搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相位同步动力学重构网络单纯复形的相互作用

罗恺明 管曙光 邹勇

引用本文:
Citation:

基于相位同步动力学重构网络单纯复形的相互作用

罗恺明, 管曙光, 邹勇

Reconstruction of simplex structures based on phase synchronization dynamics

Luo Kai-Ming, Guan Shu-Guang, Zou Yong
PDF
HTML
导出引用
  • 复杂网络的高阶相互作用, 如单纯复形和超边等, 已经成为了研究的热点. 本文提出一种基于节点同步动力学的特性来重构网络的单纯复形结构的新方法. 通过分析Kuramoto-Sakaguchi模型中节点相位的时间序列同步性, 建立了网络拓扑结构的解析描述, 实现了对网络结构的精确辨识. 该方法的核心在于, 运用理论手段推导得到了拉普拉斯矩阵与线性化Kuramoto-Sakaguchi系统相位之间的解析联系. 这一联系不仅具有强大的普适性, 而且能够有效地应用于识别包含任意阶单纯复形相互作用的网络结构. 本文的研究进一步表明, 这种解析关系能够用于鉴别网络中的对称节点, 并且通过数值模拟证实了间接相互作用节点之间发生遥同步的现象与网络结构的对称性有着密切的联系. 这些发现为深入理解网络的结构特性和动力学行为提供了新的理论工具和视角.
    High-order interactions as exemplified by simplex and hyper-edge structures have emerged as a prominent area of interest in complex network research. These high-order interactions introduce much complexity into the interplay between nodes, which often require advanced analytical approaches to fully characterize the underlying network structures. For example, methods based on statistical dependencies have been proposed to identify high-order structures from multi-variate time series. In this work, we reconstruct the simplex structures of a network based on synchronization dynamics between network nodes. More specifically, we construct a topological structure of network by examining the temporal synchronization of phase time series data derived from the Kuramoto-Sakaguchi (KS) model. In addition, we show that there is an analytical relationship between the Laplacian matrix of the network and phase variables of the linearized KS model. Our method identifies structural symmetric nodes within a network, which therefore builds a correlation between node synchronization behavior and network’s symmetry. This representation allows for identifying high-order network structure, showing its advantages over statistical methods. In addition, remote synchronization is a complex dynamical process, where spatially separated nodes within a network can synchronize their states despite the lack of direct interaction. Furthermore, through numerical simulations, we observe the strong correlation between remote synchronization among indirectly interacting nodes and the network’s underlying symmetry. This finding reveals the intricate relationship between network structure and the dynamical process. In summary, we propose a powerful tool for analyzing complex networks, in particular uncovering the interplay between network structure and dynamics. We provide novel insights for further exploring and understanding the high-order interactions and the underlying symmetry of complex networks.
      通信作者: 管曙光, sgguan@phy.ecnu.edu.cn ; 邹勇, yzou@phy.ecnu.edu.cn
    • 基金项目: 科技创新2030-“脑科学与类脑研究”重大项目(批准号: 2021ZD0202600)资助的课题.
      Corresponding author: Guan Shu-Guang, sgguan@phy.ecnu.edu.cn ; Zou Yong, yzou@phy.ecnu.edu.cn
    • Funds: Project supported by the National Science and Technology Innovation 2030-Major Project of the Ministry of Science and Technology of China “Brain Science and Neuromorphic Research” (Grant No. 2021ZD0202600).
    [1]

    Réka A, Albert-László B 2002 Rev. Mod. Phys. 74 47Google Scholar

    [2]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [3]

    Federico B, Giulia C, Iacopo I, Vito L, Maxime L, Alice P, Jean-Gabriel Y Giovanni P 2020 Phys. Rep. 874 1Google Scholar

    [4]

    Hidetsugu S, Yoshiki K 1986 Prog. Theor. Phys. 76 576Google Scholar

    [5]

    Shinya W, Steven H S 1993 Phys. Rev. Lett. 70 2391Google Scholar

    [6]

    张海峰, 王文旭 2020 物理学报 69 088906Google Scholar

    Zhang H F, Wang W X 2020 Acta Phys. Sin. 69 088906Google Scholar

    [7]

