搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
引用本文:
Citation:

三轴形变核131Ba中的奇异集体激发模式

韦锐, 周厚兵, 王思成, 丁兵, 强赟华, 贾晨旭, 陈红星, 郭松, C.M.Petrache, D.Mengoni, A.Astier, E.Dupont, 吕冰锋, D.Bazzacco, A.Boso, A.Goasduff, F.Recchia, D.Testov, F.Galtarossa, G.Jaworski, D.R.Napoli, S.Riccetto, M.Siciliano, J.J.Valiente-Dobon, C.Andreoiu, F.H.Garcia, K.Ortner, K.Whitmore, A.Ataç-Nyberg, T.Bäck, B.Cederwall, E.A.Lawrie, I.Kuti, D.Sohler, T.Marchlewski, J.Srebrny, A.Tucholski

Exotic collective excitation patterns in triaxially deformed 131Ba

Wei Rui, Zhou Hou-Bing, Wang Si-Cheng, Ding Bing, Qiang Yun-Hua, Jia Chen-Xu, Chen Hong-Xing, Guo Song, C.M. Petrache, D. Mengoni, A. Astier, E. Dupont, Lü Bing-Feng, D. Bazzacco, A. Boso, A. Goasduff, F. Recchia, D. Testov, F. Galtarossa, G. Jaworski, D.R. Napoli, S. Riccetto, M. Siciliano, J.J. Valiente-Dobon, C. Andreoiu, F.H. Garcia, K. Ortner, K. Whitmore, A. Ataç-Nyberg, T. Bäck, B. Cederwall, E.A. Lawrie, I. Kuti, D. Sohler, T. Marchlewski, J. Srebrny, A. Tucholski
PDF
HTML
导出引用
  • 利用意大利Legnaro实验室串列静电加速器提供的65 MeV 13C束流与122Sn靶的熔合蒸发反应布居了131Ba的高自旋态, 并搭建了新的能级纲图. 新的能级纲图由15条转动带组成, 包括三对手征双重带, 其中两对正宇称手征带为赝自旋-手征四重带. 正负宇称手征带通过一系列增强的E1跃迁连接, 表明它们之间存在八极关联. 在低自旋区域搭建了一条新的转动带, 通过一系列γ跃迁向$ \nu h _{11/2} $晕带退激. 这种能级结构与摇摆带相似, 但基于现有的实验证据还难以将它确认为摇摆带, 不能排除其他集体激发机制, 如γ振动的影响.
    In the last two decades, several unique phenomena in triaxially deformed nuclei, such as chiral doublet bands and wobbling motion have been revealed. Up to now, there are still many open questions which require further experimental and theoretical studies. To explore the collective motion in 131Ba, an experiment was performed using the XTU Tandem accelerator in the Legnaro laboratory, Italy. High-spin states of 131Ba have been populated via the heavy-ion fusion-evaporation 122Sn(13C, 4n) reaction. γ-rays, charged particles and neutrons emitted from the residues were detected by the GALILEO array, EUCLIDES silicon ball, and the Neutron Wall, respectively. A total of 1.2$ \times $109 triple- or higher-fold events were collected by the GALILEO data acquisition system. The γ-γ-γ coincidence events were sorted into a three-dimensional histogram (cube) and the analysis was carried out with the RADWARE and GASPWARE software packages.Through analysis of the coincidences between γ-rays, the most comprehensive level schemes of 131Ba to date was deduced from the present work. The extended level-scheme consists of 15 rotational bands, and newly observed transitions are marked in red. Three nearly degenerate pairs of doublet bands (Band 3–8) are identified in 131Ba. Two pairs of chiral doublets (Band 3–6) with configuration $ {\textit{\pi}}h_{11/2}(g_{7/2},d_{5/2}){\otimes}{\nu}h_{11/2} $ are interpreted as a set of pseudospin-chiral quartet bands. The quartet bands are fed by another pair of chiral doublet bands (Band 7–8) built on a $ {\textit{\pi}}h^2_{11/2}{\otimes}{\nu}h_{11/2} $ configuration via a series of enhanced E1 transitions. We extracted the energy displacement δE and the B(E1)/B(E2) branching ratios between the positive-parity band 3 and the negative-parity band 7 in 131Ba and in comparison with those in 124Ba, 224Th, 133Ce and 135Nd. The energy displacement δE and the B(E1)/B(E2) branching ratios in 131Ba are comparable with those in 124Ba but deviate appreciably from those in 224Th which has been reported to have stable octupole deformation. The results indicate the existence of octupole correlations in 131Ba without stable octupole deformation. A new rotational band (Band 10) discovered in the low-spin region exhibits a level structure similar to a wobbling band. Assuming it as a wobbling band, the wobbling frequency was extracted and compared with other reported wobbling bands in the neighboring nuclei. The wobbling frequency of this band decreases with increasing angular momentum, and even exhibits negative value at the highest spin. Considering that the wobbling phonon should contribute a positive amount to the excitation energy, this band is unlikely to be explained by this mechanism. The band may originate from other collective excitation mechanisms such as γ vibration. The newly identified rotational band (Band 9) composed of M1 transitions is tentatively assigned as a magnetic rotational band through a systematic analysis of the level structure. Finally, the configurations of other 4 bands, Band 12-15, are also suggested based on previous researches and the extracted quasiparticle alignments.
      通信作者: 周厚兵, zhb@mailbox.gxnu.edu.cn ; 王思成, wangsicheng@impcas.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12365016)和广西自然科学基金(批准号: 2023GXNSFAA026016)资助的课题.
      Corresponding author: Zhou Hou-Bing, zhb@mailbox.gxnu.edu.cn ; Wang Si-Cheng, wangsicheng@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12365016) and the Natural Science Foundation of Guangxi, China (Grant No. 2023GXNSFAA026016).
    [1]

    Li H J, Xiao Z G, Zhu S J, Yeoh E Y, Liu Y X, Sun Y, Zhang Z, Wang R S, Yi H, Yan W H, Xu Q, Wu X G, He C Y, Zheng Y, Li G S, Li C B, Li H W, Liu J J, Hu S P, Wang J L, Yao S H 2013 Phys. Rev. C 87 057303Google Scholar

    [2]

    Ding B, Petrache C M, Guo S, Lawrie E A, Wakudyanaye I, Zhang Z H, Wang H L, Meng H Y, Mengoni D, Qiang Y H, Wang J G, Andreoiu C, Astier A, Avaa A, Bäck T, Bark R A, Bazzacco D, Boso A, Bucher T D, Cederwall B, Chisapi M V, Fan H L, Galtarossa F, Garcia F H, Goasduff A, Jaworski G, Jones P, Kuti I, Lawrie J J, Li G S, Li R, Liu M L, Liu Z, Lomberg B, Lv B F, Marchlewski T, Mdletshe L, Msebi L, Mthembu S H, Napoli D R, Netshiya A, Nkalanga M F, Orce J N, Ortner K, Recchia F, Riccetto S, Rohilla A, Seakamela T W, Siciliano M, Sithole M A, Sohler D, Srebrny J, Testov D, Tucholski A, Valiente-Dobón J J, Wentzel F, Whitmore K, Zhang Y H, Zheng K K, Zhou X H, Zikhali B R 2021 Phys. Rev. C 104 064304Google Scholar

