搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲大电流直线驱动装置电-磁-热-结构多场耦合的局域建模方法

孙建 王秋良 程军胜 熊玲 丛源涛 王贺阳

引用本文:
Citation:

脉冲大电流直线驱动装置电-磁-热-结构多场耦合的局域建模方法

孙建, 王秋良, 程军胜, 熊玲, 丛源涛, 王贺阳

Local modeling method for multi-field coupling of electric-magnetic-thermal-structure of pulsed high current linear driving device

Sun Jian, Wang Qiu-Liang, Cheng Jun-Sheng, Xiong Ling, Cong Yuan-Tao, Wang He-Yang
PDF
HTML
导出引用
  • 脉冲大电流直线驱动装置运行过程中产生的极端工况导致多种损伤形式. 为了研究多场耦合过程并分析多物理参量作用机理, 建立了动态下的电磁场、温度场、结构场数学物理模型. 利用轨道反向运动及接触远端物理量渐进平移不变的特性进行局域求解. 模型还考虑了材料属性温度依赖性, 热应力, 接触面摩擦热等实际因素. 各个物理场采用同一套网格体系, 电磁场以及温度场的有限元离散格式采用欧拉向后差分形式求解, 结构场则采用Newmark法进行求解, 完成多场耦合下的数值模拟. 通过与数值工具EMAP3D、Comsolol在相同模型和输入条件下的计算结果以及相关实验比较, 验证了该模型的可靠性. 本文采用一种C型电枢进行案例计算, 得到了多参量的典型演化过程, 并对速度趋肤效应下的场分布进行了讨论.
    The pulsed high current linear driving device operates under extreme conditions, and various forms of metal damages will reduce the service life of the device. At present, the multi-physics coupling mechanism of pulsed high current linear driving device is still unclear, and the multi-parameter diagnosis method in the laboratory environment is limited. Therefore, it is urgent to clarify the evolution process of multiple physical parameters through numerical modeling methods, in order to guide the optimization of the overall performance and improve the service life of the device. In this work, mathematical and physical models of electromagnetic field, temperature field and structural field under dynamic conditions are established. The local solution is carried out by using the characteristics of rail reverse motion and the invariant physical quantities at the distal end of the contact. The constraint equations of the non-equipotential surface of the rail entrance and the armature-rail interface conditions under the technical framework are derived. The constraint equations are applied by the penalty function method. The model also takes into account the practical factors such as the temperature dependence of the material properties, thermal stresses, and the frictional heat of the contact surface. The finite element discrete format of the electromagnetic field and the temperature field is solved in the form of Euler’s backward differentiation, and the structural field is solved by the Newmark method. The reliability of the model is verified by comparing the calculation results with the numerical tools EMAP3D and Comsol under the same configuration and input conditions, as well as related experiments. Through the numerical simulation of the C-type armature, the typical evolution process of the corresponding multi-parameter is obtained. During sliding electrical contact, the velocity skin effect becomes more pronounced with velocity increasing. The current is gradually concentrated on the surface of the rail, and the highest current density is found at the rear edge of the contact surface and at the edge of the outer arm of the armature. Moreover, the magnetic induction intensity at the tail of the contact surface continues to shrink over time. The heat-concentrated region appears at the top edge of the contact surface, and with time going by, it extends along the sliding direction and bottom direction of the armature. In addition, there is peak stress in the front of the rail contact and significant stress at the armature throat. When the local stress at the throat of the armature exceeds the corresponding yield strength, it can cause serious deformation or even fracture of the armature.
      通信作者: 王秋良, qiuliang@mail.iee.ac.cn ; 程军胜, jscheng@mail.iee.ac.cn
    • 基金项目: 中国科学院科研仪器设备研制项目(批准号: YJKYYQ20200011)、中国科学院联合基金项目(批准号: 8091A02)和齐鲁中科电工先进电磁驱动技术研究院科研基金项目资助的课题.
      Corresponding author: Wang Qiu-Liang, qiuliang@mail.iee.ac.cn ; Cheng Jun-Sheng, jscheng@mail.iee.ac.cn
    • Funds: Project supported by the Scientific Instrument Developing Project of the Chinese Academy of Sciences, China (Grant No. YJKYYQ20200011), the Joint Funds of Chinese Academy of Sciences, China (Grant No. 8091A02), and the Research Funds of Qilu Zhongke Advanced Electromagnetic Drive Technology Institute, China.
    [1]

    Fair H D 2001 IEEE Trans. Magn. 37 25Google Scholar

    [2]