    Wang W, Nie Y Y, Li W Y, Lin T, Shang M S, Su S, Tang Y, Zhang Y C 2024 Phys. Rep. 1056 1Google Scholar

    [8]

    Andrea F, Salvatore C, Giulio R 2023 App. Net. Sci. 8 31Google Scholar

    [9]

    Eyal Bairey, Eric D K, Roy K 2016 Nat. Commun. 7 12285Google Scholar

    [10]

    Nian F Z, Shi Y Y, Cao J 2021 J Comput. Sci.-Neth. 55 101438Google Scholar

    [11]

    Alessia A, Gennaro C, Vittorio S, Carmine S 2021 IEEE Access 9 140938Google Scholar

    [12]

    Marc T, Jose C 2014 J. Phys. A 47 343001Google Scholar

    [13]

    Marc T 2007 Phys. Rev. Lett. 98 224101Google Scholar

    [14]

    Yu D C, Marco R, Ljupco K 2006 Phys. Rev. Lett. 97 188701Google Scholar

    [15]

    Wang W X, Yang R, Lai Y C, Vassilios K, Celso G 2011 Phys. Rev. Lett. 106 154101Google Scholar

    [16]

    徐翔, 朱承, 朱先强 2021 物理学报 70 088901Google Scholar

    Xu X, Zhu C, Zhu X Q 2021 Acta Phys. Sin. 70 088901Google Scholar

    [17]

    Jose C, Mor N, Sarah H, Marc T 2017 Nat. Commun. 8 2192Google Scholar

    [18]

    Xiao N J, Zhou A F, Megan L. Kempher, Jason Z. Shi, Yuan M T, Guo X, Wu L W, Ning D L, Joy Van Nostrand, Mary K F, Zhou J Z 2022 Proc. Natl. Acad. Sci. USA 119 e2109995119Google Scholar

    [19]

    Yu D C, Ulrich P 2010 Phys. Rev. E 82 026108Google Scholar

    [20]

    Elad S, Michael B II, Ronen S, William B 2006 Nature 440 1007Google Scholar

    [21]

    Timothy S G, DI Diego B, David L, James J C 2003 Science 301 102Google Scholar

    [22]

    Barzel, Baruch, Barabási, Albert-László 2013 Nat. Biotechnol. 31 720Google Scholar

    [23]

    Björn S, Matthias W, Rainer D, Jürgen K, Jens T 2006 Phys. Rev. Lett. 96 208103Google Scholar

    [24]

    Soheil F, Daniel M, Muriel M, Manolis K 2013 Nat. Biotechnol. 31 726Google Scholar

    [25]

    Bergner A, Frasca M, Sciuto G, Buscarino A, Ngamga E J, Fortuna L, Kurths J 2012 Phys. Rev. E 85 026208Google Scholar

    [26]

    Vlasov V, Bifone A 2017 Sci. Rep. 7 10403Google Scholar

    [27]

    Choudhary A, Saha A, Krueger S, Finke C, Rosa E, Freund J A, Feudel U 2021 Phys. Rev. Res. 3 023144Google Scholar

    [28]

    Daniel M A, Steven H S 2006 Int. J. Bifurcat. Chaos 16 21Google Scholar

    [29]

    Karakaya B, Minati L, Gambuzza L V, Frasca M 2019 Phys. Rev. E 99 052301Google Scholar

    [30]

    Vincenzo N, Miguel V, Mario C, Albert D G, Vito L 2013 Phys. Rev. Lett. 110 174102Google Scholar

    [31]

    李江, 刘影, 王伟, 周涛 2024 物理学报 73 048901Google Scholar

    Li J, Liu Y, Wang W, Zhou T 2024 Acta Phys. Sin. 73 048901Google Scholar

    [32]

    Tang Y, Shi D H, Lü L Y 2022 Commun. Phys. 5 96Google Scholar

    [33]

    Dummit D S, Foote R M 2004 Abstract Algebra (Hoboken: John Wiley & Sons) pp106−111

  • 图 1  无向单纯复形高阶交互作用的结构模体. 分别表示1阶、2阶和3阶单纯复形. 本文研究2阶单纯形, 描述三个节点之间的相互作用

    Fig. 1.  Network motifs of undirected simplex structures, including 1-simplex, 2-simplex, and 3-simplex. The case of 2-simplex capturing interactions between three nodes is the focus of the present study.