    [3]

    Starosta K, Koike T, Chiara C J, Fossan D B, LaFosse D R, Hecht A A, Beausang C W, Caprio M A, Cooper J R, Krücken R, Novak J R, Zamfir N V, Zyromski K E, Hartley D J, Balabanski D L, Zhang J Y, Frauendorf S, Dimitrov V I 2001 Phys. Rev. Lett. 86 971Google Scholar

    [4]

    Jensen D R, Hagemann G B, Hamamoto I, Ødegård S W, Herskind B, Sletten G, Wilson J N, Spohr K, Hübel H, Bringel P, Neußer A, Schönwaßer G, Singh A K, Ma W C, Amro H, Bracco A, Leoni S, Benzoni G, Maj A, Petrache C M, Bianco G L, Bednarczyk P, Curien D 2002 Phys. Rev. Lett. 89 142503Google Scholar

    [5]

    Wyss R, Granderath A, Bengtsson R, Von Brentano P, Dewald A, Gelberg A, Gizon A, Gizon J, Harissopulos S, Johnson A, Lieberz W, Nazarewicz W, Nyberg J, Schiffer K 1989 Nucl. Phys. A 505 337Google Scholar

    [6]

    Sensharma N, Garg U, Chen Q B, Frauendorf S, Burdette D P, Cozzi J L, Howard K B, Zhu S, Carpenter M P, Copp P, Kondev F G, Lauritsen T, Li J, Seweryniak D, Wu J, Ayangeakaa A D, Hartley D J, Janssens R V F, Forney A M, Walters W B, Ghugre S S, Palit R 2020 Phys. Rev. Lett. 124 052501Google Scholar

    [7]

    Xiong B, Wang Y 2019 At. Data Nucl. Data Tables 125 193Google Scholar

    [8]

    Meng J, Peng J, Zhang S Q, Zhou S G 2006 Phys. Rev. C 73 037303Google Scholar

    [9]

    Ayangeakaa A D, Garg U, Anthony M D, Frauendorf S, Matta J T, Nayak B K, Patel D, Chen Q B, Zhang S Q, Zhao P W, Qi B, Meng J, Janssens R V F, Carpenter M P, Chiara C J, Kondev F G, Lauritsen T, Seweryniak D, Zhu S, Ghugre S S, Palit R 2013 Phys. Rev. Lett. 110 172504Google Scholar

    [10]

    Bohr A, Mottelson B R 1975 Nuclear Structure (Vol. Ⅱ) (New York: Benjamin

    [11]

    Matta J T, Garg U, Li W, Frauendorf S, Ayangeakaa A D, Patel D, Schlax K W, Palit R, Saha S, Sethi J, Trivedi T, Ghugre S S, Raut R, Sinha A K, Janssens R V F, Zhu S, Carpenter M P, Lauritsen T, Seweryniak D, Chiara C J, Kondev F G, Hartley D J, Petrache C M, Mukhopadhyay S, Lakshmi D V, Raju M K, Madhusudhana Rao P V, Tandel S K, Ray S, Dönau F 2015 Phys. Rev. Lett. 114 082501Google Scholar

    [12]

    Biswas S, Palit R, Frauendorf S, Garg U, Li W, Bhat G H, Sheikh J A, Sethi J, Saha S, Singh P, Choudhury D, Matta J T, Ayangeakaa A D, Dar W A, Singh V, Sihotra S 2019 Eur. Phys. J. A 55 159Google Scholar

    [13]

    Lv B F, Petrache C M, Budaca R, Astier A, Zheng K K, Greenlees P, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Saren J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Guo S, Wang J G, Ong H J, Zhou X H, Sun Z Y, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2022 Phys. Rev. C 105 034302Google Scholar

    [14]

    Rojeeta Devi K, Kumar S, Kumar N, Neelam, Babra F S, Laskar MdSR, Biswas S, Saha S, Singh P, Samanta S, Das S, Chakraborty S, Singh R P, Muralithar S, Kumar A 2021 Phys. Lett. B 823 136756Google Scholar

    [15]

    Chen Q B, Frauendorf S, Petrache C M 2019 Phys. Rev. C 100 061301Google Scholar

    [16]

    Guo R J, Wang S Y, Liu C, Bark R A, Meng J, Zhang S Q, Qi B, Rohilla A, Li Z H, Hua H, Chen Q B, Jia H, Lu X, Wang S, Sun D P, Han X C, Xu W Z, Wang E H, Bai H F, Li M, Jones P, Sharpey-Schafer J F, Wiedeking M, Shirinda O, Brits C P, Malatji K L, Dinoko T, Ndayishimye J, Mthembu S, Jongile S, Sowazi K, Kutlwano S, Bucher T D, Roux D G, Netshiya A A, Mdletshe L, Noncolela S, Mtshali W 2024 Phys. Rev. Lett. 132 092501Google Scholar

    [17]

    Butler P A, Nazarewicz W 1996 Rev. Mod. Phys 68 349Google Scholar

    [18]

    Butler P A, Gaffney L P, Spagnoletti P, Abrahams K, Bowry M, Cederkäll J, De Angelis G, De Witte H, Garrett P E, Goldkuhle A, Henrich C, Illana A, Johnston K, Joss D T, Keatings J M, Kelly N A, Komorowska M, Konki J, Kröll T, Lozano M, Nara Singh B S, O'Donnell D, Ojala J, Page R D, Pedersen L G, Raison C, Reiter P, Rodriguez J A, Rosiak D, Rothe S, Scheck M, Seidlitz M, Shneidman T M, Siebeck B, Sinclair J, Smith J F, Stryjczyk M, Van Duppen P, Vinals S, Virtanen V, Warr N, Wrzosek-Lipska K, Zielińska M 2020 Phys. Rev. Lett. 124 042503Google Scholar

    [19]

    Hensley T C, Cottle P D, Tripathi V, Abromeit B, Anastasiou M, Baby L T, Baron J S, Caussyn D, Dungan R, Kemper K W, Lubna R S, Miller S L, Rijal N, Riley M A, Tabor S L, Tai P L, Villafana K 2017 Phys. Rev. C 96 034325Google Scholar

    [20]

    Bucher B, Zhu S, Wu C Y, Janssens R V F, Cline D, Hayes A B, Albers M, Ayangeakaa A D, Butler P A, Campbell C M, Carpenter M P, Chiara C J, Clark J A, Crawford H L, Cromaz M, David H M, Dickerson C, Gregor E T, Harker J, Hoffman C R, Kay B P, Kondev F G, Korichi A, Lauritsen T, Macchiavelli A O, Pardo R C, Richard A, Riley M A, Savard G, Scheck M, Seweryniak D, Smith M K, Vondrasek R, Wiens A 2016 Phys. Rev. Lett. 116 112503Google Scholar

    [21]

    Bucher B, Zhu S, Wu C Y, Janssens R V F, Bernard R N, Robledo L M, Rodríguez T R, Cline D, Hayes A B, Ayangeakaa A D, Buckner M Q, Campbell C M, Carpenter M P, Clark J A, Crawford H L, David H M, Dickerson C, Harker J, Hoffman C R, Kay B P, Kondev F G, Lauritsen T, Macchiavelli A O, Pardo R C, Savard G, Seweryniak D, Vondrasek R 2017 Phys. Rev. Lett. 118 152504Google Scholar

