-
利用意大利Legnaro实验室串列静电加速器提供的65 MeV 13C束流与122Sn靶的熔合蒸发反应布居了131Ba的高自旋态, 并搭建了新的能级纲图. 新的能级纲图由15条转动带组成, 包括三对手征双重带, 其中两对正宇称手征带为赝自旋-手征四重带. 正负宇称手征带通过一系列增强的E1跃迁连接, 表明它们之间存在八极关联. 在低自旋区域搭建了一条新的转动带, 通过一系列γ跃迁向
$ \nu h _{11/2} $ 晕带退激. 这种能级结构与摇摆带相似, 但基于现有的实验证据还难以将它确认为摇摆带, 不能排除其他集体激发机制, 如γ振动的影响.In the last two decades, several unique phenomena in triaxially deformed nuclei, such as chiral doublet bands and wobbling motion have been revealed. Up to now, there are still many open questions which require further experimental and theoretical studies. To explore the collective motion in 131Ba, an experiment was performed using the XTU Tandem accelerator in the Legnaro laboratory, Italy. High-spin states of 131Ba have been populated via the heavy-ion fusion-evaporation 122Sn(13C, 4n) reaction. γ-rays, charged particles and neutrons emitted from the residues were detected by the GALILEO array, EUCLIDES silicon ball, and the Neutron Wall, respectively. A total of 1.2 $ \times $ 109 triple- or higher-fold events were collected by the GALILEO data acquisition system. The γ-γ-γ coincidence events were sorted into a three-dimensional histogram (cube) and the analysis was carried out with the RADWARE and GASPWARE software packages.Through analysis of the coincidences between γ-rays, the most comprehensive level schemes of 131Ba to date was deduced from the present work. The extended level-scheme consists of 15 rotational bands, and newly observed transitions are marked in red. Three nearly degenerate pairs of doublet bands (Band 3–8) are identified in 131Ba. Two pairs of chiral doublets (Band 3–6) with configuration $ {\textit{\pi}}h_{11/2}(g_{7/2},d_{5/2}){\otimes}{\nu}h_{11/2} $ are interpreted as a set of pseudospin-chiral quartet bands. The quartet bands are fed by another pair of chiral doublet bands (Band 7–8) built on a$ {\textit{\pi}}h^2_{11/2}{\otimes}{\nu}h_{11/2} $ configuration via a series of enhanced E1 transitions. We extracted the energy displacement δE and the B(E1)/B(E2) branching ratios between the positive-parity band 3 and the negative-parity band 7 in 131Ba and in comparison with those in 124Ba, 224Th, 133Ce and 135Nd. The energy displacement δE and the B(E1)/B(E2) branching ratios in 131Ba are comparable with those in 124Ba but deviate appreciably from those in 224Th which has been reported to have stable octupole deformation. The results indicate the existence of octupole correlations in 131Ba without stable octupole deformation. A new rotational band (Band 10) discovered in the low-spin region exhibits a level structure similar to a wobbling band. Assuming it as a wobbling band, the wobbling frequency was extracted and compared with other reported wobbling bands in the neighboring nuclei. The wobbling frequency of this band decreases with increasing angular momentum, and even exhibits negative value at the highest spin. Considering that the wobbling phonon should contribute a positive amount to the excitation energy, this band is unlikely to be explained by this mechanism. The band may originate from other collective excitation mechanisms such as γ vibration. The newly identified rotational band (Band 9) composed of M1 transitions is tentatively assigned as a magnetic rotational band through a systematic analysis of the level structure. Finally, the configurations of other 4 bands, Band 12-15, are also suggested based on previous researches and the extracted quasiparticle alignments.-
Keywords:
- high-spin states /
- chirality /
- pseudospin /
- octupole correlation /
- wobbling motion
[1] Li H J, Xiao Z G, Zhu S J, Yeoh E Y, Liu Y X, Sun Y, Zhang Z, Wang R S, Yi H, Yan W H, Xu Q, Wu X G, He C Y, Zheng Y, Li G S, Li C B, Li H W, Liu J J, Hu S P, Wang J L, Yao S H 2013 Phys. Rev. C 87 057303Google Scholar
[2] Ding B, Petrache C M, Guo S, Lawrie E A, Wakudyanaye I, Zhang Z H, Wang H L, Meng H Y, Mengoni D, Qiang Y H, Wang J G, Andreoiu C, Astier A, Avaa A, Bäck T, Bark R A, Bazzacco D, Boso A, Bucher T D, Cederwall B, Chisapi M V, Fan H L, Galtarossa F, Garcia F H, Goasduff A, Jaworski G, Jones P, Kuti I, Lawrie J J, Li G S, Li R, Liu M L, Liu Z, Lomberg B, Lv B F, Marchlewski T, Mdletshe L, Msebi L, Mthembu S H, Napoli D R, Netshiya A, Nkalanga M F, Orce J N, Ortner K, Recchia F, Riccetto S, Rohilla A, Seakamela T W, Siciliano M, Sithole M A, Sohler D, Srebrny J, Testov D, Tucholski A, Valiente-Dobón J J, Wentzel F, Whitmore K, Zhang Y H, Zheng K K, Zhou X H, Zikhali B R 2021 Phys. Rev. C 104 064304Google Scholar
[3] Starosta K, Koike T, Chiara C J, Fossan D B, LaFosse D R, Hecht A A, Beausang C W, Caprio M A, Cooper J R, Krücken R, Novak J R, Zamfir N V, Zyromski K E, Hartley D J, Balabanski D L, Zhang J Y, Frauendorf S, Dimitrov V I 2001 Phys. Rev. Lett. 86 971Google Scholar