    图 2  基于KS同步过程的网络结构重建步骤. 其中蓝色线表示1阶单纯复形, 蓝色区域、橙黄色区域、红色区域分别表示2阶、3阶、4阶单纯复形

    Fig. 2.  Framework of network structure reconstruction by synchronization process of KS oscillators. Blue line represents 1-simplex. Blue, orange, red areas represent 2-simplex, 3-simplex and 4-simplex respectively.

    图 3  $N=3$的网络中各对节点相位差的时间序列 (a)全连; (b)链式网络. 参数设置: $\omega=0$, $\lambda=1$, $\alpha=0.1$

    Fig. 3.  Phase difference in a network of $N= 3$: (a) Fully connected; (b) chain connected nodes. Parameters: $\omega=0$, $\lambda=1$, $\alpha=0.1$.

    图 4  (a)$N=12$的网络, 其中节点11和节点12随机连入一个全连网络; (b)节点11和节点12的相位差$|\theta_{11}-\theta_{12}|$的时间片段; (c)$N=5$的星形网络, 节点1为中心节点, 其余为叶子节点; (d)星形网络中心与叶子节点的相位差. 所有叶子节点间的相位差为0, 而中心与叶子节点之间存在恒定的非零相位差. 参数设置: $\omega=0$, $\lambda=1$, $\alpha=0.1$

    Fig. 4.  (a) A network of $N= 12$ nodes with node 11 and node 12 being randomly connected to the fully connected network; (b) temporal segment of the phase difference $|\theta_{10} - \theta_{11} |$ between node 10 and node 11; (c) a star network with one hub node and four leaf nodes; (d) phase difference between leaf nodes are zeros, while non-zero values between the hub and leaf nodes. Parameter values: $\omega=0$, $\lambda=1$, $\alpha=0.1$.

    图 5  三个节点组成的链式网络(左下角为网络结构示意图)中相位差的时间序列. 其中黑色虚线为方程(31)的理论解, 蓝色(橙色、绿色)点线分别对应节点1和2 (节点1和3、节点2和3)的相位差$\theta_{12}$($\theta_{13}$, $\theta_{23}$)

    Fig. 5.  Phase difference of each pair of nodes in a chain of three oscillators (inset shows the schematic network structure). The black dashed line is the theoretical solution by Eq. (31). The blue (orange, green) dot line corresponds to the phase difference between node 1 and node 2 (node 1 and node 3, node 2 and node 3) $\theta_{12}$ ($\theta_{13}$, $\theta_{23}$).

    图 6  (a) 由8个节点组成的网络结构示意图, 其中包含了一个二阶单纯复形(由节点1, 2, 3组成)和8个一阶单纯复形; (b) 节点2—8与节点1之间的相位差, 其中仅有$\theta_1-\theta_2$的相位差值快速收敛至稳态值0

    Fig. 6.  (a) A network consisting of 8 nodes, including one second-order simplex (consisting of nodes 1, 2, 3) and eight first-order simplex; (b) the pairwise phase mismatch between nodes 2−8 and node 1 in the system, where only the phase difference $\theta_1-\theta_2$ converges to 0.

  • [1]

    Réka A, Albert-László B 2002 Rev. Mod. Phys. 74 47Google Scholar

    [2]

    Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar

    [3]

    Federico B, Giulia C, Iacopo I, Vito L, Maxime L, Alice P, Jean-Gabriel Y Giovanni P 2020 Phys. Rep. 874 1Google Scholar

    [4]

    Hidetsugu S, Yoshiki K 1986 Prog. Theor. Phys. 76 576Google Scholar

    [5]

    Shinya W, Steven H S 1993 Phys. Rev. Lett. 70 2391Google Scholar

    [6]