    [22]

    Zhu S J, Sakhaee M, Yang L M, Gan C Y, Zhu L Y, Xu R Q, Jiang Z, Zhang Z, Long G L, Wen S X, Wu X G 2001 Chin. Phys. Lett. 18 1027Google Scholar

    [23]

    Chen X C, Zhao J, Xu C, Hua H, Shneidman T M, Zhou S G, Wu X G, Li X Q, Zhang S Q, Li Z H, Liang W Y, Meng J, Xu F R, Qi B, Ye Y L, Jiang D X, Cheng Y Y, He C, Sun J J, Han R, Niu C Y, Li C G, Li P J, Wang C G, Wu H Y, Li Z H, Zhou H, Hu S P, Zhang H Q, Li G S, He C Y, Zheng Y, Li C B, Li H W, Wu Y H, Luo P W, Zhong J 2016 Phys. Rev. C 94 021301Google Scholar

    [24]

    Mason P, Benzoni G, Bracco A, Camera F, Million B, Wieland O, Leoni S, Singh A K, Al-Khatib A, Hübel H, Bringel P, Bürger A, Neusser A, Schönwasser G, Nyakó B M, Timár J, Algora A, Dombrádi Zs, Gál J, Kalinka G, Molnár J, Sohler D, Zolnai L, Juhász K, Hagemann G B, Hansen C R, Herskind B, Sletten G, Kmiecik M, Maj A, Styczen J, Zuber K, Azaiez F, Hauschild K, Korichi A, Lopez-Martens A, Roccaz J, Siem S, Hannachi F, Scheurer J N, Bednarczyk P, Byrski Th, Curien D, Dorvaux O, Duchêne G, Gall B, Khalfallah F, Piqueras I, Robin J, Patel S B, Evans O A, Rainovski G, Petrache C M, Petrache D, Rana G L, Moro R, Angelis G D, Falon P, Lee I Y, Lisle J C, Cederwall B, Lagergen K, Lieder R M, Podsvirova E, Gast W, Jäger H, Redon N, Görgen A 2005 Phys. Rev. C 72 064315Google Scholar

    [25]

    Liu C, Wang S Y, Bark R A, Zhang S Q, Meng J, Qi B, Jones P, Wyngaardt S M, Zhao J, Xu C, Zhou S G, Wang S, Sun D P, Liu L, Li Z Q, Zhang N B, Jia H, Li X Q, Hua H, Chen Q B, Xiao Z G, Li H J, Zhu L H, Bucher T D, Dinoko T, Easton J, Juhász K, Kamblawe A, Khaleel E, Khumalo N, Lawrie E A, Lawrie J J, Majola S N T, Mullins S M, Murray S, Ndayishimye J, Negi D, Noncolela S P, Ntshangase S S, Nyakó B M, Orce J N, Papka P, Sharpey-Schafer J F, Shirinda O, Sithole P, Stankiewicz M A, Wiedeking M 2016 Phys. Rev. Lett. 116 112501Google Scholar

    [26]

    Xiao X, Wang S Y, Liu C, Bark R A, Meng J, Zhang S Q, Qi B, Hua H, Jones P, Wyngaardt S M, Wang S, Sun D P, Li Z Q, Zhang N B, Jia H, Guo R J, Han X C, Mu L, Lu X, Xu W Z, Niu C Y, Wang C G, Lawrie E A, Lawrie J J, Sharpey-Schafer J F, Wiedeking M, Majola S N T, Bucher T D, Dinoko T, Maqabuka B, Makhathini L, Mdletshe L, Khumalo N A, Shirinda O, Sowazi K 2022 Phys. Rev. C 106 064302Google Scholar

    [27]

    Horen D J, Kelly W H, Yaffe L 1963 Phys. Rev. 129 1712Google Scholar

    [28]

    von Ehrenstein D, Morrison G C, Nolen J A, Williams N 1970 Phys. Rev. C 1 2066Google Scholar

    [29]

    Gizon J, Gizon A, Horen D J 1975 Nucl. Phys. 252 509Google Scholar

    [30]

    Ma R, Liang Y, Paul E S, Xu N, Fossan D B, Hildingsson L, Wyss R A 1990 Phys. Rev. C 41 717

    [31]

    Kaur N, Kumar A, Mukherjee G, Singh A, Kumar S, Kaur R, Singh V, Behera B R, Singh K P, Singh G, Sharma H P, Kumar S, Kumar Raju M, Madhusudhan Rao P V, Muralithar S, Singh R P, Kumar R, Madhvan N, Bhowmik R K 2014 Eur. Phys. J. A 50 5Google Scholar

    [32]

    Guo S, Petrache C M, Mengoni D, Qiang Y H, Wang Y P, Wang Y Y, Meng J, Wang Y K, Zhang S Q, Zhao P W, Astier A, Wang J G, Fan H L, Dupont E, Lv B F, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Liu M L, Li G S, Zhou X H, Zhang Y H, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Ataç-Nyberg A, Bäck T, Cederwall B, Lawrie E A, Kuti I, Sohler D, Marchlewski T, Srebrny J, Tucholski A 2020 Phys. Lett. B 807 135572Google Scholar

    [33]

    Testov D, Mengoni D, Goasduff A, Gadea A, Isocrate R, John P R, De Angelis G, Bazzacco D, Boiano C, Boso A, Cocconi P, Dueñas J A, Egea Canet F J, Grassi L, Hadyńska-Klek K, Jaworski G, Lunardi S, Menegazzo R, Napoli D R, Recchia F, Siciliano M, Valiente-Dobón J J 2019 Eur. Phys. J. A 55 47Google Scholar

    [34]

    Ljungvall J, Palacz M, Nyberg J 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 528 741Google Scholar

    [35]

    Wang Y P, Wang Y Y, Meng J 2020 Phys. Rev. C 102 024313Google Scholar

    [36]

    Lv B F, Petrache C M, Chen Q B, Meng J, Astier A, Dupont E, Greenlees P, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Saren J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Guo S, Liu M L, Wang J G, Zhou X H, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2019 Phys. Rev. C 100 024314Google Scholar

    [37]

    Guo S, Petrache C M, Mengoni D, Liu Y X, Chen Q B, Qiang Y H, Astier A, Dupont E, Zheng K K, Wang J G, Ding B, Lv B F, Liu M L, Fang Y D, Zhou X H, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Cederwall B, Lawrie E A, Kuti I, Sohler D, Marchlewski T, Srebrny J, Tucholski A 2020 Phys. Rev. C 102 044320Google Scholar

    [38]

    Ackermann B, Baltzer H, Ensel C, Freitag K, Grafen V, Günther C, Herzog P, Manns J, Marten-Tölle M, Müller U, Prinz J, Romanski I, Tölle R, deBoer J, Gollwitzer N, Maier H 1993 Nucl. Phys. 559 61Google Scholar

    [39]