[4] Jensen D R, Hagemann G B, Hamamoto I, Ødegård S W, Herskind B, Sletten G, Wilson J N, Spohr K, Hübel H, Bringel P, Neußer A, Schönwaßer G, Singh A K, Ma W C, Amro H, Bracco A, Leoni S, Benzoni G, Maj A, Petrache C M, Bianco G L, Bednarczyk P, Curien D 2002 Phys. Rev. Lett. 89 142503Google Scholar
[5] Wyss R, Granderath A, Bengtsson R, Von Brentano P, Dewald A, Gelberg A, Gizon A, Gizon J, Harissopulos S, Johnson A, Lieberz W, Nazarewicz W, Nyberg J, Schiffer K 1989 Nucl. Phys. A 505 337Google Scholar
[6] Sensharma N, Garg U, Chen Q B, Frauendorf S, Burdette D P, Cozzi J L, Howard K B, Zhu S, Carpenter M P, Copp P, Kondev F G, Lauritsen T, Li J, Seweryniak D, Wu J, Ayangeakaa A D, Hartley D J, Janssens R V F, Forney A M, Walters W B, Ghugre S S, Palit R 2020 Phys. Rev. Lett. 124 052501Google Scholar
[7] Xiong B, Wang Y 2019 At. Data Nucl. Data Tables 125 193Google Scholar
[8] Meng J, Peng J, Zhang S Q, Zhou S G 2006 Phys. Rev. C 73 037303Google Scholar
[9] Ayangeakaa A D, Garg U, Anthony M D, Frauendorf S, Matta J T, Nayak B K, Patel D, Chen Q B, Zhang S Q, Zhao P W, Qi B, Meng J, Janssens R V F, Carpenter M P, Chiara C J, Kondev F G, Lauritsen T, Seweryniak D, Zhu S, Ghugre S S, Palit R 2013 Phys. Rev. Lett. 110 172504Google Scholar
[10] Bohr A, Mottelson B R 1975 Nuclear Structure (Vol. Ⅱ) (New York: Benjamin
[11] Matta J T, Garg U, Li W, Frauendorf S, Ayangeakaa A D, Patel D, Schlax K W, Palit R, Saha S, Sethi J, Trivedi T, Ghugre S S, Raut R, Sinha A K, Janssens R V F, Zhu S, Carpenter M P, Lauritsen T, Seweryniak D, Chiara C J, Kondev F G, Hartley D J, Petrache C M, Mukhopadhyay S, Lakshmi D V, Raju M K, Madhusudhana Rao P V, Tandel S K, Ray S, Dönau F 2015 Phys. Rev. Lett. 114 082501Google Scholar
[12] Biswas S, Palit R, Frauendorf S, Garg U, Li W, Bhat G H, Sheikh J A, Sethi J, Saha S, Singh P, Choudhury D, Matta J T, Ayangeakaa A D, Dar W A, Singh V, Sihotra S 2019 Eur. Phys. J. A 55 159Google Scholar
[13] Lv B F, Petrache C M, Budaca R, Astier A, Zheng K K, Greenlees P, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Saren J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Guo S, Wang J G, Ong H J, Zhou X H, Sun Z Y, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2022 Phys. Rev. C 105 034302Google Scholar
[14] Rojeeta Devi K, Kumar S, Kumar N, Neelam, Babra F S, Laskar MdSR, Biswas S, Saha S, Singh P, Samanta S, Das S, Chakraborty S, Singh R P, Muralithar S, Kumar A 2021 Phys. Lett. B 823 136756Google Scholar
[15] Chen Q B, Frauendorf S, Petrache C M 2019 Phys. Rev. C 100 061301Google Scholar
[16] Guo R J, Wang S Y, Liu C, Bark R A, Meng J, Zhang S Q, Qi B, Rohilla A, Li Z H, Hua H, Chen Q B, Jia H, Lu X, Wang S, Sun D P, Han X C, Xu W Z, Wang E H, Bai H F, Li M, Jones P, Sharpey-Schafer J F, Wiedeking M, Shirinda O, Brits C P, Malatji K L, Dinoko T, Ndayishimye J, Mthembu S, Jongile S, Sowazi K, Kutlwano S, Bucher T D, Roux D G, Netshiya A A, Mdletshe L, Noncolela S, Mtshali W 2024 Phys. Rev. Lett. 132 092501Google Scholar
[17] Butler P A, Nazarewicz W 1996 Rev. Mod. Phys 68 349Google Scholar
[18] Butler P A, Gaffney L P, Spagnoletti P, Abrahams K, Bowry M, Cederkäll J, De Angelis G, De Witte H, Garrett P E, Goldkuhle A, Henrich C, Illana A, Johnston K, Joss D T, Keatings J M, Kelly N A, Komorowska M, Konki J, Kröll T, Lozano M, Nara Singh B S, O'Donnell D, Ojala J, Page R D, Pedersen L G, Raison C, Reiter P, Rodriguez J A, Rosiak D, Rothe S, Scheck M, Seidlitz M, Shneidman T M, Siebeck B, Sinclair J, Smith J F, Stryjczyk M, Van Duppen P, Vinals S, Virtanen V, Warr N, Wrzosek-Lipska K, Zielińska M 2020 Phys. Rev. Lett. 124 042503Google Scholar
[19] Hensley T C, Cottle P D, Tripathi V, Abromeit B, Anastasiou M, Baby L T, Baron J S, Caussyn D, Dungan R, Kemper K W, Lubna R S, Miller S L, Rijal N, Riley M A, Tabor S L, Tai P L, Villafana K 2017 Phys. Rev. C 96 034325Google Scholar
[20] Bucher B, Zhu S, Wu C Y, Janssens R V F, Cline D, Hayes A B, Albers M, Ayangeakaa A D, Butler P A, Campbell C M, Carpenter M P, Chiara C J, Clark J A, Crawford H L, Cromaz M, David H M, Dickerson C, Gregor E T, Harker J, Hoffman C R, Kay B P, Kondev F G, Korichi A, Lauritsen T, Macchiavelli A O, Pardo R C, Richard A, Riley M A, Savard G, Scheck M, Seweryniak D, Smith M K, Vondrasek R, Wiens A 2016 Phys. Rev. Lett. 116 112503Google Scholar
[21] Bucher B, Zhu S, Wu C Y, Janssens R V F, Bernard R N, Robledo L M, Rodríguez T R, Cline D, Hayes A B, Ayangeakaa A D, Buckner M Q, Campbell C M, Carpenter M P, Clark J A, Crawford H L, David H M, Dickerson C, Harker J, Hoffman C R, Kay B P, Kondev F G, Lauritsen T, Macchiavelli A O, Pardo R C, Savard G, Seweryniak D, Vondrasek R 2017 Phys. Rev. Lett. 118 152504Google Scholar
