搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向高性能摩擦纳米发电机的电介质材料

邓浩程 李祎 田双双 张晓星 肖淞

引用本文:
Citation:

面向高性能摩擦纳米发电机的电介质材料

邓浩程, 李祎, 田双双, 张晓星, 肖淞

Dielectric materials for high-performance triboelectric nanogenerators

Deng Hao-Cheng, Li Yi, Tian Shuang-Shuang, Zhang Xiao-Xing, Xiao Song
PDF
HTML
导出引用
  • 摩擦纳米发电机(triboelectric nanogenerator, TENG)作为微纳电源或自取能传感器近年来在多领域表现出广阔的应用潜力. TENG的输出性能提升与作为摩擦起电层的电介质材料接触起电特性密切相关. 本文首先介绍了TENG及其电介质摩擦起电层的相关基础理论和模型; 其次, 阐述了TENG电介质材料的选材、改性(表面改性、体改性)和结构设计策略, 其中表面改性和体改性涉及表面粗糙度控制、官能团调控、电介质材料介电参数优化, 在电介质的结构设计方面, 重点介绍了电荷传输层、捕获层、阻挡层的原理及通过多层结构来提高TENG介电性能的典型方法; 最后, 强调了本领域发展面临的挑战和未来发展趋势, 为面向高性能TENG的纳米电介质材料开发提供参考.
    Triboelectric nanogenerator (TENG), as a micro-nano power source or self-powered sensor, has shown great prospects in various industries in recent years. The TENG output performance is closely related to the contact electrification characteristics of the triboelectric dielectric material. Herein, we first introduce the relevant fundamental theory and models of TENG and tribo-dielectrics. Then, we introduce the material selection, modification method (including surface modification and bulk modification) and structural design strategy of TENG dielectric material. Surface and bulk modification mainly involve surface roughness control, surface functional group regulation, and optimization of dielectric parameters. In terms of dielectric structural design, the principle of charge transport, trapping, and blocking layers as well as typical techniques to improve the dielectric properties of TENGs through multi-layer structures are highlighted. Finally, challenges and directions for future research are discussed, which is conducive to the fabricating of high-performance TENG dielectric materials.
      通信作者: 肖淞, xiaosong@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52207169)资助的课题.
      Corresponding author: Xiao Song, xiaosong@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52207169).
    [1]

    Fan F R, Tian Z Q, Lin Wang Z 2012 Nano Energy 1 328Google Scholar

    [2]

    Kim W G, Kim D W, Tcho I W, Kim J K, Kim M S, Choi Y K 2021 ACS Nano 15 258Google Scholar

    [3]

    Chang A, Uy C, Xiao X, Xiao X, Chen J 2022 Nano Energy 98 107282Google Scholar

    [4]

    Wang Z L 2021 Rep. Prog. Phys. 84 096502Google Scholar

    [5]

    Deng H C, Xiao S, Yang A J, Wu H Y, Tang J, Zhang X X, Li Y 2023 Nano Energy 115 108738Google Scholar

    [6]

    Fan Y Y, Zhang L, Li D C, Wang Z L 2023 Nano Energy 118 108959Google Scholar

    [7]

    Chen G, Wang J, Xu G Q, Fu J J, Gani A B, Dai J H, Guan D, Tu Y P, Li C Y, Zi Y L 2023 EcoMat 5 e12410Google Scholar

    [8]

    Liang Y, Xu X Y, Zhao L B, Lei C Y, Dai K J, Zhuo R, Fan B B, Cheng E, Hassan M A, Gao L X, Mu X J, Hu N, Zhang C 2023 Small 2308469Google Scholar

    [9]

    Zhou L L, Liu D, Wang J, Wang Z L 2020 Friction 8 481Google Scholar

    [10]

    Jiang F, Zhan L X, Lee J P, Lee P S 2023 Adv. Mater. 36 2308197

    [11]

    Liu Y H, Mo J L, Fu Q, Lu Y X, Zhang N, Wang S F, Nie S X 2020 Adv. Funct. Mater. 30 2004714Google Scholar

    [12]

    Tao X L, Chen X, Wang Z L 2023 Energy Environ. Sci. 16 3654Google Scholar

    [13]

    Ahn J, Zhao Z J, Choi J, Jeong Y, Hwang S, Ko J, Gu J, Jeon S, Park J, Kang M, Del Orbe D V, Cho I, Kang H, Bok M, Jeong J H, Park I 2021 Nano Energy 85 105978Google Scholar

    [14]

    Shin S H, Bae Y E, Moon H K, Kim J, Choi S H, Kim Y, Yoon H J, Lee M H, Nah J 2017 ACS Nano 11 6131Google Scholar

    [15]

    Bharti D K, Veeralingam S, Badhulika S 2022 Mater. Horiz. 9 663Google Scholar

    [16]

    Peng Z H, Xiao X, Song J X, Libanori A, Lee C, Chen K, Gao Y, Fang Y S, Wang J, Wang Z K, Chen J, Leung M K H 2022 ACS Nano 16 20251Google Scholar

    [17]

    Cui N Y, Liu J M, Lei Y M, Gu L, Xu Q, Liu S H, Qin Y 2018 ACS Appl. Energy Mater. 1 2891Google Scholar

    [18]

    Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [19]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339Google Scholar