    Ayangeakaa A D, Garg U, Petrache C M, Guo S, Zhao P W, Matta J T, Nayak B K, Patel D, Janssens R V F, Carpenter M P, Chiara C J, Kondev F G, Lauritsen T, Seweryniak D, Zhu S, Ghugre S S, Palit R 2016 Phys. Rev. C 93 054317Google Scholar

    [40]

    Nazarewicz W, Olanders P 1985 Nucl. Phys. 441 420Google Scholar

    [41]

    Cottle P D 1990 Phys. Rev. C 41 517Google Scholar

    [42]

    Frauendorf S, Dönau F 2014 Phys. Rev. C 89 014322Google Scholar

    [43]

    Chakraborty S, Sharma H P, Tiwary S S, Majumder C, Gupta A K, Banerjee P, Ganguly S, Rai S, Pragati, Mayank, Kumar S, Kumar A, Palit R, Bhattacharjee S S, Singh R P, Muralithar S 2020 Phys. Lett. B 811 135854Google Scholar

    [44]

    Byrne A P, Schiffer K, Dracoulis G D, Fabricius B, Kibédi T, Stuchbery A E, Lieb K P 1992 Nucl. Phys. 548 131Google Scholar

    [45]

    Lawrie E A, Shirinda O, Petrache C M 2020 Phys. Rev. C 101 034306Google Scholar

    [46]

    Chen Q B, Frauendorf S 2022 Eur. Phys. J. A 58 75Google Scholar

    [47]

    Guo S, Zhou X H, Petrache C M, Lawrie E A, Mthembu S H, Fang Y D, Wu H Y, Wang H L, Meng H Y, Li G S, Qiang Y H, Wang J G, Liu M L, Zheng Y, Ding B, Zhang W Q, Rohilla A, Muhki K R, Yang Y Y, Ong H J, Ma J B, Xu S W, Bai Z, Fan H L, Huang J F, Li J H, Xu J H, Lv B F, Hua W, Gan Z G, Zhang Y H 2022 Phys. Lett. B 828 137010Google Scholar

    [48]

    Lv B F, Petrache C M, Lawrie E A, Guo S, Astier A, Zheng K K, Ong H J, Wang J G, Zhou X H, Sun Z Y, Greenlees P T, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Sarén J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2022 Phys. Lett. B 824 136840Google Scholar

    [49]

    Juutinen S, Törmänen S, Ahonen P, Carpenter M, Fahlander C, Gascon J, Julin R, Lampinen A, Lönnroth T, Nyberg J, Pakkanen A, Piiparinen M, Schiffer K, Šimeček P, Sletten G, Virtanen A 1995 Phys. Rev. C 52 2946Google Scholar

    [50]

    Hübel H, Baldsiefen G, Mehta D, Thirumala Rao B V, Birkental U, Fröhlingsdorf G, Neffgen M, Nenoff N, Pancholi S C, Singh N, Schmitz W, Theine K, Willsau P, Grawe H, Heese J, Kluge H, Maier K H, Schramm M, Schubart R, Maier H J 1992 Prog. Part. Nucl. Phys. 28 427Google Scholar

    [51]

    Clark R M, Wadsworth R, Paul E S, Beausang C W, Ali I, Astier A, Cullen D M, Dagnall P J, Fallon P, Joyce M J, Meyer M, Redon N, Regan P H, Nazarewicz W, Wyss R 1992 Phys. Lett. B 275 247Google Scholar

    [52]

    Baldsiefen G, Chmel S, Hübel H, Korten W, Neffgen M, Pohler W, Van Severen U J, Heese J, Kluge H, Maier K H, Spohr K 1995 Nucl. Phys. 587 562Google Scholar

    [53]

    Singh A K, Nenoff N, Roßbach D, Görgen A, Chmel S, Azaiez F, Astier A, Bazzacco D, Belleguic M, Bouneau S, Bourgeois C, Buforn N, Cederwall B, Deloncle I, Domscheit J, Hannachi F, Hauschild K, Hübel H, Korichi A, Korten W, Kröll T, LeCoz Y, Lopez-Martens A, Lucas R, Lunardi S, Maier H J, Mergel E, Meyer M, Petrache C M, Redon N, Reiter P, Rossi-Alvarez C, Schönwaßer G, Stezowski O, Thirolf P G, Wilson A N 2002 Nucl. Phys. 707 3Google Scholar

    [54]

    Görgen A, Nenoff N, Hübel H, Baldsiefen G, Becker J A, Byrne A P, Chmel S, Clark R M, Deleplanque M A, Diamond R M, Fallon P, Hauschild K, Hibbert I M, Korten W, Krücken R, Lee I Y, Macchiavelli A O, Paul E S, Van Severen U J, Stephens F S, Vetter K, Wadsworth R, Wilson A N, Wilson J N 2001 Nucl. Phys. 683 108Google Scholar

    [55]

    Frauendorf S 1993 Nucl. Phys. 2 259

    [56]

    He C Y, Li X Q, Zhu L H, Wu X G, Qi B, Liu Y, Pan B, Li G S, Li L H, Wang Z M, Li Z Y, Wang S Y, Xu Q, Wang J G, Ding H B, Zhai J 2011 Phys. Rev. C 83 024309Google Scholar

    [57]

    Li J, He C Y, Zheng Y, Li C B, Ma K Y, Lu J B 2013 Phys. Rev. C 88 014317Google Scholar

    [58]

    Yao S H, Ma H L, Zhu L H, Wu X G, He C Y, Zheng Y, Zhang B, Li G S, Li C B, Hu S P, Cao X P, Yu B B, Xu C, Cheng Y Y 2014 Phys. Rev. C 89 014327Google Scholar

    [59]

    Juutinen S, Šimeček P, Ahonen P, Carpenter M, Fahlander C, Gascon J, Julin R, Lampinen A, Lönnroth T, Nyberg J, Pakkanen A, Piiparinen M, Schiffer K, Sletten G, Törmänen S, Virtanen A 1995 Phys. Rev. C 51 1699Google Scholar

    [60]

    Petrache C M, Walker P M, Guo S, Chen Q B, Frauendorf S, Liu Y X, Wyss R A, Mengoni D, Qiang Y H, Astier A, Dupont E, Li R, Lv B F, Zheng K K, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Liu M L, Zhou X H, Wang J G, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Bäck T, Cederwall B, Lawrie E A, Kuti I, Sohler D, Timár J, Marchlewski T, Srebrny J, Tucholski A 2019 Phys. Lett. B 795 241Google Scholar

  • 图 1  131Ba中的部分能级纲图, 箭头宽度表示γ跃迁强度, 跃迁能量单位为keV, 本工作新发现的γ跃迁用红色表示

    Fig. 1.  Partial level schemes of 131Ba deduced from the present work. Transition energies are given in keV and their measured relative intensities are proportional to the widths of the arrows. Newly observed transitions are marked in red.

    图 2  典型的二重符合开门谱, 本工作新鉴别的γ跃迁用红色表示

    Fig. 2.  Typical double-gated coincidence spectra for the new structures in 131Ba. Newly observed levels are marked in red

    图 3  带1—15的转动能级相对于刚性转子的激发能

    Fig. 3.  The excitation energies of Band 1–15 of 131Ba are shown relative to a rotating rigid rotor reference.