[22] Zhu S J, Sakhaee M, Yang L M, Gan C Y, Zhu L Y, Xu R Q, Jiang Z, Zhang Z, Long G L, Wen S X, Wu X G 2001 Chin. Phys. Lett. 18 1027Google Scholar
[23] Chen X C, Zhao J, Xu C, Hua H, Shneidman T M, Zhou S G, Wu X G, Li X Q, Zhang S Q, Li Z H, Liang W Y, Meng J, Xu F R, Qi B, Ye Y L, Jiang D X, Cheng Y Y, He C, Sun J J, Han R, Niu C Y, Li C G, Li P J, Wang C G, Wu H Y, Li Z H, Zhou H, Hu S P, Zhang H Q, Li G S, He C Y, Zheng Y, Li C B, Li H W, Wu Y H, Luo P W, Zhong J 2016 Phys. Rev. C 94 021301Google Scholar
[24] Mason P, Benzoni G, Bracco A, Camera F, Million B, Wieland O, Leoni S, Singh A K, Al-Khatib A, Hübel H, Bringel P, Bürger A, Neusser A, Schönwasser G, Nyakó B M, Timár J, Algora A, Dombrádi Zs, Gál J, Kalinka G, Molnár J, Sohler D, Zolnai L, Juhász K, Hagemann G B, Hansen C R, Herskind B, Sletten G, Kmiecik M, Maj A, Styczen J, Zuber K, Azaiez F, Hauschild K, Korichi A, Lopez-Martens A, Roccaz J, Siem S, Hannachi F, Scheurer J N, Bednarczyk P, Byrski Th, Curien D, Dorvaux O, Duchêne G, Gall B, Khalfallah F, Piqueras I, Robin J, Patel S B, Evans O A, Rainovski G, Petrache C M, Petrache D, Rana G L, Moro R, Angelis G D, Falon P, Lee I Y, Lisle J C, Cederwall B, Lagergen K, Lieder R M, Podsvirova E, Gast W, Jäger H, Redon N, Görgen A 2005 Phys. Rev. C 72 064315Google Scholar
[25] Liu C, Wang S Y, Bark R A, Zhang S Q, Meng J, Qi B, Jones P, Wyngaardt S M, Zhao J, Xu C, Zhou S G, Wang S, Sun D P, Liu L, Li Z Q, Zhang N B, Jia H, Li X Q, Hua H, Chen Q B, Xiao Z G, Li H J, Zhu L H, Bucher T D, Dinoko T, Easton J, Juhász K, Kamblawe A, Khaleel E, Khumalo N, Lawrie E A, Lawrie J J, Majola S N T, Mullins S M, Murray S, Ndayishimye J, Negi D, Noncolela S P, Ntshangase S S, Nyakó B M, Orce J N, Papka P, Sharpey-Schafer J F, Shirinda O, Sithole P, Stankiewicz M A, Wiedeking M 2016 Phys. Rev. Lett. 116 112501Google Scholar
[26] Xiao X, Wang S Y, Liu C, Bark R A, Meng J, Zhang S Q, Qi B, Hua H, Jones P, Wyngaardt S M, Wang S, Sun D P, Li Z Q, Zhang N B, Jia H, Guo R J, Han X C, Mu L, Lu X, Xu W Z, Niu C Y, Wang C G, Lawrie E A, Lawrie J J, Sharpey-Schafer J F, Wiedeking M, Majola S N T, Bucher T D, Dinoko T, Maqabuka B, Makhathini L, Mdletshe L, Khumalo N A, Shirinda O, Sowazi K 2022 Phys. Rev. C 106 064302Google Scholar
[27] Horen D J, Kelly W H, Yaffe L 1963 Phys. Rev. 129 1712Google Scholar
[28] von Ehrenstein D, Morrison G C, Nolen J A, Williams N 1970 Phys. Rev. C 1 2066Google Scholar
[29] Gizon J, Gizon A, Horen D J 1975 Nucl. Phys. 252 509Google Scholar
[30] Ma R, Liang Y, Paul E S, Xu N, Fossan D B, Hildingsson L, Wyss R A 1990 Phys. Rev. C 41 717
[31] Kaur N, Kumar A, Mukherjee G, Singh A, Kumar S, Kaur R, Singh V, Behera B R, Singh K P, Singh G, Sharma H P, Kumar S, Kumar Raju M, Madhusudhan Rao P V, Muralithar S, Singh R P, Kumar R, Madhvan N, Bhowmik R K 2014 Eur. Phys. J. A 50 5Google Scholar
[32] Guo S, Petrache C M, Mengoni D, Qiang Y H, Wang Y P, Wang Y Y, Meng J, Wang Y K, Zhang S Q, Zhao P W, Astier A, Wang J G, Fan H L, Dupont E, Lv B F, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Liu M L, Li G S, Zhou X H, Zhang Y H, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Ataç-Nyberg A, Bäck T, Cederwall B, Lawrie E A, Kuti I, Sohler D, Marchlewski T, Srebrny J, Tucholski A 2020 Phys. Lett. B 807 135572Google Scholar
[33] Testov D, Mengoni D, Goasduff A, Gadea A, Isocrate R, John P R, De Angelis G, Bazzacco D, Boiano C, Boso A, Cocconi P, Dueñas J A, Egea Canet F J, Grassi L, Hadyńska-Klek K, Jaworski G, Lunardi S, Menegazzo R, Napoli D R, Recchia F, Siciliano M, Valiente-Dobón J J 2019 Eur. Phys. J. A 55 47Google Scholar
[34] Ljungvall J, Palacz M, Nyberg J 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 528 741Google Scholar
[35] Wang Y P, Wang Y Y, Meng J 2020 Phys. Rev. C 102 024313Google Scholar
[36] Lv B F, Petrache C M, Chen Q B, Meng J, Astier A, Dupont E, Greenlees P, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Saren J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Guo S, Liu M L, Wang J G, Zhou X H, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2019 Phys. Rev. C 100 024314Google Scholar
[37] Guo S, Petrache C M, Mengoni D, Liu Y X, Chen Q B, Qiang Y H, Astier A, Dupont E, Zheng K K, Wang J G, Ding B, Lv B F, Liu M L, Fang Y D, Zhou X H, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Cederwall B, Lawrie E A, Kuti I, Sohler D, Marchlewski T, Srebrny J, Tucholski A 2020 Phys. Rev. C 102 044320Google Scholar
[38] Ackermann B, Baltzer H, Ensel C, Freitag K, Grafen V, Günther C, Herzog P, Manns J, Marten-Tölle M, Müller U, Prinz J, Romanski I, Tölle R, deBoer J, Gollwitzer N, Maier H 1993 Nucl. Phys. 559 61Google Scholar