    张海峰, 王文旭 2020 物理学报 69 088906Google Scholar

    Zhang H F, Wang W X 2020 Acta Phys. Sin. 69 088906Google Scholar

    [7]

    Wang W, Nie Y Y, Li W Y, Lin T, Shang M S, Su S, Tang Y, Zhang Y C 2024 Phys. Rep. 1056 1Google Scholar

    [8]

    Andrea F, Salvatore C, Giulio R 2023 App. Net. Sci. 8 31Google Scholar

    [9]

    Eyal Bairey, Eric D K, Roy K 2016 Nat. Commun. 7 12285Google Scholar

    [10]

    Nian F Z, Shi Y Y, Cao J 2021 J Comput. Sci.-Neth. 55 101438Google Scholar

    [11]

    Alessia A, Gennaro C, Vittorio S, Carmine S 2021 IEEE Access 9 140938Google Scholar

    [12]

    Marc T, Jose C 2014 J. Phys. A 47 343001Google Scholar

    [13]

    Marc T 2007 Phys. Rev. Lett. 98 224101Google Scholar

    [14]

    Yu D C, Marco R, Ljupco K 2006 Phys. Rev. Lett. 97 188701Google Scholar

    [15]

    Wang W X, Yang R, Lai Y C, Vassilios K, Celso G 2011 Phys. Rev. Lett. 106 154101Google Scholar

    [16]

    徐翔, 朱承, 朱先强 2021 物理学报 70 088901Google Scholar

    Xu X, Zhu C, Zhu X Q 2021 Acta Phys. Sin. 70 088901Google Scholar

    [17]

    Jose C, Mor N, Sarah H, Marc T 2017 Nat. Commun. 8 2192Google Scholar

    [18]

    Xiao N J, Zhou A F, Megan L. Kempher, Jason Z. Shi, Yuan M T, Guo X, Wu L W, Ning D L, Joy Van Nostrand, Mary K F, Zhou J Z 2022 Proc. Natl. Acad. Sci. USA 119 e2109995119Google Scholar

    [19]

    Yu D C, Ulrich P 2010 Phys. Rev. E 82 026108Google Scholar

    [20]

    Elad S, Michael B II, Ronen S, William B 2006 Nature 440 1007Google Scholar

    [21]

    Timothy S G, DI Diego B, David L, James J C 2003 Science 301 102Google Scholar

    [22]

    Barzel, Baruch, Barabási, Albert-László 2013 Nat. Biotechnol. 31 720Google Scholar

    [23]

    Björn S, Matthias W, Rainer D, Jürgen K, Jens T 2006 Phys. Rev. Lett. 96 208103Google Scholar

    [24]

    Soheil F, Daniel M, Muriel M, Manolis K 2013 Nat. Biotechnol. 31 726Google Scholar

    [25]

    Bergner A, Frasca M, Sciuto G, Buscarino A, Ngamga E J, Fortuna L, Kurths J 2012 Phys. Rev. E 85 026208Google Scholar

    [26]

    Vlasov V, Bifone A 2017 Sci. Rep. 7 10403Google Scholar

    [27]

    Choudhary A, Saha A, Krueger S, Finke C, Rosa E, Freund J A, Feudel U 2021 Phys. Rev. Res. 3 023144Google Scholar

    [28]

    Daniel M A, Steven H S 2006 Int. J. Bifurcat. Chaos 16 21Google Scholar

    [29]

    Karakaya B, Minati L, Gambuzza L V, Frasca M 2019 Phys. Rev. E 99 052301Google Scholar

    [30]

    Vincenzo N, Miguel V, Mario C, Albert D G, Vito L 2013 Phys. Rev. Lett. 110 174102Google Scholar

    [31]

    李江, 刘影, 王伟, 周涛 2024 物理学报 73 048901Google Scholar

    Li J, Liu Y, Wang W, Zhou T 2024 Acta Phys. Sin. 73 048901Google Scholar

    [32]

    Tang Y, Shi D H, Lü L Y 2022 Commun. Phys. 5 96Google Scholar

    [33]

    Dummit D S, Foote R M 2004 Abstract Algebra (Hoboken: John Wiley & Sons) pp106−111