    图 4  131Ba与130Ba中转动带准粒子顺排, 对于131Ba, Harris参数取$ {\cal{J}}_0 $$ = 11.9{\hbar}^2\;{\mathrm{MeV }}^{-1} $, $ {\cal{J}}_1 $$ { = 21.1\hbar^4\;{\mathrm{MeV}}}^{-3} $${} $. 对于130Ba, Harris参数取$ {\cal{J}}_0 $$ = 10 {\hbar}^2\; {\mathrm{MeV}}^{-1}$, $ {\cal{J}}_1 $$ = $$ 55{\hbar}^4\; {\mathrm{MeV}} ^{-3} $.

    Fig. 4.  The alignments of rotational bands in 131Ba and 130Ba. The Harris parameters used to obtain the alignments are $ {\cal{J}}_0 $$ = 11.9{\hbar}^2\; {\mathrm{MeV}} ^{-1} $ and $ {\cal{J}}_1 $$ = 21.1 {\hbar}^4\;{\mathrm{MeV}} ^{-3} $ for bands in 131Ba, and $ {\cal{J}}_0 $$ = 10 {\hbar}^2 \;{\mathrm{MeV}} ^{-1}$ and $ {\cal{J}}_1 $$ = 55{\hbar}^4 \;{\mathrm{MeV}}^{-3} $ in 130Ba.

    图 5  131Ba, 124Ba[24], 224Th[38], 133Ce[39]135Nd[36]中(a)能量移动$ {\text{δ}}E $和(b)正负宇称带间的约化跃迁分支比$ B(E1)/B(E2) $随自旋变化

    Fig. 5.  (a) The experimental energy displacement δE and (b) B(E1)/B(E2) ratios between the positive- and negative-parity bands as a function of spin in 131Ba, together with those in 124Ba[24], 224Th[38], 133Ce[39] and 135Nd[36]

    图 6  131Ba, 129Ba[44], 135Pr[11], 133La[12], 127Xe[43]133Ba[14]中摇摆带的摇摆频率随自旋变化

    Fig. 6.  Experimental wobbling frequency as a function of spin in 131Ba, together with those in 129Ba[44], 135Pr[11], 133La[12], 127Xe[43] and 133Ba[14]

    图 7  130Ba[37], 131Ba, 132Ba[49]133Ba[59]中ΔI = 1跃迁序列的能级间隔系统性

    Fig. 7.  The systematic level spacings of ΔI = 1 transition sequences in 130Ba[37], 131Ba, 132Ba[49] and 133Ba[59]

  • [1]

    Li H J, Xiao Z G, Zhu S J, Yeoh E Y, Liu Y X, Sun Y, Zhang Z, Wang R S, Yi H, Yan W H, Xu Q, Wu X G, He C Y, Zheng Y, Li G S, Li C B, Li H W, Liu J J, Hu S P, Wang J L, Yao S H 2013 Phys. Rev. C 87 057303Google Scholar

    [2]

    Ding B, Petrache C M, Guo S, Lawrie E A, Wakudyanaye I, Zhang Z H, Wang H L, Meng H Y, Mengoni D, Qiang Y H, Wang J G, Andreoiu C, Astier A, Avaa A, Bäck T, Bark R A, Bazzacco D, Boso A, Bucher T D, Cederwall B, Chisapi M V, Fan H L, Galtarossa F, Garcia F H, Goasduff A, Jaworski G, Jones P, Kuti I, Lawrie J J, Li G S, Li R, Liu M L, Liu Z, Lomberg B, Lv B F, Marchlewski T, Mdletshe L, Msebi L, Mthembu S H, Napoli D R, Netshiya A, Nkalanga M F, Orce J N, Ortner K, Recchia F, Riccetto S, Rohilla A, Seakamela T W, Siciliano M, Sithole M A, Sohler D, Srebrny J, Testov D, Tucholski A, Valiente-Dobón J J, Wentzel F, Whitmore K, Zhang Y H, Zheng K K, Zhou X H, Zikhali B R 2021 Phys. Rev. C 104 064304Google Scholar

    [3]

    Starosta K, Koike T, Chiara C J, Fossan D B, LaFosse D R, Hecht A A, Beausang C W, Caprio M A, Cooper J R, Krücken R, Novak J R, Zamfir N V, Zyromski K E, Hartley D J, Balabanski D L, Zhang J Y, Frauendorf S, Dimitrov V I 2001 Phys. Rev. Lett. 86 971Google Scholar

    [4]

    Jensen D R, Hagemann G B, Hamamoto I, Ødegård S W, Herskind B, Sletten G, Wilson J N, Spohr K, Hübel H, Bringel P, Neußer A, Schönwaßer G, Singh A K, Ma W C, Amro H, Bracco A, Leoni S, Benzoni G, Maj A, Petrache C M, Bianco G L, Bednarczyk P, Curien D 2002 Phys. Rev. Lett. 89 142503Google Scholar

    [5]

    Wyss R, Granderath A, Bengtsson R, Von Brentano P, Dewald A, Gelberg A, Gizon A, Gizon J, Harissopulos S, Johnson A, Lieberz W, Nazarewicz W, Nyberg J, Schiffer K 1989 Nucl. Phys. A 505 337Google Scholar

    [6]

    Sensharma N, Garg U, Chen Q B, Frauendorf S, Burdette D P, Cozzi J L, Howard K B, Zhu S, Carpenter M P, Copp P, Kondev F G, Lauritsen T, Li J, Seweryniak D, Wu J, Ayangeakaa A D, Hartley D J, Janssens R V F, Forney A M, Walters W B, Ghugre S S, Palit R 2020 Phys. Rev. Lett. 124 052501Google Scholar

    [7]

    Xiong B, Wang Y 2019 At. Data Nucl. Data Tables 125 193Google Scholar

    [8]

    Meng J, Peng J, Zhang S Q, Zhou S G 2006 Phys. Rev. C 73 037303Google Scholar

    [9]

    Ayangeakaa A D, Garg U, Anthony M D, Frauendorf S, Matta J T, Nayak B K, Patel D, Chen Q B, Zhang S Q, Zhao P W, Qi B, Meng J, Janssens R V F, Carpenter M P, Chiara C J, Kondev F G, Lauritsen T, Seweryniak D, Zhu S, Ghugre S S, Palit R 2013 Phys. Rev. Lett. 110 172504Google Scholar

    [10]

    Bohr A, Mottelson B R 1975 Nuclear Structure (Vol. Ⅱ) (New York: Benjamin

    [11]

    Matta J T, Garg U, Li W, Frauendorf S, Ayangeakaa A D, Patel D, Schlax K W, Palit R, Saha S, Sethi J, Trivedi T, Ghugre S S, Raut R, Sinha A K, Janssens R V F, Zhu S, Carpenter M P, Lauritsen T, Seweryniak D, Chiara C J, Kondev F G, Hartley D J, Petrache C M, Mukhopadhyay S, Lakshmi D V, Raju M K, Madhusudhana Rao P V, Tandel S K, Ray S, Dönau F 2015 Phys. Rev. Lett. 114 082501Google Scholar

    [12]