[39] Ayangeakaa A D, Garg U, Petrache C M, Guo S, Zhao P W, Matta J T, Nayak B K, Patel D, Janssens R V F, Carpenter M P, Chiara C J, Kondev F G, Lauritsen T, Seweryniak D, Zhu S, Ghugre S S, Palit R 2016 Phys. Rev. C 93 054317Google Scholar
[40] Nazarewicz W, Olanders P 1985 Nucl. Phys. 441 420Google Scholar
[41] Cottle P D 1990 Phys. Rev. C 41 517Google Scholar
[42] Frauendorf S, Dönau F 2014 Phys. Rev. C 89 014322Google Scholar
[43] Chakraborty S, Sharma H P, Tiwary S S, Majumder C, Gupta A K, Banerjee P, Ganguly S, Rai S, Pragati, Mayank, Kumar S, Kumar A, Palit R, Bhattacharjee S S, Singh R P, Muralithar S 2020 Phys. Lett. B 811 135854Google Scholar
[44] Byrne A P, Schiffer K, Dracoulis G D, Fabricius B, Kibédi T, Stuchbery A E, Lieb K P 1992 Nucl. Phys. 548 131Google Scholar
[45] Lawrie E A, Shirinda O, Petrache C M 2020 Phys. Rev. C 101 034306Google Scholar
[46] Chen Q B, Frauendorf S 2022 Eur. Phys. J. A 58 75Google Scholar
[47] Guo S, Zhou X H, Petrache C M, Lawrie E A, Mthembu S H, Fang Y D, Wu H Y, Wang H L, Meng H Y, Li G S, Qiang Y H, Wang J G, Liu M L, Zheng Y, Ding B, Zhang W Q, Rohilla A, Muhki K R, Yang Y Y, Ong H J, Ma J B, Xu S W, Bai Z, Fan H L, Huang J F, Li J H, Xu J H, Lv B F, Hua W, Gan Z G, Zhang Y H 2022 Phys. Lett. B 828 137010Google Scholar
[48] Lv B F, Petrache C M, Lawrie E A, Guo S, Astier A, Zheng K K, Ong H J, Wang J G, Zhou X H, Sun Z Y, Greenlees P T, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Sarén J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2022 Phys. Lett. B 824 136840Google Scholar
[49] Juutinen S, Törmänen S, Ahonen P, Carpenter M, Fahlander C, Gascon J, Julin R, Lampinen A, Lönnroth T, Nyberg J, Pakkanen A, Piiparinen M, Schiffer K, Šimeček P, Sletten G, Virtanen A 1995 Phys. Rev. C 52 2946Google Scholar
[50] Hübel H, Baldsiefen G, Mehta D, Thirumala Rao B V, Birkental U, Fröhlingsdorf G, Neffgen M, Nenoff N, Pancholi S C, Singh N, Schmitz W, Theine K, Willsau P, Grawe H, Heese J, Kluge H, Maier K H, Schramm M, Schubart R, Maier H J 1992 Prog. Part. Nucl. Phys. 28 427Google Scholar
[51] Clark R M, Wadsworth R, Paul E S, Beausang C W, Ali I, Astier A, Cullen D M, Dagnall P J, Fallon P, Joyce M J, Meyer M, Redon N, Regan P H, Nazarewicz W, Wyss R 1992 Phys. Lett. B 275 247Google Scholar
[52] Baldsiefen G, Chmel S, Hübel H, Korten W, Neffgen M, Pohler W, Van Severen U J, Heese J, Kluge H, Maier K H, Spohr K 1995 Nucl. Phys. 587 562Google Scholar
[53] Singh A K, Nenoff N, Roßbach D, Görgen A, Chmel S, Azaiez F, Astier A, Bazzacco D, Belleguic M, Bouneau S, Bourgeois C, Buforn N, Cederwall B, Deloncle I, Domscheit J, Hannachi F, Hauschild K, Hübel H, Korichi A, Korten W, Kröll T, LeCoz Y, Lopez-Martens A, Lucas R, Lunardi S, Maier H J, Mergel E, Meyer M, Petrache C M, Redon N, Reiter P, Rossi-Alvarez C, Schönwaßer G, Stezowski O, Thirolf P G, Wilson A N 2002 Nucl. Phys. 707 3Google Scholar
[54] Görgen A, Nenoff N, Hübel H, Baldsiefen G, Becker J A, Byrne A P, Chmel S, Clark R M, Deleplanque M A, Diamond R M, Fallon P, Hauschild K, Hibbert I M, Korten W, Krücken R, Lee I Y, Macchiavelli A O, Paul E S, Van Severen U J, Stephens F S, Vetter K, Wadsworth R, Wilson A N, Wilson J N 2001 Nucl. Phys. 683 108Google Scholar
[55] Frauendorf S 1993 Nucl. Phys. 2 259
[56] He C Y, Li X Q, Zhu L H, Wu X G, Qi B, Liu Y, Pan B, Li G S, Li L H, Wang Z M, Li Z Y, Wang S Y, Xu Q, Wang J G, Ding H B, Zhai J 2011 Phys. Rev. C 83 024309Google Scholar
[57] Li J, He C Y, Zheng Y, Li C B, Ma K Y, Lu J B 2013 Phys. Rev. C 88 014317Google Scholar
[58] Yao S H, Ma H L, Zhu L H, Wu X G, He C Y, Zheng Y, Zhang B, Li G S, Li C B, Hu S P, Cao X P, Yu B B, Xu C, Cheng Y Y 2014 Phys. Rev. C 89 014327Google Scholar
[59] Juutinen S, Šimeček P, Ahonen P, Carpenter M, Fahlander C, Gascon J, Julin R, Lampinen A, Lönnroth T, Nyberg J, Pakkanen A, Piiparinen M, Schiffer K, Sletten G, Törmänen S, Virtanen A 1995 Phys. Rev. C 51 1699Google Scholar
[60] Petrache C M, Walker P M, Guo S, Chen Q B, Frauendorf S, Liu Y X, Wyss R A, Mengoni D, Qiang Y H, Astier A, Dupont E, Li R, Lv B F, Zheng K K, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Liu M L, Zhou X H, Wang J G, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Bäck T, Cederwall B, Lawrie E A, Kuti I, Sohler D, Timár J, Marchlewski T, Srebrny J, Tucholski A 2019 Phys. Lett. B 795 241Google Scholar
-
图 4 131Ba与130Ba中转动带准粒子顺排, 对于131Ba, Harris参数取$ {\cal{J}}_0 $$ = 11.9{\hbar}^2\;{\mathrm{MeV }}^{-1} $, $ {\cal{J}}_1 $$ { = 21.1\hbar^4\;{\mathrm{MeV}}}^{-3} $${} $. 对于130Ba, Harris参数取$ {\cal{J}}_0 $$ = 10 {\hbar}^2\; {\mathrm{MeV}}^{-1}$, $ {\cal{J}}_1 $$ = $$ 55{\hbar}^4\; {\mathrm{MeV}} ^{-3} $.