    [20]

    Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M, Wang Z L 2013 Nano Lett. 13 2226Google Scholar

    [21]

    Mallineni S S K, Behlow H, Dong Y, Bhattacharya S, Rao A M, Podila R 2017 Nano Energy 35 263Google Scholar

    [22]

    Niu S, Wang Z L 2015 Nano Energy 14 161Google Scholar

    [23]

    Liu D, Zhou L L, Cui S N, Gao Y K, Li S X, Zhao Z H, Yi Z Y, Zou H Y, Fan Y J, Wang J, Wang Z L 2022 Nat. Commun. 13 6019Google Scholar

    [24]

    Wang H B, Huang S Y, Kuang H Z, Zhang C, Liu Y L, Zhang K H, Cai X Y, Wang X Z, Luo J K, Wang Z L 2023 Adv. Energy Mater. 13 2300529Google Scholar

    [25]

    Wang S J, Luo Z, Liang J J, Hu J, Jiang N S, He J L, Li Q 2022 ACS Nano 16 13612Google Scholar

    [26]

    Khandelwal G, Maria Joseph Raj N P, Kim S 2021 Adv. Energy Mater. 11 2101170Google Scholar

    [27]

    Wang Z L, Wang A C 2019 Mater. Today 30 34Google Scholar

    [28]

    Kim M P, Um D S, Shin Y E, Ko H 2021 Nanoscale Res. Lett. 16 35Google Scholar

    [29]

    Liu Z Q, Huang Y Z, Shi Y X, Tao X L, Yang P, Dong X Y, Hu J, Huang Z X, Chen X Y, Qu J P 2023 Adv. Funct. Mater. 33 2302164Google Scholar

    [30]

    Wang Z, Cheng L, Zheng Y B, Qin Y, Wang Z L 2014 Nano Energy 10 37Google Scholar

    [31]

    Wu H Y, He W C, Shan C C, Wang Z, Fu S K, Tang Q, Guo H Y, Du Y, Liu W L, Hu C G 2022 Adv. Mater. 34 2109918Google Scholar

    [32]

    Li X, Tung C H, Pey K L 2008 Appl. Phys. Lett. 93 072903Google Scholar

    [33]

    Baird M E 1975 Phys. Bull. 26 54Google Scholar

    [34]

    Wang C Y, Guo H Y, Wang P, Li J W, Sun Y H, Zhang D 2023 Adv. Mater. 35 2209895Google Scholar

    [35]

    Fradera X, Austen M A, Bader R F W 1999 J. Phys. Chem. A 103 304Google Scholar

    [36]

    Tanaka M, Sackmann E 2005 Nature 437 656Google Scholar

    [37]

    Feng H F, Li H Y, Xu J, Yin Y M, Cao J W, Yu R X, Wang B X, Li R W, Zhu G 2022 Nano Energy 98 107279Google Scholar

    [38]

    Muthu M, Pandey R, Wang X, Chandrasekhar A, Palani I A, Singh V 2020 Nano Energy 78 105205Google Scholar

    [39]

    Sun X, Liu Y J, Luo N, Liu Y, Feng Y G, Chen S G, Wang D A 2022 Nano Energy 102 107691Google Scholar

    [40]

    Li Y, Xiao S, Zhang X X, Jia P, Tian S S, Pan C, Zeng F P, Chen D C, Chen Y Y, Tang J, Xiong J Q 2022 Nano Energy 98 107347Google Scholar

    [41]

    Liu Z Q, Huang Y Z, Shi Y X, Tao X L, He H Z, Chen F D, Huang Z X, Wang Z L, Chen X Y, Qu J P 2022 Nat. Commun. 13 4083Google Scholar

    [42]

    Aazem I, Walden R, Babu A, Pillai S C 2022 Results in Engineering 16 100756Google Scholar

    [43]

    Mule A R, Dudem B, Yu J S 2018 Energy 165 677Google Scholar

    [44]

    Shrestha K, Sharma S, Pradhan G B, Bhatta T, Maharjan P, Rana S S, Lee S, Seonu S, Shin Y, Park J Y 2022 Adv. Funct. Mater. 32 2113005Google Scholar

    [45]

    Li Y, Xiao S, Luo Y, Tian S S, Tang J, Zhang X X, Xiong J Q 2022 Nano Energy 104 107884Google Scholar

    [46]

    Sun Y, Zheng Y D, Wang R, Lei T D, Liu J, Fan J, Shou W, Liu Y 2022 Nano Energy 100 107506Google Scholar

    [47]

    Xiong J Q, Luo H S, Gao D C, Zhou X R, Cui P, Thangavel G, Parida K, Lee P S 2019 Nano Energy 61 584Google Scholar

    [48]

    Li S Y, Nie J H, Shi Y X, Tao X L, Wang F, Tian J W, Lin S Q, Chen X Y, Wang Z L 2020 Adv. Mater. 32 2001307Google Scholar

    [49]

    Lin S Q, Zheng M L, Luo J J, Wang Z L 2020 ACS Nano 14 10733Google Scholar

    [50]

    Luo N, Feng Y G, Li X J, Sun W X, Wang D A, Ye Q, Sun X J, Zhou F, Liu W M 2021 ACS Appl. Mater. Interfaces 13 15344Google Scholar

    [51]