    Biswas S, Palit R, Frauendorf S, Garg U, Li W, Bhat G H, Sheikh J A, Sethi J, Saha S, Singh P, Choudhury D, Matta J T, Ayangeakaa A D, Dar W A, Singh V, Sihotra S 2019 Eur. Phys. J. A 55 159Google Scholar

    [13]

    Lv B F, Petrache C M, Budaca R, Astier A, Zheng K K, Greenlees P, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Saren J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Guo S, Wang J G, Ong H J, Zhou X H, Sun Z Y, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2022 Phys. Rev. C 105 034302Google Scholar

    [14]

    Rojeeta Devi K, Kumar S, Kumar N, Neelam, Babra F S, Laskar MdSR, Biswas S, Saha S, Singh P, Samanta S, Das S, Chakraborty S, Singh R P, Muralithar S, Kumar A 2021 Phys. Lett. B 823 136756Google Scholar

    [15]

    Chen Q B, Frauendorf S, Petrache C M 2019 Phys. Rev. C 100 061301Google Scholar

    [16]

    Guo R J, Wang S Y, Liu C, Bark R A, Meng J, Zhang S Q, Qi B, Rohilla A, Li Z H, Hua H, Chen Q B, Jia H, Lu X, Wang S, Sun D P, Han X C, Xu W Z, Wang E H, Bai H F, Li M, Jones P, Sharpey-Schafer J F, Wiedeking M, Shirinda O, Brits C P, Malatji K L, Dinoko T, Ndayishimye J, Mthembu S, Jongile S, Sowazi K, Kutlwano S, Bucher T D, Roux D G, Netshiya A A, Mdletshe L, Noncolela S, Mtshali W 2024 Phys. Rev. Lett. 132 092501Google Scholar

    [17]

    Butler P A, Nazarewicz W 1996 Rev. Mod. Phys 68 349Google Scholar

    [18]

    Butler P A, Gaffney L P, Spagnoletti P, Abrahams K, Bowry M, Cederkäll J, De Angelis G, De Witte H, Garrett P E, Goldkuhle A, Henrich C, Illana A, Johnston K, Joss D T, Keatings J M, Kelly N A, Komorowska M, Konki J, Kröll T, Lozano M, Nara Singh B S, O'Donnell D, Ojala J, Page R D, Pedersen L G, Raison C, Reiter P, Rodriguez J A, Rosiak D, Rothe S, Scheck M, Seidlitz M, Shneidman T M, Siebeck B, Sinclair J, Smith J F, Stryjczyk M, Van Duppen P, Vinals S, Virtanen V, Warr N, Wrzosek-Lipska K, Zielińska M 2020 Phys. Rev. Lett. 124 042503Google Scholar

    [19]

    Hensley T C, Cottle P D, Tripathi V, Abromeit B, Anastasiou M, Baby L T, Baron J S, Caussyn D, Dungan R, Kemper K W, Lubna R S, Miller S L, Rijal N, Riley M A, Tabor S L, Tai P L, Villafana K 2017 Phys. Rev. C 96 034325Google Scholar

    [20]

    Bucher B, Zhu S, Wu C Y, Janssens R V F, Cline D, Hayes A B, Albers M, Ayangeakaa A D, Butler P A, Campbell C M, Carpenter M P, Chiara C J, Clark J A, Crawford H L, Cromaz M, David H M, Dickerson C, Gregor E T, Harker J, Hoffman C R, Kay B P, Kondev F G, Korichi A, Lauritsen T, Macchiavelli A O, Pardo R C, Richard A, Riley M A, Savard G, Scheck M, Seweryniak D, Smith M K, Vondrasek R, Wiens A 2016 Phys. Rev. Lett. 116 112503Google Scholar

    [21]

    Bucher B, Zhu S, Wu C Y, Janssens R V F, Bernard R N, Robledo L M, Rodríguez T R, Cline D, Hayes A B, Ayangeakaa A D, Buckner M Q, Campbell C M, Carpenter M P, Clark J A, Crawford H L, David H M, Dickerson C, Harker J, Hoffman C R, Kay B P, Kondev F G, Lauritsen T, Macchiavelli A O, Pardo R C, Savard G, Seweryniak D, Vondrasek R 2017 Phys. Rev. Lett. 118 152504Google Scholar

    [22]

    Zhu S J, Sakhaee M, Yang L M, Gan C Y, Zhu L Y, Xu R Q, Jiang Z, Zhang Z, Long G L, Wen S X, Wu X G 2001 Chin. Phys. Lett. 18 1027Google Scholar

    [23]

    Chen X C, Zhao J, Xu C, Hua H, Shneidman T M, Zhou S G, Wu X G, Li X Q, Zhang S Q, Li Z H, Liang W Y, Meng J, Xu F R, Qi B, Ye Y L, Jiang D X, Cheng Y Y, He C, Sun J J, Han R, Niu C Y, Li C G, Li P J, Wang C G, Wu H Y, Li Z H, Zhou H, Hu S P, Zhang H Q, Li G S, He C Y, Zheng Y, Li C B, Li H W, Wu Y H, Luo P W, Zhong J 2016 Phys. Rev. C 94 021301Google Scholar

    [24]

    Mason P, Benzoni G, Bracco A, Camera F, Million B, Wieland O, Leoni S, Singh A K, Al-Khatib A, Hübel H, Bringel P, Bürger A, Neusser A, Schönwasser G, Nyakó B M, Timár J, Algora A, Dombrádi Zs, Gál J, Kalinka G, Molnár J, Sohler D, Zolnai L, Juhász K, Hagemann G B, Hansen C R, Herskind B, Sletten G, Kmiecik M, Maj A, Styczen J, Zuber K, Azaiez F, Hauschild K, Korichi A, Lopez-Martens A, Roccaz J, Siem S, Hannachi F, Scheurer J N, Bednarczyk P, Byrski Th, Curien D, Dorvaux O, Duchêne G, Gall B, Khalfallah F, Piqueras I, Robin J, Patel S B, Evans O A, Rainovski G, Petrache C M, Petrache D, Rana G L, Moro R, Angelis G D, Falon P, Lee I Y, Lisle J C, Cederwall B, Lagergen K, Lieder R M, Podsvirova E, Gast W, Jäger H, Redon N, Görgen A 2005 Phys. Rev. C 72 064315Google Scholar

    [25]

    Liu C, Wang S Y, Bark R A, Zhang S Q, Meng J, Qi B, Jones P, Wyngaardt S M, Zhao J, Xu C, Zhou S G, Wang S, Sun D P, Liu L, Li Z Q, Zhang N B, Jia H, Li X Q, Hua H, Chen Q B, Xiao Z G, Li H J, Zhu L H, Bucher T D, Dinoko T, Easton J, Juhász K, Kamblawe A, Khaleel E, Khumalo N, Lawrie E A, Lawrie J J, Majola S N T, Mullins S M, Murray S, Ndayishimye J, Negi D, Noncolela S P, Ntshangase S S, Nyakó B M, Orce J N, Papka P, Sharpey-Schafer J F, Shirinda O, Sithole P, Stankiewicz M A, Wiedeking M 2016 Phys. Rev. Lett. 116 112501Google Scholar

    [26]