Fig. 4. The alignments of rotational bands in 131Ba and 130Ba. The Harris parameters used to obtain the alignments are $ {\cal{J}}_0 $$ = 11.9{\hbar}^2\; {\mathrm{MeV}} ^{-1} $ and $ {\cal{J}}_1 $$ = 21.1 {\hbar}^4\;{\mathrm{MeV}} ^{-3} $ for bands in 131Ba, and $ {\cal{J}}_0 $$ = 10 {\hbar}^2 \;{\mathrm{MeV}} ^{-1}$ and $ {\cal{J}}_1 $$ = 55{\hbar}^4 \;{\mathrm{MeV}}^{-3} $ in 130Ba.
图 5 131Ba, 124Ba[24], 224Th[38], 133Ce[39]和135Nd[36]中(a)能量移动$ {\text{δ}}E $和(b)正负宇称带间的约化跃迁分支比$ B(E1)/B(E2) $随自旋变化
Fig. 5. (a) The experimental energy displacement δE and (b) B(E1)/B(E2) ratios between the positive- and negative-parity bands as a function of spin in 131Ba, together with those in 124Ba[24], 224Th[38], 133Ce[39] and 135Nd[36]
-
[1] Li H J, Xiao Z G, Zhu S J, Yeoh E Y, Liu Y X, Sun Y, Zhang Z, Wang R S, Yi H, Yan W H, Xu Q, Wu X G, He C Y, Zheng Y, Li G S, Li C B, Li H W, Liu J J, Hu S P, Wang J L, Yao S H 2013 Phys. Rev. C 87 057303Google Scholar
[2] Ding B, Petrache C M, Guo S, Lawrie E A, Wakudyanaye I, Zhang Z H, Wang H L, Meng H Y, Mengoni D, Qiang Y H, Wang J G, Andreoiu C, Astier A, Avaa A, Bäck T, Bark R A, Bazzacco D, Boso A, Bucher T D, Cederwall B, Chisapi M V, Fan H L, Galtarossa F, Garcia F H, Goasduff A, Jaworski G, Jones P, Kuti I, Lawrie J J, Li G S, Li R, Liu M L, Liu Z, Lomberg B, Lv B F, Marchlewski T, Mdletshe L, Msebi L, Mthembu S H, Napoli D R, Netshiya A, Nkalanga M F, Orce J N, Ortner K, Recchia F, Riccetto S, Rohilla A, Seakamela T W, Siciliano M, Sithole M A, Sohler D, Srebrny J, Testov D, Tucholski A, Valiente-Dobón J J, Wentzel F, Whitmore K, Zhang Y H, Zheng K K, Zhou X H, Zikhali B R 2021 Phys. Rev. C 104 064304Google Scholar
[3] Starosta K, Koike T, Chiara C J, Fossan D B, LaFosse D R, Hecht A A, Beausang C W, Caprio M A, Cooper J R, Krücken R, Novak J R, Zamfir N V, Zyromski K E, Hartley D J, Balabanski D L, Zhang J Y, Frauendorf S, Dimitrov V I 2001 Phys. Rev. Lett. 86 971Google Scholar
[4] Jensen D R, Hagemann G B, Hamamoto I, Ødegård S W, Herskind B, Sletten G, Wilson J N, Spohr K, Hübel H, Bringel P, Neußer A, Schönwaßer G, Singh A K, Ma W C, Amro H, Bracco A, Leoni S, Benzoni G, Maj A, Petrache C M, Bianco G L, Bednarczyk P, Curien D 2002 Phys. Rev. Lett. 89 142503Google Scholar
[5] Wyss R, Granderath A, Bengtsson R, Von Brentano P, Dewald A, Gelberg A, Gizon A, Gizon J, Harissopulos S, Johnson A, Lieberz W, Nazarewicz W, Nyberg J, Schiffer K 1989 Nucl. Phys. A 505 337Google Scholar
[6] Sensharma N, Garg U, Chen Q B, Frauendorf S, Burdette D P, Cozzi J L, Howard K B, Zhu S, Carpenter M P, Copp P, Kondev F G, Lauritsen T, Li J, Seweryniak D, Wu J, Ayangeakaa A D, Hartley D J, Janssens R V F, Forney A M, Walters W B, Ghugre S S, Palit R 2020 Phys. Rev. Lett. 124 052501Google Scholar
[7] Xiong B, Wang Y 2019 At. Data Nucl. Data Tables 125 193Google Scholar
[8] Meng J, Peng J, Zhang S Q, Zhou S G 2006 Phys. Rev. C 73 037303Google Scholar
[9] Ayangeakaa A D, Garg U, Anthony M D, Frauendorf S, Matta J T, Nayak B K, Patel D, Chen Q B, Zhang S Q, Zhao P W, Qi B, Meng J, Janssens R V F, Carpenter M P, Chiara C J, Kondev F G, Lauritsen T, Seweryniak D, Zhu S, Ghugre S S, Palit R 2013 Phys. Rev. Lett. 110 172504Google Scholar
[10] Bohr A, Mottelson B R 1975 Nuclear Structure (Vol. Ⅱ) (New York: Benjamin
[11] Matta J T, Garg U, Li W, Frauendorf S, Ayangeakaa A D, Patel D, Schlax K W, Palit R, Saha S, Sethi J, Trivedi T, Ghugre S S, Raut R, Sinha A K, Janssens R V F, Zhu S, Carpenter M P, Lauritsen T, Seweryniak D, Chiara C J, Kondev F G, Hartley D J, Petrache C M, Mukhopadhyay S, Lakshmi D V, Raju M K, Madhusudhana Rao P V, Tandel S K, Ray S, Dönau F 2015 Phys. Rev. Lett. 114 082501Google Scholar
[12] Biswas S, Palit R, Frauendorf S, Garg U, Li W, Bhat G H, Sheikh J A, Sethi J, Saha S, Singh P, Choudhury D, Matta J T, Ayangeakaa A D, Dar W A, Singh V, Sihotra S 2019 Eur. Phys. J. A 55 159Google Scholar