    马伟明, 鲁军勇 2023 电工技术学报 38 3943Google Scholar

    Ma W M, Lu J Y 2023 Trans. Chin. Electrotech. Soc. 38 3943Google Scholar

    [3]

    Sun J, Cheng J, Wang Q 2021 IEEE Trans. Plasma Sci. 49 3988Google Scholar

    [4]

    Stefani F, Parker J V 1999 IEEE Trans. Magn. 35 312Google Scholar

    [5]

    Li S, Li J, Xia S, Zhang Q, Liu P 2019 IEEE Trans. Plasma Sci. 47 2399Google Scholar

    [6]

    Sun J, Cheng J, Wang Q 2022 IEEE Trans. Plasma Sci. 50 1032Google Scholar

    [7]

    殷强, 张合, 李豪杰, 史云雷 2016 强激光与粒子束 28 025008Google Scholar

    Yin Q, Zhang H, Li H J, Shi Y L 2016 High Power Laser Part. Beams 28 025008Google Scholar

    [8]

    李昕, 翁春生 2009 火炮发射与控制学报 2009 1Google Scholar

    Li X, Weng C S 2009 J. Gun Launch Control 2009 1Google Scholar

    [9]

    Li X, Weng C S 2008 Prog. Nat. Sci. 18 1565Google Scholar

    [10]

    Tang B, Xu Y, Lin Q, Li B 2017 IEEE Trans. Plasma Sci. 45 1361Google Scholar

    [11]

    郑杜成, 徐蓉, 成文凭, 赵伟康, 袁伟群, 严萍 2019 电工电能新技术 38 33Google Scholar

    Zheng D C, Xu R, Cheng W P, Zhao W K, Yuan W Q, Yan P 2019 Adv. Technol. Electr. Eng. Energy 38 33Google Scholar

    [12]

    翟小飞, 杨帆, 张晓, 刘华 2021 海军工程大学学报 33 19Google Scholar

    Zhai X F, Yang F, Zhang X, Liu H 2021 J. Naval Univ. Eng. 33 19Google Scholar

    [13]

    Hsieh K T 1995 IEEE Trans. Magn. 31 604Google Scholar

    [14]

    Hsieh K T, Kim B K 1999 IEEE Trans. Magn. 35 166Google Scholar

    [15]

    Hsieh K T 2007 IEEE Trans. Magn. 43 1131Google Scholar

    [16]

    Lin Q H, Li B M 2020 IEEE Trans. Plasma Sci. 48 2287Google Scholar

    [17]

    Lin Q H, Li B M 2016 Defence Technol. 12 101Google Scholar

    [18]

    林庆华, 栗保明 2020 兵工学报 41 1697Google Scholar

    Lin Q H, Li B M 2020 Acta Armamentarii 41 1697Google Scholar

    [19]

    Shatoff H, Pearson D A, Kull A E 2005 IEEE Pulsed Power Conference Monterey, CA, USA, June 13–17, 2005 p253

    [20]

    Wang G H, Xie L, He Y, Song S Y, Gao J J 2016 IEEE Trans. Plasma Sci. 44 1424Google Scholar

    [21]

    王刚华, 谢龙, 赵海龙 2021 爆炸与冲击 41 111Google Scholar

    Wang G H, Xie L, Zhao H L 2021 Explosion and Shock Waves 41 111Google Scholar

  • 图 1  多物理场耦合模型

    Fig. 1.  Multi physical field coupling model.

    图 2  基于轨道反向运动的滑动电接触时间演化示意图

    Fig. 2.  Schematic of time evolution of sliding electrical contact based on rail reverse motion.

    图 3  块状电枢下电流波形的比较

    Fig. 3.  Comparison of current waveforms under block armature.

    图 4  网格及结构场边界条件

    Fig. 4.  Mesh and structural field boundary conditions.

    图 5  X, Y, Z三方向位移三维对比 (a) X方向; (b) Y方向; (c) Z方向

    Fig. 5.  3D comparison of displacement in X, Y and Z directions: (a) X-direction; (b) Y-direction; (c) Z-direction.

    图 6  磁场对比

    Fig. 6.  Magnetic field comparison.

    图 7  电流对比

    Fig. 7.  Current comparison.

    图 8  网格剖分示意图(1/4)

    Fig. 8.  Schematic diagram of mesh (1/4).

    图 9  激励电流波形

    Fig. 9.  Excitation current waveform.

