搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

闭合回路相干增益原子系统中完美非互易反射光放大

李观荣 郑怡婷 徐琼怡 裴笑山 耿玥 严冬 杨红

引用本文:
Citation:

闭合回路相干增益原子系统中完美非互易反射光放大

李观荣, 郑怡婷, 徐琼怡, 裴笑山, 耿玥, 严冬, 杨红

Perfect non-reciprocal reflection amplification in closed loop coherent gain atomic system

Li Guan-Rong, Zheng Yi-Ting, Xu Qiong-Yi, Pei Xiao-Shan, Geng Yue, Yan Dong, Yang Hong
PDF
HTML
导出引用
  • 高性能非互易光子器件能够有效地提升光量子操控、信息处理以及量子模拟的效率. 放大的光信号可以增强并隔离量子系统输出的微弱信号, 避免敏感量子系统受反向散射噪声等影响, 是高性能光子器件的核心技术. 在我们先前的工作(2023 Opt. Express 31 38228)中, 基于四波混频增益并利用耦合场强度随位置线性变化实现了单向反射光放大的动力学调控. 本文巧妙地设计了简单的三能级闭合回路相干增益原子系统, 创新性地设置耦合场强度随位置阶梯型变化来破坏极化率空间对称性实现了完美非互易反射光放大. 相比之下, 耦合场强度阶梯型变化在实验上更容易调节, 大大地降低了实验难度. 特别地, 该系统引入了相位调制. 通过改变相位能够切换探测光增益和吸收的频率域, 对反射光放大的调节更具灵活性.
    High-performance non-reciprocal photonic devices can improve the efficiency of optical quantum manipulation, information processing, and quantum simulation effectively. The enhanced optical signal can simultaneously amplify the weak signal output by the quantum system and isolate the sensitive quantum system from the back-scattered external noise, which is the core technology of high-performance photonic devices. In our previous work (2023 Opt. Express 31 38228), we have achieved dynamic control of unidirectional reflection amplification based on four-wave mixing gain and the use of coupling field intensity varying linearly with position. In this work, we design a simple three-level closed loop coherent gain atomic system, setting the intensity of coupling field to be varying with position step shape to break the spatial symmetry of probe susceptibility, and achieving perfect non-reciprocal reflection light amplification. In contrast, the stepped variation of coupling field intensity is easier to adjust in experiment, greatly reducing the difficulty in the experiment. Specifically, the system introduces phase modulation. By changing the phase, the frequency region of probe gain and absorption can be switched, which makes the modulation of reflection amplification more flexible.
      通信作者: 杨红, yang_hongbj@126.com
    • 基金项目: 国家自然科学基金(批准号: 12204137, 12126314, 12126351)、海南省榕树基金(批准号: RSYH20231165828X, RSYH20231165827X)和海南省院士创新平台(批准号: YSPTZX202215, YSPTZX202207)资助的课题.
      Corresponding author: Yang Hong, yang_hongbj@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204137, 12126314, 12126351), the Hainan Provincial Banyan Tree Foundation, China (Grant Nos. RSYH20231165828X, RSYH20231165827X), and the Innovation Platform for Academicians of Hainan Province, China (Grant Nos. YSPTZX202215, YSPTZX202207).
    [1]

    Hu Y Q, Zhang S C, Qi Y H, Lin G W, Niu Y P, Gong S Q 2019 Phys. Rev. Appl. 12 054004Google Scholar

    [2]

    Shi Y, Yu Z F, Fan S H 2015 Nat. Photonics 9 388Google Scholar

    [3]

    Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q, Xiao Y F 2017 Phys. Rev. Lett. 118 033901Google Scholar

    [4]

    Shen Z, Zhang Y L, Chen Y, Sun F W, Guo X B, Dong C H 2018 Nat. Commun. 9 1797Google Scholar

    [5]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [6]

    Markelov V A, Novikov M, Turkin A A 1977 JETP Lett. 25 9

    [7]

    Yu Z, Fan S 2009 Nat. Photonics 3 91Google Scholar

    [8]

    Lira H, Yu Z, Fan S, Lipson M 2012 Phys. Rev. Lett. 109 033901Google Scholar

    [9]

    Kang M S, Butsch A, Russell P S J 2011 Nat. Photonics 5 549Google Scholar

    [10]

    Estep N A, Sounas D L, Soric J, Alu A 2014 Nat. Phys. 10 923Google Scholar

    [11]