[13] Lv B F, Petrache C M, Budaca R, Astier A, Zheng K K, Greenlees P, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Saren J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Guo S, Wang J G, Ong H J, Zhou X H, Sun Z Y, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2022 Phys. Rev. C 105 034302Google Scholar
[14] Rojeeta Devi K, Kumar S, Kumar N, Neelam, Babra F S, Laskar MdSR, Biswas S, Saha S, Singh P, Samanta S, Das S, Chakraborty S, Singh R P, Muralithar S, Kumar A 2021 Phys. Lett. B 823 136756Google Scholar
[15] Chen Q B, Frauendorf S, Petrache C M 2019 Phys. Rev. C 100 061301Google Scholar
[16] Guo R J, Wang S Y, Liu C, Bark R A, Meng J, Zhang S Q, Qi B, Rohilla A, Li Z H, Hua H, Chen Q B, Jia H, Lu X, Wang S, Sun D P, Han X C, Xu W Z, Wang E H, Bai H F, Li M, Jones P, Sharpey-Schafer J F, Wiedeking M, Shirinda O, Brits C P, Malatji K L, Dinoko T, Ndayishimye J, Mthembu S, Jongile S, Sowazi K, Kutlwano S, Bucher T D, Roux D G, Netshiya A A, Mdletshe L, Noncolela S, Mtshali W 2024 Phys. Rev. Lett. 132 092501Google Scholar
[17] Butler P A, Nazarewicz W 1996 Rev. Mod. Phys 68 349Google Scholar
[18] Butler P A, Gaffney L P, Spagnoletti P, Abrahams K, Bowry M, Cederkäll J, De Angelis G, De Witte H, Garrett P E, Goldkuhle A, Henrich C, Illana A, Johnston K, Joss D T, Keatings J M, Kelly N A, Komorowska M, Konki J, Kröll T, Lozano M, Nara Singh B S, O'Donnell D, Ojala J, Page R D, Pedersen L G, Raison C, Reiter P, Rodriguez J A, Rosiak D, Rothe S, Scheck M, Seidlitz M, Shneidman T M, Siebeck B, Sinclair J, Smith J F, Stryjczyk M, Van Duppen P, Vinals S, Virtanen V, Warr N, Wrzosek-Lipska K, Zielińska M 2020 Phys. Rev. Lett. 124 042503Google Scholar
[19] Hensley T C, Cottle P D, Tripathi V, Abromeit B, Anastasiou M, Baby L T, Baron J S, Caussyn D, Dungan R, Kemper K W, Lubna R S, Miller S L, Rijal N, Riley M A, Tabor S L, Tai P L, Villafana K 2017 Phys. Rev. C 96 034325Google Scholar
[20] Bucher B, Zhu S, Wu C Y, Janssens R V F, Cline D, Hayes A B, Albers M, Ayangeakaa A D, Butler P A, Campbell C M, Carpenter M P, Chiara C J, Clark J A, Crawford H L, Cromaz M, David H M, Dickerson C, Gregor E T, Harker J, Hoffman C R, Kay B P, Kondev F G, Korichi A, Lauritsen T, Macchiavelli A O, Pardo R C, Richard A, Riley M A, Savard G, Scheck M, Seweryniak D, Smith M K, Vondrasek R, Wiens A 2016 Phys. Rev. Lett. 116 112503Google Scholar
[21] Bucher B, Zhu S, Wu C Y, Janssens R V F, Bernard R N, Robledo L M, Rodríguez T R, Cline D, Hayes A B, Ayangeakaa A D, Buckner M Q, Campbell C M, Carpenter M P, Clark J A, Crawford H L, David H M, Dickerson C, Harker J, Hoffman C R, Kay B P, Kondev F G, Lauritsen T, Macchiavelli A O, Pardo R C, Savard G, Seweryniak D, Vondrasek R 2017 Phys. Rev. Lett. 118 152504Google Scholar
[22] Zhu S J, Sakhaee M, Yang L M, Gan C Y, Zhu L Y, Xu R Q, Jiang Z, Zhang Z, Long G L, Wen S X, Wu X G 2001 Chin. Phys. Lett. 18 1027Google Scholar
[23] Chen X C, Zhao J, Xu C, Hua H, Shneidman T M, Zhou S G, Wu X G, Li X Q, Zhang S Q, Li Z H, Liang W Y, Meng J, Xu F R, Qi B, Ye Y L, Jiang D X, Cheng Y Y, He C, Sun J J, Han R, Niu C Y, Li C G, Li P J, Wang C G, Wu H Y, Li Z H, Zhou H, Hu S P, Zhang H Q, Li G S, He C Y, Zheng Y, Li C B, Li H W, Wu Y H, Luo P W, Zhong J 2016 Phys. Rev. C 94 021301Google Scholar
[24] Mason P, Benzoni G, Bracco A, Camera F, Million B, Wieland O, Leoni S, Singh A K, Al-Khatib A, Hübel H, Bringel P, Bürger A, Neusser A, Schönwasser G, Nyakó B M, Timár J, Algora A, Dombrádi Zs, Gál J, Kalinka G, Molnár J, Sohler D, Zolnai L, Juhász K, Hagemann G B, Hansen C R, Herskind B, Sletten G, Kmiecik M, Maj A, Styczen J, Zuber K, Azaiez F, Hauschild K, Korichi A, Lopez-Martens A, Roccaz J, Siem S, Hannachi F, Scheurer J N, Bednarczyk P, Byrski Th, Curien D, Dorvaux O, Duchêne G, Gall B, Khalfallah F, Piqueras I, Robin J, Patel S B, Evans O A, Rainovski G, Petrache C M, Petrache D, Rana G L, Moro R, Angelis G D, Falon P, Lee I Y, Lisle J C, Cederwall B, Lagergen K, Lieder R M, Podsvirova E, Gast W, Jäger H, Redon N, Görgen A 2005 Phys. Rev. C 72 064315Google Scholar