    图 10  速度及位移波形

    Fig. 10.  Velocity and displacement waveforms.

    图 11  电流对比图

    Fig. 11.  Current comparison diagram.

    图 12  电流密度的演化 (a) 0.1 ms; (b) 0.2 ms; (c) 0.6 ms

    Fig. 12.  Evolution of current density: (a) 0.1 ms; (b) 0.2 ms; (c) 0.6 ms.

    图 13  磁感应强度的演化 (a) 0.1 ms; (b) 0.2 ms; (c) 0.6 ms

    Fig. 13.  Evolution of the magnetic induction intensity: (a) 0.1 ms; (b) 0.2 ms; (c) 0.6 ms.

    图 14  经验公式及动态计算的电磁推力比较

    Fig. 14.  Comparison of electromagnetic thrust based on empirical formula and dynamic calculation.

    图 15  0.18 ms时的导体温度分布

    Fig. 15.  Temperature distribution of conductor at 0.18 ms.

    图 16  电枢接触面温度演化 (a) 0.1 ms; (b) 0.3 ms

    Fig. 16.  Temperature evolution of armature contact surface: (a) 0.1 ms; (b) 0.3 ms.

    图 17  0.6 ms时结构场位移分布 (a) X方向; (b) Y方向; (c) Z方向

    Fig. 17.  Displacement distribution of structural field at 0.6 ms: (a) X-direction; (b) Y-direction; (c) Z-direction.

    图 18  0.5 ms时的von Mises应力分布

    Fig. 18.  Von Mises stress distribution at 0.5 ms.

    图 19  电磁法向力与接触压力的比较

    Fig. 19.  Comparison of electromagnetic normal force and contact force.

    图 20  t = 0.6 ms时电枢接触面温度 (a) 无接触压力; (b) 电磁法向力近似接触压力; (c) 结构场接触压力

    Fig. 20.  Temperature of the armature contact surface at t = 0.6 ms: (a) No contact pressure; (b) electromagnetic normal force approximates contact pressure; (c) structural field contact pressure.

    表 1  仿真模型电磁场参数

    Table 1.  Electromagnetic field parameters of simulation model.

    参数 初始电导率
    σ0/(MS·m–1)
    磁导率
    μ/(10–6 H·m–1)
    质量密度
    ρ/(kg·m–3)
    比热容
    c/(J·kg–1·K–1)
    热导率
    λ/(W·m–1·K–1)
    电阻率温度系数
    α/K
    熔化温度
    Tm/K
    58.8 1.2566 8960 385 385 0.0039 1356.15
    25 1.2566 2700 896 167 0.0041 924.85
    下载: 导出CSV

    表 2  仿真模型热场及结构场参数

    Table 2.  Thermal field and structural field parameters of simulation model.

    参数弹性模量
    E/GPa
    线膨胀系数
    β/(µm·m–1·K–1)
    泊松比 μPoisson
    11016.50.34
    68.923.60.33
    下载: 导出CSV
  • [1]

    Fair H D 2001 IEEE Trans. Magn. 37 25Google Scholar

    [2]

    马伟明, 鲁军勇 2023 电工技术学报 38 3943Google Scholar

    Ma W M, Lu J Y 2023 Trans. Chin. Electrotech. Soc. 38 3943Google Scholar

    [3]

    Sun J, Cheng J, Wang Q 2021 IEEE Trans. Plasma Sci. 49 3988Google Scholar

    [4]

    Stefani F, Parker J V 1999 IEEE Trans. Magn. 35 312Google Scholar

    [5]

    Li S, Li J, Xia S, Zhang Q, Liu P 2019 IEEE Trans. Plasma Sci. 47 2399Google Scholar

    [6]

    Sun J, Cheng J, Wang Q 2022 IEEE Trans. Plasma Sci. 50 1032Google Scholar

    [7]

    殷强, 张合, 李豪杰, 史云雷 2016 强激光与粒子束 28 025008Google Scholar

    Yin Q, Zhang H, Li H J, Shi Y L 2016 High Power Laser Part. Beams 28 025008Google Scholar

    [8]

    李昕, 翁春生 2009 火炮发射与控制学报 2009 1Google Scholar

    Li X, Weng C S 2009 J. Gun Launch Control 2009 1Google Scholar

    [9]

    Li X, Weng C S 2008 Prog. Nat. Sci. 18 1565Google Scholar

    [10]

    Tang B, Xu Y, Lin Q, Li B 2017 IEEE Trans. Plasma Sci. 45 1361Google Scholar

    [11]