    Liu Y H, Fu Q, Mo J L, Lu Y X, Cai C C, Luo B, Nie S X 2021 Nano Energy 89 106369Google Scholar

    [52]

    Ryu H, Lee J, Kim T, Khan U, Lee J H, Kwak S S, Yoon H, Kim S 2017 Adv. Energy Mater. 7 1700289Google Scholar

    [53]

    Sundriyal P, Pandey M, Bhattacharya S 2020 Int. J. Adhes. Adhes. 101 102626Google Scholar

    [54]

    Zhang Q, Jiang C M, Li X J, Dai S F, Ying Y B, Ping J F 2021 ACS Nano 15 12314Google Scholar

    [55]

    Kim W, Okada T, Park H W, Kim J, Kim S, Kim S W, Samukawa S, Choi D 2019 J. Mater. Chem. A 7 25066Google Scholar

    [56]

    Li L Z, Wang X L, Hu Y Q, Li Z H, Wang C F, Zhao Z R 2022 Adv. Funct. Mater. 32 2109949Google Scholar

    [57]

    Yu S Y, Tai Y Y, Milam-Guerrero J, Nam J, Myung N V 2022 Nano Energy 97 107174Google Scholar

    [58]

    Li L Z, Wang X L, Hu Y Q, Li Z H, Zhao Z R, Zheng G 2023 Nano Energy 115 108724Google Scholar

    [59]

    Xi B B, Wang L L, Yang B, Xia Y F, Chen D L, Wang X 2023 Nano Energy 110 108385Google Scholar

    [60]

    Min G, Pullanchiyodan A, Dahiya A S, Hosseini E S, Xu Y, Mulvihill D M, Dahiya R 2021 Nano Energy 90 106600Google Scholar

    [61]

    Shi L, Jin H, Dong S R, Huang S Y, Kuang H Z, Xu H S, Chen J, K Xuan W P, Zhang S M, Li S J, Wang X Z, Luo J K 2021 Nano Energy 80 105599Google Scholar

    [62]

    Tang Y, Xu B G, Gao Y Y, Li Z H, Tan D, Li M Q, Liu Y F, Huang J X 2022 Nano Energy 103 107833Google Scholar

    [63]

    Sun Q Z, Ren G Z, He S H, Tang B, Li Y J, Wei Y W, Shi X W, Tan S X, Yan R, Wang K L, Yu L Y Z, Wang J J, Gao K, Zhu C C, Song Y X, Gong Z Y, Lu G, Huang W, Yu H D 2023 Adv. Mater. 36 2307918

    [64]

    Salauddin Md, Rana S M S, Sharifuzzaman Md, Song H S, Reza Md S, Jeong S H, Park J Y 2023 Adv. Energy Mater. 13 2203812Google Scholar

    [65]

    Cao V A, Kim M, Lee S, Van P C, Jeong J R, Park P, Nah J 2023 Nano Energy 107 108128Google Scholar

    [66]

    Bhatta T, Maharjan P, Cho H, Park C, Yoon S H, Sharma S, Salauddin M, Rahman M T, Rana S S, Park J Y 2021 Nano Energy 81 105670Google Scholar

    [67]

    Suo X, Li B, Ji H F, Mei S L, Miao S, Gu M W, Yang Y Z, Jiang D S, Cui S J, Chen L G, Chen G Y, Wen Z, Huang H B 2023 Nano Energy 114 108651Google Scholar

    [68]

    Zhong J X, Hou X J, He J, Xue F, Yang Y, Chen L, Yu J B, Mu J L, Geng W P, Chou X J 2022 Nano Energy 98 107289Google Scholar

    [69]

    Rahman M T, Rana S S, Zahed M A, Lee S, Yoon E S, Park J Y 2022 Nano Energy 94 106921Google Scholar

    [70]

    Chen Z, Cao Y, Yang W, An L, Fan H, Guo Y 2022 J. Mater. Chem. A 10 799Google Scholar

    [71]

    Li W J, Lu L Q, Yan F, Palasantzas G, Loos K, Pei Y T 2023 Nano Energy 114 108629Google Scholar

    [72]

    Jiang F, Zhou X R, Lü J, Chen J, Chen J T, Kongcharoen H, Zhang Y H, Lee P S 2022 Adv. Mater. 34 2200042Google Scholar

    [73]

    Ghosh S K, Kim J, Kim M P, Na S, Cho J, Kim J J, Ko H 2022 ACS Nano 16 11415Google Scholar

    [74]

    Zhou W Y, Li T, Yuan M X, Li B, Zhong S L, Li Z, Liu X R, Zhou J J, Wang Y, Cai H W, Dang Z M 2021 ESM 42 1

    [75]

    Yao L M, Pan Z B, Liu S H, Zhai J W, Chen H H D 2016 ACS Appl. Mater. Interfaces 8 26343Google Scholar

    [76]

    Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [77]

    Jiang J Y, Shen Z H, Cai X K, Qian J F, Dan Z K, Lin Y H, Liu B L, Nan C W, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411Google Scholar

    [78]

    Xie X K, Chen X P, Zhao C, Liu Y N, Sun X H, Zhao C Z, Wen Z 2021 Nano Energy 79 105439Google Scholar

    [79]