    Xiao X, Wang S Y, Liu C, Bark R A, Meng J, Zhang S Q, Qi B, Hua H, Jones P, Wyngaardt S M, Wang S, Sun D P, Li Z Q, Zhang N B, Jia H, Guo R J, Han X C, Mu L, Lu X, Xu W Z, Niu C Y, Wang C G, Lawrie E A, Lawrie J J, Sharpey-Schafer J F, Wiedeking M, Majola S N T, Bucher T D, Dinoko T, Maqabuka B, Makhathini L, Mdletshe L, Khumalo N A, Shirinda O, Sowazi K 2022 Phys. Rev. C 106 064302Google Scholar

    [27]

    Horen D J, Kelly W H, Yaffe L 1963 Phys. Rev. 129 1712Google Scholar

    [28]

    von Ehrenstein D, Morrison G C, Nolen J A, Williams N 1970 Phys. Rev. C 1 2066Google Scholar

    [29]

    Gizon J, Gizon A, Horen D J 1975 Nucl. Phys. 252 509Google Scholar

    [30]

    Ma R, Liang Y, Paul E S, Xu N, Fossan D B, Hildingsson L, Wyss R A 1990 Phys. Rev. C 41 717

    [31]

    Kaur N, Kumar A, Mukherjee G, Singh A, Kumar S, Kaur R, Singh V, Behera B R, Singh K P, Singh G, Sharma H P, Kumar S, Kumar Raju M, Madhusudhan Rao P V, Muralithar S, Singh R P, Kumar R, Madhvan N, Bhowmik R K 2014 Eur. Phys. J. A 50 5Google Scholar

    [32]

    Guo S, Petrache C M, Mengoni D, Qiang Y H, Wang Y P, Wang Y Y, Meng J, Wang Y K, Zhang S Q, Zhao P W, Astier A, Wang J G, Fan H L, Dupont E, Lv B F, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Liu M L, Li G S, Zhou X H, Zhang Y H, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Ataç-Nyberg A, Bäck T, Cederwall B, Lawrie E A, Kuti I, Sohler D, Marchlewski T, Srebrny J, Tucholski A 2020 Phys. Lett. B 807 135572Google Scholar

    [33]

    Testov D, Mengoni D, Goasduff A, Gadea A, Isocrate R, John P R, De Angelis G, Bazzacco D, Boiano C, Boso A, Cocconi P, Dueñas J A, Egea Canet F J, Grassi L, Hadyńska-Klek K, Jaworski G, Lunardi S, Menegazzo R, Napoli D R, Recchia F, Siciliano M, Valiente-Dobón J J 2019 Eur. Phys. J. A 55 47Google Scholar

    [34]

    Ljungvall J, Palacz M, Nyberg J 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 528 741Google Scholar

    [35]

    Wang Y P, Wang Y Y, Meng J 2020 Phys. Rev. C 102 024313Google Scholar

    [36]

    Lv B F, Petrache C M, Chen Q B, Meng J, Astier A, Dupont E, Greenlees P, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Saren J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Guo S, Liu M L, Wang J G, Zhou X H, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2019 Phys. Rev. C 100 024314Google Scholar

    [37]

    Guo S, Petrache C M, Mengoni D, Liu Y X, Chen Q B, Qiang Y H, Astier A, Dupont E, Zheng K K, Wang J G, Ding B, Lv B F, Liu M L, Fang Y D, Zhou X H, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Cederwall B, Lawrie E A, Kuti I, Sohler D, Marchlewski T, Srebrny J, Tucholski A 2020 Phys. Rev. C 102 044320Google Scholar

    [38]

    Ackermann B, Baltzer H, Ensel C, Freitag K, Grafen V, Günther C, Herzog P, Manns J, Marten-Tölle M, Müller U, Prinz J, Romanski I, Tölle R, deBoer J, Gollwitzer N, Maier H 1993 Nucl. Phys. 559 61Google Scholar

    [39]

    Ayangeakaa A D, Garg U, Petrache C M, Guo S, Zhao P W, Matta J T, Nayak B K, Patel D, Janssens R V F, Carpenter M P, Chiara C J, Kondev F G, Lauritsen T, Seweryniak D, Zhu S, Ghugre S S, Palit R 2016 Phys. Rev. C 93 054317Google Scholar

    [40]

    Nazarewicz W, Olanders P 1985 Nucl. Phys. 441 420Google Scholar

    [41]

    Cottle P D 1990 Phys. Rev. C 41 517Google Scholar

    [42]

    Frauendorf S, Dönau F 2014 Phys. Rev. C 89 014322Google Scholar

    [43]

    Chakraborty S, Sharma H P, Tiwary S S, Majumder C, Gupta A K, Banerjee P, Ganguly S, Rai S, Pragati, Mayank, Kumar S, Kumar A, Palit R, Bhattacharjee S S, Singh R P, Muralithar S 2020 Phys. Lett. B 811 135854Google Scholar

    [44]

    Byrne A P, Schiffer K, Dracoulis G D, Fabricius B, Kibédi T, Stuchbery A E, Lieb K P 1992 Nucl. Phys. 548 131Google Scholar

    [45]

    Lawrie E A, Shirinda O, Petrache C M 2020 Phys. Rev. C 101 034306Google Scholar

    [46]

    Chen Q B, Frauendorf S 2022 Eur. Phys. J. A 58 75Google Scholar

    [47]

    Guo S, Zhou X H, Petrache C M, Lawrie E A, Mthembu S H, Fang Y D, Wu H Y, Wang H L, Meng H Y, Li G S, Qiang Y H, Wang J G, Liu M L, Zheng Y, Ding B, Zhang W Q, Rohilla A, Muhki K R, Yang Y Y, Ong H J, Ma J B, Xu S W, Bai Z, Fan H L, Huang J F, Li J H, Xu J H, Lv B F, Hua W, Gan Z G, Zhang Y H 2022 Phys. Lett. B 828 137010Google Scholar

    [48]

    Lv B F, Petrache C M, Lawrie E A, Guo S, Astier A, Zheng K K, Ong H J, Wang J G, Zhou X H, Sun Z Y, Greenlees P T, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Sarén J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2022 Phys. Lett. B 824 136840Google Scholar

    [49]

    Juutinen S, Törmänen S, Ahonen P, Carpenter M, Fahlander C, Gascon J, Julin R, Lampinen A, Lönnroth T, Nyberg J, Pakkanen A, Piiparinen M, Schiffer K, Šimeček P, Sletten G, Virtanen A 1995 Phys. Rev. C 52 2946Google Scholar

    [50]

    Hübel H, Baldsiefen G, Mehta D, Thirumala Rao B V, Birkental U, Fröhlingsdorf G, Neffgen M, Nenoff N, Pancholi S C, Singh N, Schmitz W, Theine K, Willsau P, Grawe H, Heese J, Kluge H, Maier K H, Schramm M, Schubart R, Maier H J 1992 Prog. Part. Nucl. Phys. 28 427Google Scholar

    [51]

    Clark R M, Wadsworth R, Paul E S, Beausang C W, Ali I, Astier A, Cullen D M, Dagnall P J, Fallon P, Joyce M J, Meyer M, Redon N, Regan P H, Nazarewicz W, Wyss R 1992 Phys. Lett. B 275 247Google Scholar