    郑杜成, 徐蓉, 成文凭, 赵伟康, 袁伟群, 严萍 2019 电工电能新技术 38 33Google Scholar

    Zheng D C, Xu R, Cheng W P, Zhao W K, Yuan W Q, Yan P 2019 Adv. Technol. Electr. Eng. Energy 38 33Google Scholar

    [12]

    翟小飞, 杨帆, 张晓, 刘华 2021 海军工程大学学报 33 19Google Scholar

    Zhai X F, Yang F, Zhang X, Liu H 2021 J. Naval Univ. Eng. 33 19Google Scholar

    [13]

    Hsieh K T 1995 IEEE Trans. Magn. 31 604Google Scholar

    [14]

    Hsieh K T, Kim B K 1999 IEEE Trans. Magn. 35 166Google Scholar

    [15]

    Hsieh K T 2007 IEEE Trans. Magn. 43 1131Google Scholar

    [16]

    Lin Q H, Li B M 2020 IEEE Trans. Plasma Sci. 48 2287Google Scholar

    [17]

    Lin Q H, Li B M 2016 Defence Technol. 12 101Google Scholar

    [18]

    林庆华, 栗保明 2020 兵工学报 41 1697Google Scholar

    Lin Q H, Li B M 2020 Acta Armamentarii 41 1697Google Scholar

    [19]

    Shatoff H, Pearson D A, Kull A E 2005 IEEE Pulsed Power Conference Monterey, CA, USA, June 13–17, 2005 p253

    [20]

    Wang G H, Xie L, He Y, Song S Y, Gao J J 2016 IEEE Trans. Plasma Sci. 44 1424Google Scholar

    [21]

    王刚华, 谢龙, 赵海龙 2021 爆炸与冲击 41 111Google Scholar

    Wang G H, Xie L, Zhao H L 2021 Explosion and Shock Waves 41 111Google Scholar

  • [1] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元. 物理学报, 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [2] 曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超. 极化中子散射零磁场屏蔽体的有限元分析. 物理学报, 2023, 72(14): 142801. doi: 10.7498/aps.72.20230559
    [3] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [4] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解. 物理学报, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [5] 张忠宇, 姚熊亮, 张阿漫. 基于间断有限元方法的并列圆柱层流流动特性. 物理学报, 2016, 65(8): 084701. doi: 10.7498/aps.65.084701
    [6] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [7] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [8] 陆海鹏, 韩满贵, 邓龙江, 梁迪飞, 欧雨. Co纳米线磁矩反转动态过程的有限元微磁学模拟. 物理学报, 2010, 59(3): 2090-2096. doi: 10.7498/aps.59.2090
    [9] 和兴锁, 邓峰岩, 吴根勇, 王睿. 对于具有大范围运动和非线性变形的柔性梁的有限元动力学建模. 物理学报, 2010, 59(1): 25-29. doi: 10.7498/aps.59.25
    [10] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析. 物理学报, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [11] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [12] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [13] 陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟. 物理学报, 2009, 58(1): 390-398. doi: 10.7498/aps.58.390
    [14] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [15] 汤 波, 李俊峰, 王天舒. 水珠滴落的最小二乘粒子有限元方法模拟. 物理学报, 2008, 57(11): 6722-6729. doi: 10.7498/aps.57.6722
    [16] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构. 物理学报, 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [17] 王新军, 王玲玲, 黄维清, 唐黎明, 邹炳锁, 陈克求. 三元合金缺陷层对有限超晶格中局域界面光学声子模的影响. 物理学报, 2007, 56(1): 429-436. doi: 10.7498/aps.56.429
    [18] 赵 艳, 沈中华, 陆 建, 倪晓武. 激光在管道中激发周向导波的有限元模拟. 物理学报, 2007, 56(1): 321-326. doi: 10.7498/aps.56.321
    [19] 张宏伟, 荣传兵, 张 健, 张绍英, 沈保根. 纳米晶永磁Pr2Fe14B微磁学有限元法的模拟计算研究. 物理学报, 2003, 52(3): 718-721. doi: 10.7498/aps.52.718
    [20] 杜启振, 杨慧珠. 方位各向异性黏弹性介质波场有限元模拟. 物理学报, 2003, 52(8): 2010-2014. doi: 10.7498/aps.52.2010
计量
  • 文章访问数:  1847
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-02-26
  • 上网日期:  2024-03-19
  • 刊出日期:  2024-05-20

/

返回文章
返回