    Pérez A T, Castellanos A 1989 Phys. Rev. A 40 5844Google Scholar

    [80]

    Shi K, Chai B, Zou H, Min D, Li S, Jiang P, Huang X 2022 Research 2022 2022/9862980Google Scholar

    [81]

    Cui N Y, Gu L, Lei Y M, Liu J M, Qin Y, Ma X H, Hao Y, Wang Z L 2016 ACS Nano 10 6131Google Scholar

    [82]

    Feng Y G, Zheng Y B, Zhang G, Wang D A, Zhou F, Liu W M 2017 Nano Energy 38 467Google Scholar

    [83]

    Li Z L, Zhu M M, Qiu Q, Yu J Y, Ding B 2018 Nano Energy 53 726Google Scholar

    [84]

    Park H W, Huynh N D, Kim W, Lee C, Nam Y, Lee S, Chung K B, Choi D 2018 Nano Energy 50 9Google Scholar

    [85]

    Salauddin M, Rana S S, Sharifuzzaman M, Lee S H, Zahed M A, Do Shin Y, Seonu S, Song H S, Bhatta T, Park J Y 2022 Nano Energy 100 107462Google Scholar

    [86]

    Jiang H X, Lei H, Wen Z, Shi J H, Bao D Q, Chen C, Jiang J X, Guan Q B, Sun X H, Lee S T 2020 Nano Energy 75 105011Google Scholar

    [87]

    Lü S S, Zhang X, Huang T, Yu H, Zhang Q H, Zhu M F 2021 ACS Appl. Mater. Interfaces 13 2566Google Scholar

    [88]

    Xie X, Fang Y, Lu C, Tao Y, Yin L, Zhang Y, Wang Z, Wang S, Zhao J, Tu X, Sun X, Lim E G, Zhao C, Liu Y, Wen Z 2023 Chem. Eng. J. 452 139469Google Scholar

    [89]

    Feng M J, Feng Y, Zhang T D, Li J L, Chen Q G, Chi Q G, Lei Q Q 2021 Adv. Sci. 8 2102221Google Scholar

    [90]

    Kim M P, Lee G, Noh B, Kim J, Kwak M S, Lee K J, Ko H 2024 Nano Energy 119 109087Google Scholar

    [91]

    Park Y, Shin Y E, Park J, Lee Y, Kim M P, Kim Y R, Na S, Ghosh S K, Ko H 2020 ACS Nano 14 7101Google Scholar

    [92]

    Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292Google Scholar

    [93]

    Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar

    [94]

    Wang Y F, Wang L X, Yuan Q B, Niu Y J, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar

  • 图 1  高性能摩擦纳米发电机的电介质材料改性与设计策略[13-18]

    Fig. 1.  Schematic diagram of dielectric modification and design strategies for high-performance triboelectric nanogenerator[13-18].

    图 2  (a) CS-TENG的理论模型[22], 电介质-电介质型(i)和导体-电介质型(ii); (b) 纳米电介质的界面模型[25]

    Fig. 2.  (a) Theoretical models for CS-TENG[22], dielectric-to-dielectric mode (i), and conductor-to-dielectric mode (ii); (b) interface model of nanodielectrics[25].

    图 3  表面粗糙度控制策略 (a) 表面改性机制[41]; (b) 表面图案化[13]; (c) 砂纸模版法[44]; (d) 静电纺丝ZnO/PAN纤维膜[46]; (e) 静电纺丝SMPU纤维膜[47]

    Fig. 3.  Surface roughness control strategy: (a) Surface modification mechanism[41]; (b) surface patterning[13]; (c) sandpaper template method[44]; (d) electrospun ZnO/PAN fiber membrane[46]; (e) electrospun SMPU fiber membrane[47].

    图 4  表面官能团修饰策略 (a) 原子层面修饰[14]; (b) 纤维素分子修饰[51]; (c) 离子改性[52]; (d) 等离子体处理[54]; (e) 中性束处理[55]

    Fig. 4.  Surface functional group modification strategy: (a) Atomic level modification[14]; (b) cellulose molecule modification[51]; (c) ion modification[52]; (d) plasma treatment[54]; (e) neutral beam treatment[55].

    图 5  提高相对介电常数的策略 (a) 极性相诱导示意图[57]; (b) Bi2WO6:PVDF-TrFE纳米纤维膜[15]; (c) 微电容器模型示意图[67]; (d) Co-NPC/PVDF介质形成的微电容器[69]; (e) MOF纳米片/丝素蛋白复合膜[70]; (f) Cs3Bi2Br9/PVDF-HFP纳米纤维膜[72]

    Fig. 5.  Strategies for improving relative permittivity: (a) Schematic diagram of polar phase induction[57]; (b) Bi2WO6:PVDF-TrFE nanofiber membrane[15]; (c) schematic diagram of the microcapacitor model[67]; (d) microcapacitor formed by Co-NPC/PVDF dielectric[69]; (e) MOF nanoflakes/silk fibroin composite membrane[70]; (f) Cs3Bi2Br9/PVDF-HFP nanofiber membrane[72].