    [52]

    Baldsiefen G, Chmel S, Hübel H, Korten W, Neffgen M, Pohler W, Van Severen U J, Heese J, Kluge H, Maier K H, Spohr K 1995 Nucl. Phys. 587 562Google Scholar

    [53]

    Singh A K, Nenoff N, Roßbach D, Görgen A, Chmel S, Azaiez F, Astier A, Bazzacco D, Belleguic M, Bouneau S, Bourgeois C, Buforn N, Cederwall B, Deloncle I, Domscheit J, Hannachi F, Hauschild K, Hübel H, Korichi A, Korten W, Kröll T, LeCoz Y, Lopez-Martens A, Lucas R, Lunardi S, Maier H J, Mergel E, Meyer M, Petrache C M, Redon N, Reiter P, Rossi-Alvarez C, Schönwaßer G, Stezowski O, Thirolf P G, Wilson A N 2002 Nucl. Phys. 707 3Google Scholar

    [54]

    Görgen A, Nenoff N, Hübel H, Baldsiefen G, Becker J A, Byrne A P, Chmel S, Clark R M, Deleplanque M A, Diamond R M, Fallon P, Hauschild K, Hibbert I M, Korten W, Krücken R, Lee I Y, Macchiavelli A O, Paul E S, Van Severen U J, Stephens F S, Vetter K, Wadsworth R, Wilson A N, Wilson J N 2001 Nucl. Phys. 683 108Google Scholar

    [55]

    Frauendorf S 1993 Nucl. Phys. 2 259

    [56]

    He C Y, Li X Q, Zhu L H, Wu X G, Qi B, Liu Y, Pan B, Li G S, Li L H, Wang Z M, Li Z Y, Wang S Y, Xu Q, Wang J G, Ding H B, Zhai J 2011 Phys. Rev. C 83 024309Google Scholar

    [57]

    Li J, He C Y, Zheng Y, Li C B, Ma K Y, Lu J B 2013 Phys. Rev. C 88 014317Google Scholar

    [58]

    Yao S H, Ma H L, Zhu L H, Wu X G, He C Y, Zheng Y, Zhang B, Li G S, Li C B, Hu S P, Cao X P, Yu B B, Xu C, Cheng Y Y 2014 Phys. Rev. C 89 014327Google Scholar

    [59]

    Juutinen S, Šimeček P, Ahonen P, Carpenter M, Fahlander C, Gascon J, Julin R, Lampinen A, Lönnroth T, Nyberg J, Pakkanen A, Piiparinen M, Schiffer K, Sletten G, Törmänen S, Virtanen A 1995 Phys. Rev. C 51 1699Google Scholar

    [60]

    Petrache C M, Walker P M, Guo S, Chen Q B, Frauendorf S, Liu Y X, Wyss R A, Mengoni D, Qiang Y H, Astier A, Dupont E, Li R, Lv B F, Zheng K K, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Liu M L, Zhou X H, Wang J G, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Bäck T, Cederwall B, Lawrie E A, Kuti I, Sohler D, Timár J, Marchlewski T, Srebrny J, Tucholski A 2019 Phys. Lett. B 795 241Google Scholar

  • [1] 高能重离子碰撞过程的自旋与手征效应专题编者按. 物理学报, 2023, 72(7): 070101. doi: 10.7498/aps.72.070101
    [2] 尹伊. 强相互作用物质中的自旋与运动关联. 物理学报, 2023, 72(11): 111201. doi: 10.7498/aps.72.20222458
    [3] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究. 物理学报, 2023, 72(7): 074205. doi: 10.7498/aps.72.20221814
    [4] 方云团, 王张鑫, 范尔盼, 李小雪, 王洪金. 基于结构反转二维光子晶体的拓扑相变及拓扑边界态的构建. 物理学报, 2020, 69(18): 184101. doi: 10.7498/aps.69.20200415
    [5] 王彦兰, 李妍. 二维介电光子晶体中的赝自旋态与拓扑相变. 物理学报, 2020, 69(9): 094206. doi: 10.7498/aps.69.20191962
    [6] 王一鹤, 张志旺, 程营, 刘晓峻. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输. 物理学报, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [7] 王健, 吴世巧, 梅军. 二维声子晶体中简单旋转操作导致的拓扑相变. 物理学报, 2017, 66(22): 224301. doi: 10.7498/aps.66.224301
    [8] 钱新宇, 孙言, 刘冬冬, 胡峰, 樊秋波, 苟秉聪. 硼原(离)子内壳激发高自旋态能级和辐射跃迁. 物理学报, 2017, 66(12): 123101. doi: 10.7498/aps.66.123101
    [9] 高洁, 张民仓. 包含非中心电耦极矩的环状非谐振子势场赝自旋对称性的三对角化表示. 物理学报, 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [10] 肖文德, 刘立巍, 杨锴, 张礼智, 宋博群, 杜世萱, 高鸿钧. 氢原子吸附对金表面金属酞菁分子的吸附位置、自旋和手征性的调控. 物理学报, 2015, 64(7): 076802. doi: 10.7498/aps.64.076802
    [11] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [12] 张民仓. 相对论性非球谐振子势场中的赝自旋对称性. 物理学报, 2009, 58(1): 61-65. doi: 10.7498/aps.58.61
    [13] 张民仓. 类Quesne环状球谐振子势场中的赝自旋对称性. 物理学报, 2009, 58(2): 712-716. doi: 10.7498/aps.58.712
    [14] 邵 丹, 邵 亮, 邵常贵, H. Noda. 度量算符对Gauss编织态的本征作用及自旋几何. 物理学报, 2007, 56(3): 1271-1291. doi: 10.7498/aps.56.1271
    [15] 石筑一, 倪绍勇, 童 红, 赵行知. 124Te核1+态和高自旋态能谱特征的微观研究. 物理学报, 2004, 53(3): 734-737. doi: 10.7498/aps.53.734
    [16] 殷春浩, 韩 奎, 叶世旺. GeFe2O4晶体的基态能级和零场分裂参量. 物理学报, 2003, 52(9): 2280-2283. doi: 10.7498/aps.52.2280
    [17] 桂永胜, 郑国珍, 郭少令, 褚君浩, 汤定元, 陈建新, 李爱珍. 赝形InGaAs/InAlAs渐变异质结中的零磁场自旋分裂. 物理学报, 1999, 48(1): 121-126. doi: 10.7498/aps.48.121
    [18] 江少恩. 高斯束激光摇摆场中的电子运动轨道分析. 物理学报, 1997, 46(2): 293-299. doi: 10.7498/aps.46.293
    [19] 张瑞勤, 戴国才, 关大任, 蔡政亭. a-Si:H中本征缺陷引起的赝隙态. 物理学报, 1989, 38(1): 163-169. doi: 10.7498/aps.38.163
    [20] 李光仪. Poincaré引力规范场和1/2自旋粒子的运动. 物理学报, 1981, 30(6): 722-730. doi: 10.7498/aps.30.722
计量
  • 文章访问数:  2395
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-01
  • 修回日期:  2024-03-15
  • 上网日期:  2024-04-09
  • 刊出日期:  2024-06-05

/

返回文章
返回