma H, Zhang J Q, Qu S B 2019 IEEE Trans. Antennas Propag. 67 6508Google Scholar

    [11]

    Huang C, Pan W B, Ma X L, Luo X G 2016 IEEE Antennas Wirel. Propag. Lett. 15 448Google Scholar

    [12]

    Chen K, Feng Y J, Monticone F, Zhao J M, Zhu B, Jiang T, Zhang L, Kim Y, Ding X M, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [13]

    Ha T D, Zhu L, AlSaab N, Chen P Y, Guo J L 2023 IEEE Trans. Antennas Propag. 71 67Google Scholar

    [14]

    Zhang T Z, Pang X Y, Zhang H, Zheng Q 2023 IEEE Antennas Wirel. Propag. Lett. 22 665Google Scholar

    [15]

    Li T, Yang H H, Li Q, Jidi L R, Cao X Y, Gao J 2021 IEEE Trans. Antennas Propag. 69 5325Google Scholar

    [16]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692Google Scholar

    [17]

    冯奎胜, 李娜, 杨欢欢 2021 物理学报 70 194101Google Scholar

    Feng K S, Li N, Yang H H 2021 Acta Phys. Sin. 70 194101Google Scholar

    [18]

    Liu T, Cao X Y, Gao J, Zheng Q Y, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar

    [19]

    Zhang Z C, Huang M, Chen Y K, Qu S W, Hu J, Yang S W 2020 IEEE Trans. Antennas Propag. 68 7927Google Scholar

    [20]

    Tan Y, Yuan N, Yang Y, Fu Y Q 2011 Electron Lett. 47 582Google Scholar

    [21]

    Zheng Y J, Gao J, Cao X Y, Yuan Z D, Yang H H 2015 IEEE Antennas Wirel. Propag. Lett. 14 1582Google Scholar

    [22]

    Liu Y, Liu Z S, Wang Q, Jia Y T 2021 IEEE Trans. Antennas Propag. 69 8955Google Scholar

    [23]

    Liu J, Li J Y, Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834Google Scholar

    [24]

    Yao W, Gao H T, Tian Y, Wu J, Guo L Y, Huang X J 2023 IEEE Trans. Antennas Propag. 71 5663Google Scholar

    [25]

    Liu Y, Jia Y T, Zhang W B, Li F 2020 IEEE Trans. Antennas Propag. 68 3644Google Scholar

    [26]

    Zhu L, Sun J W, Hao Z Y, Kuai X L, Zhang H H, Cao Q S 2023 IEEE Trans. Antennas Propag. 22 975Google Scholar

    [27]

    Guo Q X, Chen Q, Su J X, Li Z R 2024 IEEE Antennas Wirel. Propag. Lett. 23 768Google Scholar

    [28]

    Yang H H, Li T, Xu L M, Cao X Y, Jidi L R, Guo Z X, Li P, Gao J 2021 IEEE Trans. Antennas Propag. 69 1239Google Scholar

    [29]

    Yang H H, Li T, Jidi L R, Gao K, Li Q, Qiao J X, Li S J, Cao X Y, Cui T J 2023 IEEE Trans. Antennas Propag. 71 4075Google Scholar

    [30]

    Wang P F, Jia Y T, Hu W Y, Liu Y, Lei H Y, Sun H B, Cui T J 2023 IEEE Trans. Antennas Propag. 71 5626Google Scholar

    [31]

    Ren J Y, Jiang W, Gong S X 2018 IEEE Microwaves Antennas Propag. 12 1793Google Scholar

    [32]

    Jia Y T, Liu T, Zhang W B, Wang J, Liao G S 2018 IEEE Access 6 23561Google Scholar

  • [1] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [2] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211254
    [3] 冯奎胜, 李娜, 杨欢欢. 电磁超构表面与天线结构一体化的低RCS阵列. 物理学报, 2021, 70(19): 194101. doi: 10.7498/aps.70.20210746
    [4] 刘俊群. 天线方向系数的一类计算逼近方法. 物理学报, 2020, 69(2): 028401. doi: 10.7498/aps.69.20191268
    [5] 郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪. 一种复合型极化转换表面及其在天线辐射散射调控中的应用. 物理学报, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [6] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计. 物理学报, 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [7] 平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华. 螺旋波等离子体原型实验装置中天线的优化设计与功率沉积. 物理学报, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [8] 陈巍, 高军, 张广, 曹祥玉, 杨欢欢, 郑月军. 一种编码式宽带多功能反射屏. 物理学报, 2017, 66(6): 064203. doi: 10.7498/aps.66.064203
    [9] 李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超. 基于宽带吸波体的微带天线雷达散射截面缩减设计. 物理学报, 2015, 64(8): 084101. doi: 10.7498/aps.64.084101
    [10] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [11] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [12] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [13] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏. 物理学报, 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [14] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [15] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [16] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [17] 杨勇, 孙伟强, 庄虔伟, 冯涛, 许胜勇, 解思深. 近场宽带电场耦合天线的高频结构模拟器软件仿真及性能分析. 物理学报, 2012, 61(20): 208401. doi: 10.7498/aps.61.208401
    [18] 郑奎松, 吴昌英, 万国宾, 韦高. 复合左右手技术的二元阵天线的计算及测量. 物理学报, 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [19] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
    [20] 唐志军, 何怡刚. 无源射频识别系统中的雷达截面分析与计算. 物理学报, 2009, 58(7): 5126-5132. doi: 10.7498/aps.58.5126
计量
  • 文章访问数:  474
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-20
  • 修回日期:  2024-04-15
  • 上网日期:  2024-04-24
  • 刊出日期:  2024-06-20

/

返回文章
返回