    图 6  抑制相对介电损耗、提高介电强度的策略 (a) Ag@C纳米颗粒掺入PDMS基质[16]; (b) Al@Al2O3纳米颗粒掺入PVDF基质[74]; (c) Ba(Zr0.21Ti0.79)O3和BNNS共同掺入PVDF基质[76]; (d) TiO2纳米棒阵列掺入PVDF基质[75]

    Fig. 6.  Strategies to suppress relative dielectric loss and improve dielectric strength (a) Ag@C nanoparticles incorporated into PDMS matrix[16]; (b) Al@Al2O3 nanoparticles incorporated into PVDF matrix[74]; (c) Ba(Zr0.21Ti0.79)O3 and BNNS incorporated into PVDF matrix[76]; (d) TiO2 nanorod array incorporated into PVDF matrix[75].

    图 7  电荷传输层、储存层、阻挡层 (a) rGO-AgNPs充当电荷捕获层[86]; (b) 摩擦电介质体积电导率对电荷捕获的影响[87]; (c) PVA-PVA/CNT-PS充当电荷收集层、传输层和储存层[17]; (d) TiOx充当电荷阻挡层[84]

    Fig. 7.  Charge transport-storage-blocking layer: (a) rGO-AgNPs functioning as charge trapping layer[86]; (b) effect of tribo-layer volume conductivity on charge trapping[87]; (c) PVA-PVA/CNT-PS functioning as charge transport, transfer, and storage layer[17]; (d) TiOx functioning as charge blocking layer[84].

    图 8  多层电介质结构设计 (a) Maxwell-Sillar-Wagner模型[90]; (b) 铁电多层纳米复合电介质[91]; (c) PVDF/BNNS-PVDF/BST-PVDF/BNNS三层结构电介质[92]; (d) 梯度浓度的PVDF/BaTiO3三层结构电介质[94]

    Fig. 8.  Multilayered dielectric structure design: (a) Maxwell-Sillar-Wagner model[90]; (b) ferroelectric multilayer nanocomposite dielectric[91]; (c) PVDF/BNNS-PVDF/BST-PVDF/BNNS three-layer structure dielectric[92]; (d) PVDF/BaTiO3 three-layer structure dielectric with gradient concentration[94].

  • [1]

    Fan F R, Tian Z Q, Lin Wang Z 2012 Nano Energy 1 328Google Scholar

    [2]

    Kim W G, Kim D W, Tcho I W, Kim J K, Kim M S, Choi Y K 2021 ACS Nano 15 258Google Scholar

    [3]

    Chang A, Uy C, Xiao X, Xiao X, Chen J 2022 Nano Energy 98 107282Google Scholar

    [4]

    Wang Z L 2021 Rep. Prog. Phys. 84 096502Google Scholar

    [5]

    Deng H C, Xiao S, Yang A J, Wu H Y, Tang J, Zhang X X, Li Y 2023 Nano Energy 115 108738Google Scholar

    [6]

    Fan Y Y, Zhang L, Li D C, Wang Z L 2023 Nano Energy 118 108959Google Scholar

    [7]

    Chen G, Wang J, Xu G Q, Fu J J, Gani A B, Dai J H, Guan D, Tu Y P, Li C Y, Zi Y L 2023 EcoMat 5 e12410Google Scholar

    [8]

    Liang Y, Xu X Y, Zhao L B, Lei C Y, Dai K J, Zhuo R, Fan B B, Cheng E, Hassan M A, Gao L X, Mu X J, Hu N, Zhang C 2023 Small 2308469Google Scholar

    [9]

    Zhou L L, Liu D, Wang J, Wang Z L 2020 Friction 8 481Google Scholar

    [10]

    Jiang F, Zhan L X, Lee J P, Lee P S 2023 Adv. Mater. 36 2308197

    [11]

    Liu Y H, Mo J L, Fu Q, Lu Y X, Zhang N, Wang S F, Nie S X 2020 Adv. Funct. Mater. 30 2004714Google Scholar

    [12]

    Tao X L, Chen X, Wang Z L 2023 Energy Environ. Sci. 16 3654Google Scholar

    [13]

    Ahn J, Zhao Z J, Choi J, Jeong Y, Hwang S, Ko J, Gu J, Jeon S, Park J, Kang M, Del Orbe D V, Cho I, Kang H, Bok M, Jeong J H, Park I 2021 Nano Energy 85 105978Google Scholar

    [14]

    Shin S H, Bae Y E, Moon H K, Kim J, Choi S H, Kim Y, Yoon H J, Lee M H, Nah J 2017 ACS Nano 11 6131Google Scholar

    [15]

    Bharti D K, Veeralingam S, Badhulika S 2022 Mater. Horiz. 9 663Google Scholar

    [16]

    Peng Z H, Xiao X, Song J X, Libanori A, Lee C, Chen K, Gao Y, Fang Y S, Wang J, Wang Z K, Chen J, Leung M K H 2022 ACS Nano 16 20251Google Scholar

    [17]

    Cui N Y, Liu J M, Lei Y M, Gu L, Xu Q, Liu S H, Qin Y 2018 ACS Appl. Energy Mater. 1 2891Google Scholar

    [18]

    Jiang J Y, Shen Z H, Qian J F, Dan Z K, Guo M F, He Y, Lin Y H, Nan C W, Chen L Q, Shen Y 2019 Nano Energy 62 220Google Scholar

    [19]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339Google Scholar

    [20]

    Wang S H, Lin L, Xie Y N, Jing Q S, Niu S M, Wang Z L 2013 Nano Lett. 13 2226Google Scholar