[25] Liu C, Wang S Y, Bark R A, Zhang S Q, Meng J, Qi B, Jones P, Wyngaardt S M, Zhao J, Xu C, Zhou S G, Wang S, Sun D P, Liu L, Li Z Q, Zhang N B, Jia H, Li X Q, Hua H, Chen Q B, Xiao Z G, Li H J, Zhu L H, Bucher T D, Dinoko T, Easton J, Juhász K, Kamblawe A, Khaleel E, Khumalo N, Lawrie E A, Lawrie J J, Majola S N T, Mullins S M, Murray S, Ndayishimye J, Negi D, Noncolela S P, Ntshangase S S, Nyakó B M, Orce J N, Papka P, Sharpey-Schafer J F, Shirinda O, Sithole P, Stankiewicz M A, Wiedeking M 2016 Phys. Rev. Lett. 116 112501Google Scholar
[26] Xiao X, Wang S Y, Liu C, Bark R A, Meng J, Zhang S Q, Qi B, Hua H, Jones P, Wyngaardt S M, Wang S, Sun D P, Li Z Q, Zhang N B, Jia H, Guo R J, Han X C, Mu L, Lu X, Xu W Z, Niu C Y, Wang C G, Lawrie E A, Lawrie J J, Sharpey-Schafer J F, Wiedeking M, Majola S N T, Bucher T D, Dinoko T, Maqabuka B, Makhathini L, Mdletshe L, Khumalo N A, Shirinda O, Sowazi K 2022 Phys. Rev. C 106 064302Google Scholar
[27] Horen D J, Kelly W H, Yaffe L 1963 Phys. Rev. 129 1712Google Scholar
[28] von Ehrenstein D, Morrison G C, Nolen J A, Williams N 1970 Phys. Rev. C 1 2066Google Scholar
[29] Gizon J, Gizon A, Horen D J 1975 Nucl. Phys. 252 509Google Scholar
[30] Ma R, Liang Y, Paul E S, Xu N, Fossan D B, Hildingsson L, Wyss R A 1990 Phys. Rev. C 41 717
[31] Kaur N, Kumar A, Mukherjee G, Singh A, Kumar S, Kaur R, Singh V, Behera B R, Singh K P, Singh G, Sharma H P, Kumar S, Kumar Raju M, Madhusudhan Rao P V, Muralithar S, Singh R P, Kumar R, Madhvan N, Bhowmik R K 2014 Eur. Phys. J. A 50 5Google Scholar
[32] Guo S, Petrache C M, Mengoni D, Qiang Y H, Wang Y P, Wang Y Y, Meng J, Wang Y K, Zhang S Q, Zhao P W, Astier A, Wang J G, Fan H L, Dupont E, Lv B F, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Liu M L, Li G S, Zhou X H, Zhang Y H, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Ataç-Nyberg A, Bäck T, Cederwall B, Lawrie E A, Kuti I, Sohler D, Marchlewski T, Srebrny J, Tucholski A 2020 Phys. Lett. B 807 135572Google Scholar
[33] Testov D, Mengoni D, Goasduff A, Gadea A, Isocrate R, John P R, De Angelis G, Bazzacco D, Boiano C, Boso A, Cocconi P, Dueñas J A, Egea Canet F J, Grassi L, Hadyńska-Klek K, Jaworski G, Lunardi S, Menegazzo R, Napoli D R, Recchia F, Siciliano M, Valiente-Dobón J J 2019 Eur. Phys. J. A 55 47Google Scholar
[34] Ljungvall J, Palacz M, Nyberg J 2004 Nucl. Instrum. Methods Phys. Res., Sect. A 528 741Google Scholar
[35] Wang Y P, Wang Y Y, Meng J 2020 Phys. Rev. C 102 024313Google Scholar
[36] Lv B F, Petrache C M, Chen Q B, Meng J, Astier A, Dupont E, Greenlees P, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Saren J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Guo S, Liu M L, Wang J G, Zhou X H, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2019 Phys. Rev. C 100 024314Google Scholar
[37] Guo S, Petrache C M, Mengoni D, Liu Y X, Chen Q B, Qiang Y H, Astier A, Dupont E, Zheng K K, Wang J G, Ding B, Lv B F, Liu M L, Fang Y D, Zhou X H, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Cederwall B, Lawrie E A, Kuti I, Sohler D, Marchlewski T, Srebrny J, Tucholski A 2020 Phys. Rev. C 102 044320Google Scholar
[38] Ackermann B, Baltzer H, Ensel C, Freitag K, Grafen V, Günther C, Herzog P, Manns J, Marten-Tölle M, Müller U, Prinz J, Romanski I, Tölle R, deBoer J, Gollwitzer N, Maier H 1993 Nucl. Phys. 559 61Google Scholar
[39] Ayangeakaa A D, Garg U, Petrache C M, Guo S, Zhao P W, Matta J T, Nayak B K, Patel D, Janssens R V F, Carpenter M P, Chiara C J, Kondev F G, Lauritsen T, Seweryniak D, Zhu S, Ghugre S S, Palit R 2016 Phys. Rev. C 93 054317Google Scholar
[40] Nazarewicz W, Olanders P 1985 Nucl. Phys. 441 420Google Scholar
[41] Cottle P D 1990 Phys. Rev. C 41 517Google Scholar
[42] Frauendorf S, Dönau F 2014 Phys. Rev. C 89 014322Google Scholar
[43] Chakraborty S, Sharma H P, Tiwary S S, Majumder C, Gupta A K, Banerjee P, Ganguly S, Rai S, Pragati, Mayank, Kumar S, Kumar A, Palit R, Bhattacharjee S S, Singh R P, Muralithar S 2020 Phys. Lett. B 811 135854Google Scholar