  • [1] 王璇, 杜健嵘, 李志军, 马铭磷, 李春来. 串扰忆阻突触异质离散神经网络的共存放电与同步行为. 物理学报, 2024, 73(11): 110503. doi: 10.7498/aps.73.20231972
    [2] 李江, 刘影, 王伟, 周涛. 识别高阶网络传播中最有影响力的节点. 物理学报, 2024, 73(4): 048901. doi: 10.7498/aps.73.20231416
    [3] 王振华, 刘宗华. 复杂网络上的部分同步化: 奇异态、遥同步与集团同步. 物理学报, 2020, 69(8): 088902. doi: 10.7498/aps.69.20191973
    [4] 梁义, 王兴元. 结点含时滞的具有零和非零时滞耦合的复杂网络混沌同步. 物理学报, 2013, 62(1): 018901. doi: 10.7498/aps.62.018901
    [5] 刘金良. 具有随机节点结构的复杂网络同步研究. 物理学报, 2013, 62(4): 040503. doi: 10.7498/aps.62.040503
    [6] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [7] 吕翎, 李雨珊, 韦琳玲, 于淼, 张檬. 基于滑模控制法实现规则网络的混沌同步. 物理学报, 2012, 61(12): 120504. doi: 10.7498/aps.61.120504
    [8] 吕翎, 商锦玉, 朱佳博, 沈娜, 柳爽, 张新. 激光Maxwell-Bloch 方程时空混沌网络的同步研究. 物理学报, 2012, 61(14): 140504. doi: 10.7498/aps.61.140504
    [9] 张檬, 吕翎, 吕娜, 范鑫. 结构与参量不确定的网络与网络之间的混沌同步. 物理学报, 2012, 61(22): 220508. doi: 10.7498/aps.61.220508
    [10] 梁义, 王兴元. 基于低阶矩阵最大特征值的复杂网络牵制混沌同步. 物理学报, 2012, 61(3): 038901. doi: 10.7498/aps.61.038901
    [11] 柳爽, 吕翎, 李钢. 一类不确定复杂网络的滑模追踪同步. 物理学报, 2012, 61(16): 160507. doi: 10.7498/aps.61.160507
    [12] 杨浦, 郑志刚. 基于动力学同步的复杂网络结构识别速度研究. 物理学报, 2012, 61(12): 120508. doi: 10.7498/aps.61.120508
    [13] 王健安. 时变时滞耦合两个不同复杂网络的自适应广义同步. 物理学报, 2012, 61(2): 020509. doi: 10.7498/aps.61.020509
    [14] 吕翎, 柳爽, 张新, 朱佳博, 沈娜, 商锦玉. 节点结构互异的复杂网络的时空混沌反同步. 物理学报, 2012, 61(9): 090504. doi: 10.7498/aps.61.090504
    [15] 李凌, 金贞兰, 李斌. 基于因子分析方法的相位同步脑电源的时-空动力学分析. 物理学报, 2011, 60(4): 048703. doi: 10.7498/aps.60.048703
    [16] 曾长燕, 孙梅, 田立新. 基于自适应-脉冲控制方法实现时变耦合驱动-响应复杂网络的投影同步. 物理学报, 2010, 59(8): 5288-5292. doi: 10.7498/aps.59.5288
    [17] 敬晓丹, 吕翎. 非线性耦合完全网络的时空混沌同步. 物理学报, 2009, 58(11): 7539-7543. doi: 10.7498/aps.58.7539
    [18] 刘勇. 耦合系统的混沌相位同步. 物理学报, 2009, 58(2): 749-755. doi: 10.7498/aps.58.749
    [19] 吕翎, 张超. 一类节点结构互异的复杂网络的混沌同步. 物理学报, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [20] 吴 王莹, 徐健学, 何岱海, 靳伍银. 两个非耦合Hindmarsh-Rose神经元同步的非线性特征研究. 物理学报, 2005, 54(7): 3457-3464. doi: 10.7498/aps.54.3457
计量
  • 文章访问数:  1512
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-04-26
  • 上网日期:  2024-05-09
  • 刊出日期:  2024-06-20

/

返回文章
返回