    [21]

    Mallineni S S K, Behlow H, Dong Y, Bhattacharya S, Rao A M, Podila R 2017 Nano Energy 35 263Google Scholar

    [22]

    Niu S, Wang Z L 2015 Nano Energy 14 161Google Scholar

    [23]

    Liu D, Zhou L L, Cui S N, Gao Y K, Li S X, Zhao Z H, Yi Z Y, Zou H Y, Fan Y J, Wang J, Wang Z L 2022 Nat. Commun. 13 6019Google Scholar

    [24]

    Wang H B, Huang S Y, Kuang H Z, Zhang C, Liu Y L, Zhang K H, Cai X Y, Wang X Z, Luo J K, Wang Z L 2023 Adv. Energy Mater. 13 2300529Google Scholar

    [25]

    Wang S J, Luo Z, Liang J J, Hu J, Jiang N S, He J L, Li Q 2022 ACS Nano 16 13612Google Scholar

    [26]

    Khandelwal G, Maria Joseph Raj N P, Kim S 2021 Adv. Energy Mater. 11 2101170Google Scholar

    [27]

    Wang Z L, Wang A C 2019 Mater. Today 30 34Google Scholar

    [28]

    Kim M P, Um D S, Shin Y E, Ko H 2021 Nanoscale Res. Lett. 16 35Google Scholar

    [29]

    Liu Z Q, Huang Y Z, Shi Y X, Tao X L, Yang P, Dong X Y, Hu J, Huang Z X, Chen X Y, Qu J P 2023 Adv. Funct. Mater. 33 2302164Google Scholar

    [30]

    Wang Z, Cheng L, Zheng Y B, Qin Y, Wang Z L 2014 Nano Energy 10 37Google Scholar

    [31]

    Wu H Y, He W C, Shan C C, Wang Z, Fu S K, Tang Q, Guo H Y, Du Y, Liu W L, Hu C G 2022 Adv. Mater. 34 2109918Google Scholar

    [32]

    Li X, Tung C H, Pey K L 2008 Appl. Phys. Lett. 93 072903Google Scholar

    [33]

    Baird M E 1975 Phys. Bull. 26 54Google Scholar

    [34]

    Wang C Y, Guo H Y, Wang P, Li J W, Sun Y H, Zhang D 2023 Adv. Mater. 35 2209895Google Scholar

    [35]

    Fradera X, Austen M A, Bader R F W 1999 J. Phys. Chem. A 103 304Google Scholar

    [36]

    Tanaka M, Sackmann E 2005 Nature 437 656Google Scholar

    [37]

    Feng H F, Li H Y, Xu J, Yin Y M, Cao J W, Yu R X, Wang B X, Li R W, Zhu G 2022 Nano Energy 98 107279Google Scholar

    [38]

    Muthu M, Pandey R, Wang X, Chandrasekhar A, Palani I A, Singh V 2020 Nano Energy 78 105205Google Scholar

    [39]

    Sun X, Liu Y J, Luo N, Liu Y, Feng Y G, Chen S G, Wang D A 2022 Nano Energy 102 107691Google Scholar

    [40]

    Li Y, Xiao S, Zhang X X, Jia P, Tian S S, Pan C, Zeng F P, Chen D C, Chen Y Y, Tang J, Xiong J Q 2022 Nano Energy 98 107347Google Scholar

    [41]

    Liu Z Q, Huang Y Z, Shi Y X, Tao X L, He H Z, Chen F D, Huang Z X, Wang Z L, Chen X Y, Qu J P 2022 Nat. Commun. 13 4083Google Scholar

    [42]

    Aazem I, Walden R, Babu A, Pillai S C 2022 Results in Engineering 16 100756Google Scholar

    [43]

    Mule A R, Dudem B, Yu J S 2018 Energy 165 677Google Scholar

    [44]

    Shrestha K, Sharma S, Pradhan G B, Bhatta T, Maharjan P, Rana S S, Lee S, Seonu S, Shin Y, Park J Y 2022 Adv. Funct. Mater. 32 2113005Google Scholar

    [45]

    Li Y, Xiao S, Luo Y, Tian S S, Tang J, Zhang X X, Xiong J Q 2022 Nano Energy 104 107884Google Scholar

    [46]

    Sun Y, Zheng Y D, Wang R, Lei T D, Liu J, Fan J, Shou W, Liu Y 2022 Nano Energy 100 107506Google Scholar

    [47]

    Xiong J Q, Luo H S, Gao D C, Zhou X R, Cui P, Thangavel G, Parida K, Lee P S 2019 Nano Energy 61 584Google Scholar

    [48]

    Li S Y, Nie J H, Shi Y X, Tao X L, Wang F, Tian J W, Lin S Q, Chen X Y, Wang Z L 2020 Adv. Mater. 32 2001307Google Scholar

    [49]

    Lin S Q, Zheng M L, Luo J J, Wang Z L 2020 ACS Nano 14 10733Google Scholar

    [50]

    Luo N, Feng Y G, Li X J, Sun W X, Wang D A, Ye Q, Sun X J, Zhou F, Liu W M 2021 ACS Appl. Mater. Interfaces 13 15344Google Scholar

    [51]