[44] Byrne A P, Schiffer K, Dracoulis G D, Fabricius B, Kibédi T, Stuchbery A E, Lieb K P 1992 Nucl. Phys. 548 131Google Scholar
[45] Lawrie E A, Shirinda O, Petrache C M 2020 Phys. Rev. C 101 034306Google Scholar
[46] Chen Q B, Frauendorf S 2022 Eur. Phys. J. A 58 75Google Scholar
[47] Guo S, Zhou X H, Petrache C M, Lawrie E A, Mthembu S H, Fang Y D, Wu H Y, Wang H L, Meng H Y, Li G S, Qiang Y H, Wang J G, Liu M L, Zheng Y, Ding B, Zhang W Q, Rohilla A, Muhki K R, Yang Y Y, Ong H J, Ma J B, Xu S W, Bai Z, Fan H L, Huang J F, Li J H, Xu J H, Lv B F, Hua W, Gan Z G, Zhang Y H 2022 Phys. Lett. B 828 137010Google Scholar
[48] Lv B F, Petrache C M, Lawrie E A, Guo S, Astier A, Zheng K K, Ong H J, Wang J G, Zhou X H, Sun Z Y, Greenlees P T, Badran H, Calverley T, Cox D M, Grahn T, Hilton J, Julin R, Juutinen S, Konki J, Pakarinen J, Papadakis P, Partanen J, Rahkila P, Ruotsalainen P, Sandzelius M, Sarén J, Scholey C, Sorri J, Stolze S, Uusitalo J, Cederwall B, Ertoprak A, Liu H, Kuti I, Timár J, Tucholski A, Srebrny J, Andreoiu C 2022 Phys. Lett. B 824 136840Google Scholar
[49] Juutinen S, Törmänen S, Ahonen P, Carpenter M, Fahlander C, Gascon J, Julin R, Lampinen A, Lönnroth T, Nyberg J, Pakkanen A, Piiparinen M, Schiffer K, Šimeček P, Sletten G, Virtanen A 1995 Phys. Rev. C 52 2946Google Scholar
[50] Hübel H, Baldsiefen G, Mehta D, Thirumala Rao B V, Birkental U, Fröhlingsdorf G, Neffgen M, Nenoff N, Pancholi S C, Singh N, Schmitz W, Theine K, Willsau P, Grawe H, Heese J, Kluge H, Maier K H, Schramm M, Schubart R, Maier H J 1992 Prog. Part. Nucl. Phys. 28 427Google Scholar
[51] Clark R M, Wadsworth R, Paul E S, Beausang C W, Ali I, Astier A, Cullen D M, Dagnall P J, Fallon P, Joyce M J, Meyer M, Redon N, Regan P H, Nazarewicz W, Wyss R 1992 Phys. Lett. B 275 247Google Scholar
[52] Baldsiefen G, Chmel S, Hübel H, Korten W, Neffgen M, Pohler W, Van Severen U J, Heese J, Kluge H, Maier K H, Spohr K 1995 Nucl. Phys. 587 562Google Scholar
[53] Singh A K, Nenoff N, Roßbach D, Görgen A, Chmel S, Azaiez F, Astier A, Bazzacco D, Belleguic M, Bouneau S, Bourgeois C, Buforn N, Cederwall B, Deloncle I, Domscheit J, Hannachi F, Hauschild K, Hübel H, Korichi A, Korten W, Kröll T, LeCoz Y, Lopez-Martens A, Lucas R, Lunardi S, Maier H J, Mergel E, Meyer M, Petrache C M, Redon N, Reiter P, Rossi-Alvarez C, Schönwaßer G, Stezowski O, Thirolf P G, Wilson A N 2002 Nucl. Phys. 707 3Google Scholar
[54] Görgen A, Nenoff N, Hübel H, Baldsiefen G, Becker J A, Byrne A P, Chmel S, Clark R M, Deleplanque M A, Diamond R M, Fallon P, Hauschild K, Hibbert I M, Korten W, Krücken R, Lee I Y, Macchiavelli A O, Paul E S, Van Severen U J, Stephens F S, Vetter K, Wadsworth R, Wilson A N, Wilson J N 2001 Nucl. Phys. 683 108Google Scholar
[55] Frauendorf S 1993 Nucl. Phys. 2 259
[56] He C Y, Li X Q, Zhu L H, Wu X G, Qi B, Liu Y, Pan B, Li G S, Li L H, Wang Z M, Li Z Y, Wang S Y, Xu Q, Wang J G, Ding H B, Zhai J 2011 Phys. Rev. C 83 024309Google Scholar
[57] Li J, He C Y, Zheng Y, Li C B, Ma K Y, Lu J B 2013 Phys. Rev. C 88 014317Google Scholar
[58] Yao S H, Ma H L, Zhu L H, Wu X G, He C Y, Zheng Y, Zhang B, Li G S, Li C B, Hu S P, Cao X P, Yu B B, Xu C, Cheng Y Y 2014 Phys. Rev. C 89 014327Google Scholar
[59] Juutinen S, Šimeček P, Ahonen P, Carpenter M, Fahlander C, Gascon J, Julin R, Lampinen A, Lönnroth T, Nyberg J, Pakkanen A, Piiparinen M, Schiffer K, Sletten G, Törmänen S, Virtanen A 1995 Phys. Rev. C 51 1699Google Scholar
[60] Petrache C M, Walker P M, Guo S, Chen Q B, Frauendorf S, Liu Y X, Wyss R A, Mengoni D, Qiang Y H, Astier A, Dupont E, Li R, Lv B F, Zheng K K, Bazzacco D, Boso A, Goasduff A, Recchia F, Testov D, Galtarossa F, Jaworski G, Napoli D R, Riccetto S, Siciliano M, Valiente-Dobon J J, Liu M L, Zhou X H, Wang J G, Andreoiu C, Garcia F H, Ortner K, Whitmore K, Bäck T, Cederwall B, Lawrie E A, Kuti I, Sohler D, Timár J, Marchlewski T, Srebrny J, Tucholski A 2019 Phys. Lett. B 795 241Google Scholar
计量
- 文章访问数: 1989
- PDF下载量: 82
- 被引次数: 0