    Liu Y H, Fu Q, Mo J L, Lu Y X, Cai C C, Luo B, Nie S X 2021 Nano Energy 89 106369Google Scholar

    [52]

    Ryu H, Lee J, Kim T, Khan U, Lee J H, Kwak S S, Yoon H, Kim S 2017 Adv. Energy Mater. 7 1700289Google Scholar

    [53]

    Sundriyal P, Pandey M, Bhattacharya S 2020 Int. J. Adhes. Adhes. 101 102626Google Scholar

    [54]

    Zhang Q, Jiang C M, Li X J, Dai S F, Ying Y B, Ping J F 2021 ACS Nano 15 12314Google Scholar

    [55]

    Kim W, Okada T, Park H W, Kim J, Kim S, Kim S W, Samukawa S, Choi D 2019 J. Mater. Chem. A 7 25066Google Scholar

    [56]

    Li L Z, Wang X L, Hu Y Q, Li Z H, Wang C F, Zhao Z R 2022 Adv. Funct. Mater. 32 2109949Google Scholar

    [57]

    Yu S Y, Tai Y Y, Milam-Guerrero J, Nam J, Myung N V 2022 Nano Energy 97 107174Google Scholar

    [58]

    Li L Z, Wang X L, Hu Y Q, Li Z H, Zhao Z R, Zheng G 2023 Nano Energy 115 108724Google Scholar

    [59]

    Xi B B, Wang L L, Yang B, Xia Y F, Chen D L, Wang X 2023 Nano Energy 110 108385Google Scholar

    [60]

    Min G, Pullanchiyodan A, Dahiya A S, Hosseini E S, Xu Y, Mulvihill D M, Dahiya R 2021 Nano Energy 90 106600Google Scholar

    [61]

    Shi L, Jin H, Dong S R, Huang S Y, Kuang H Z, Xu H S, Chen J, K Xuan W P, Zhang S M, Li S J, Wang X Z, Luo J K 2021 Nano Energy 80 105599Google Scholar

    [62]

    Tang Y, Xu B G, Gao Y Y, Li Z H, Tan D, Li M Q, Liu Y F, Huang J X 2022 Nano Energy 103 107833Google Scholar

    [63]

    Sun Q Z, Ren G Z, He S H, Tang B, Li Y J, Wei Y W, Shi X W, Tan S X, Yan R, Wang K L, Yu L Y Z, Wang J J, Gao K, Zhu C C, Song Y X, Gong Z Y, Lu G, Huang W, Yu H D 2023 Adv. Mater. 36 2307918

    [64]

    Salauddin Md, Rana S M S, Sharifuzzaman Md, Song H S, Reza Md S, Jeong S H, Park J Y 2023 Adv. Energy Mater. 13 2203812Google Scholar

    [65]

    Cao V A, Kim M, Lee S, Van P C, Jeong J R, Park P, Nah J 2023 Nano Energy 107 108128Google Scholar

    [66]

    Bhatta T, Maharjan P, Cho H, Park C, Yoon S H, Sharma S, Salauddin M, Rahman M T, Rana S S, Park J Y 2021 Nano Energy 81 105670Google Scholar

    [67]

    Suo X, Li B, Ji H F, Mei S L, Miao S, Gu M W, Yang Y Z, Jiang D S, Cui S J, Chen L G, Chen G Y, Wen Z, Huang H B 2023 Nano Energy 114 108651Google Scholar

    [68]

    Zhong J X, Hou X J, He J, Xue F, Yang Y, Chen L, Yu J B, Mu J L, Geng W P, Chou X J 2022 Nano Energy 98 107289Google Scholar

    [69]

    Rahman M T, Rana S S, Zahed M A, Lee S, Yoon E S, Park J Y 2022 Nano Energy 94 106921Google Scholar

    [70]

    Chen Z, Cao Y, Yang W, An L, Fan H, Guo Y 2022 J. Mater. Chem. A 10 799Google Scholar

    [71]

    Li W J, Lu L Q, Yan F, Palasantzas G, Loos K, Pei Y T 2023 Nano Energy 114 108629Google Scholar

    [72]

    Jiang F, Zhou X R, Lü J, Chen J, Chen J T, Kongcharoen H, Zhang Y H, Lee P S 2022 Adv. Mater. 34 2200042Google Scholar

    [73]

    Ghosh S K, Kim J, Kim M P, Na S, Cho J, Kim J J, Ko H 2022 ACS Nano 16 11415Google Scholar

    [74]

    Zhou W Y, Li T, Yuan M X, Li B, Zhong S L, Li Z, Liu X R, Zhou J J, Wang Y, Cai H W, Dang Z M 2021 ESM 42 1

    [75]

    Yao L M, Pan Z B, Liu S H, Zhai J W, Chen H H D 2016 ACS Appl. Mater. Interfaces 8 26343Google Scholar

    [76]

    Luo S B, Yu J Y, Yu S H, Sun R, Cao L Q, Liao W H, Wong C P 2019 Adv. Energy Mater. 9 1803204Google Scholar

    [77]

    Jiang J Y, Shen Z H, Cai X K, Qian J F, Dan Z K, Lin Y H, Liu B L, Nan C W, Chen L Q, Shen Y 2019 Adv. Energy Mater. 9 1803411Google Scholar

    [78]

    Xie X K, Chen X P, Zhao C, Liu Y N, Sun X H, Zhao C Z, Wen Z 2021 Nano Energy 79 105439Google Scholar

    [79]

    Pérez A T, Castellanos A 1989 Phys. Rev. A 40 5844Google Scholar

    [80]

    Shi K, Chai B, Zou H, Min D, Li S, Jiang P, Huang X 2022 Research 2022 2022/9862980Google Scholar

    [81]

    Cui N Y, Gu L, Lei Y M, Liu J M, Qin Y, Ma X H, Hao Y, Wang Z L 2016 ACS Nano 10 6131Google Scholar

    [82]

    Feng Y G, Zheng Y B, Zhang G, Wang D A, Zhou F, Liu W M 2017 Nano Energy 38 467Google Scholar

    [83]

    Li Z L, Zhu M M, Qiu Q, Yu J Y, Ding B 2018 Nano Energy 53 726Google Scholar

    [84]

    Park H W, Huynh N D, Kim W, Lee C, Nam Y, Lee S, Chung K B, Choi D 2018 Nano Energy 50 9Google Scholar

    [85]

    Salauddin M, Rana S S, Sharifuzzaman M, Lee S H, Zahed M A, Do Shin Y, Seonu S, Song H S, Bhatta T, Park J Y 2022 Nano Energy 100 107462Google Scholar

    [86]

    Jiang H X, Lei H, Wen Z, Shi J H, Bao D Q, Chen C, Jiang J X, Guan Q B, Sun X H, Lee S T 2020 Nano Energy 75 105011Google Scholar

    [87]

    Lü S S, Zhang X, Huang T, Yu H, Zhang Q H, Zhu M F 2021 ACS Appl. Mater. Interfaces 13 2566Google Scholar

    [88]

    Xie X, Fang Y, Lu C, Tao Y, Yin L, Zhang Y, Wang Z, Wang S, Zhao J, Tu X, Sun X, Lim E G, Zhao C, Liu Y, Wen Z 2023 Chem. Eng. J. 452 139469Google Scholar

    [89]

    Feng M J, Feng Y, Zhang T D, Li J L, Chen Q G, Chi Q G, Lei Q Q 2021 Adv. Sci. 8 2102221Google Scholar

    [90]

    Kim M P, Lee G, Noh B, Kim J, Kwak M S, Lee K J, Ko H 2024 Nano Energy 119 109087Google Scholar

    [91]

    Park Y, Shin Y E, Park J, Lee Y, Kim M P, Kim Y R, Na S, Ghosh S K, Ko H 2020 ACS Nano 14 7101Google Scholar

    [92]

    Liu F H, Li Q, Cui J, Li Z Y, Yang G, Liu Y, Dong L J, Xiong C X, Wang H, Wang Q 2017 Adv. Funct. Mater. 27 1606292Google Scholar

    [93]

    Jiang Y D, Zhang X, Shen Z H, Li X H, Yan J J, Li B W, Nan C W 2020 Adv. Funct. Mater. 30 1906112Google Scholar

    [94]

    Wang Y F, Wang L X, Yuan Q B, Niu Y J, Chen J, Wang Q, Wang H 2017 J. Mater. Chem. A 5 10849Google Scholar

  • [1] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [2] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理. 物理学报, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] 宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生. 聚醚酰亚胺纳米复合电介质中指数分布陷阱电荷跳跃输运对储能性能的影响. 物理学报, 2024, 73(2): 027301. doi: 10.7498/aps.73.20230556
    [4] 蒋乐昕, 谢振龙, 郭泽虹, 丘伊宁, 陈溢杭. 基于准正则模式的全电介质超材料宽带反射器机理. 物理学报, 2023, 72(20): 204205. doi: 10.7498/aps.72.20230915
    [5] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展. 物理学报, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [6] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [7] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [8] 电介质材料和物理专题编者按. 物理学报, 2020, 69(12): 120101. doi: 10.7498/aps.69.120101
    [9] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强. 基于变化静电场的非接触式摩擦纳米发电机设计与研究. 物理学报, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [10] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [11] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [12] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [13] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [14] 于利刚, 李朝晖, 王仁乾, 马黎黎. 含玻璃微球的黏弹性复合材料覆盖层的水下吸声性能分析. 物理学报, 2013, 62(6): 064301. doi: 10.7498/aps.62.064301
    [15] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率. 物理学报, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [16] 李振武. 纳米CdS/碳纳米管复合材料的光电特性. 物理学报, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [17] 李东海, 陈发良. 超短脉冲激光在电介质材料中传输及破坏深度微观理论计算. 物理学报, 2011, 60(6): 067804. doi: 10.7498/aps.60.067804
    [18] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究. 物理学报, 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [19] 赵天恩, 伍瑞新, 杨 帆, 陈 平. 周期性层状铁氧体-电介质复合材料中导模模式的有效负折射率. 物理学报, 2006, 55(1): 179-183. doi: 10.7498/aps.55.179
    [20] 金建中. 用固体绝缘材料代替高压气体来绝缘静电发电机的建议. 物理学报, 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
计量
  • 文章访问数:  4969
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-21
  • 修回日期:  2024-03-05
  • 上网日期:  2024-03-28
  • 刊出日期:  2024-04-05

/

返回文章
返回