    Kittlaus E A, Otterstrom N T, Kharel P, Gertler S, Rakich P T 2018 Nat. Photonics 12 613Google Scholar

    [12]

    Sohn D B, Kim S, Bahl G 2018 Nat. Photonics 12 91Google Scholar

    [13]

    盖云冉, 郑康, 丁春玲 2024 物理学报 73 014201Google Scholar

    Gai Y R, Zheng K, Ding C L 2024 Acta Phys. Sin. 73 014201Google Scholar

    [14]

    刘妮, 马硕, 梁九卿 2023 物理学报 72 060702Google Scholar

    Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 060702Google Scholar

    [15]

    Xu X W, Li Y, Chen A X, Liu Y X 2016 Phys. Rev. A 93 023827Google Scholar

    [16]

    Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, Painter O 2017 Nat. Phys. 13 465Google Scholar

    [17]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [18]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [19]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [20]

    Hafezi M, Rabl P 2012 Opt. Express 20 7672Google Scholar

    [21]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [22]

    Peng B, Ozdemir S K, Lei F C, Monifi F 2014 Nat. Phys. 10 394Google Scholar

    [23]

    Xia K, Lu G, Lin G, Cheng Y, Niu Y, Gong S, Twamley J 2014 Phys. Rev. A 90 043802Google Scholar

    [24]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Rauschenbeutel A 2015 Phys. Rev. X 5 041036Google Scholar

    [25]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [26]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Zoller P 2017 Nature 541 473Google Scholar

    [27]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811Google Scholar

    [28]

    Chaung Y L, Shamsi A, Abbas M 2020 Opt. Express 28 1701Google Scholar

    [29]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859Google Scholar

    [30]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [31]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photonics 12 744Google Scholar

    [32]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [33]

    Hu Y, Qi Y, You Y, Zhang S, Lin G, Li X, Niu Y 2021 Phys. Rev. Appl. 16 014046Google Scholar

    [34]

    李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东 2022 物理学报 71 184202Google Scholar

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202Google Scholar

    [35]

    Heras de las A M, Carusotto I 2021 Phys. Rev. A 104 043501Google Scholar

    [36]

    Otterstrom N T, Kittlaus E A, Gertler S, Behunin R O, Lentine A L, Rakich P T 2019 Optica 6 1117Google Scholar

    [37]

    Song L N, Wang Z H, Li Y 2018 Opt. Commun. 415 39Google Scholar

    [38]

    Abdo B, Sliwa K, Shankar S, Hatridge M, Frunzio L, Schoelkopf R, Devoret M 2014 Phys. Rev. Lett. 112 167701Google Scholar

    [39]

    Metelmann A, Clerk A A 2015 Phys. Rev. X 5 021025Google Scholar

    [40]

    Koutserimpas T T, Fleury R 2018 Phys. Rev. Lett. 120 087401Google Scholar

    [41]

    Sliwa K M, Hatridge M, Narla A, Shankar S, Frunzio L, Schoelkopf R J, Devoret M H 2015 Phys. Rev. X 5 041020Google Scholar

    [42]

    Lecocq F, Ranzani L, Peterson G A, Cicak K, Simmonds R W, Teufel J D, Aumentado J 2017 Phys. Rev. Appl. 7 024028Google Scholar

    [43]

    Li Y, Huang Y Y, Zhang X Z, Tian L 2017 Opt. Express 25 18907Google Scholar

    [44]

    Jiang C, Song L N, Li Y 2018 Phys. Rev. A. 97 053812Google Scholar

    [45]

    Ruesink F, Miri M A, Alù A, Verhagen E 2016 Nat. Commun. 7 13662Google Scholar

    [46]

    Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J, Nunnenkamp A 2018 Phys. Rev. Lett. 120 023601Google Scholar

    [47]

    Jiang W, Ma Y, Yuan J, Yin G, Wu W, He S 2017 Laser Photonics Rev. 11 1600253Google Scholar

    [48]

    Liu D J, Huang Y, Hu H, Liu L L, Gao D L, Ran L X, Ye D X, Luo Y 2019 IEEE Trans. Antennas Propag. 68 2945Google Scholar

    [49]

    Zhang Y, Wu J H, Artoni M, La Rocca G C 2021 Opt. Express 29 5890Google Scholar

    [50]

    Geng Y, Pei X, Li G, Lin X, Zhang H, Yan D, Yang H 2023 Opt. Express 31 38228Google Scholar

    [51]

    Artoni M, La Rocca G, Bassani F 2005 Phys. Rev. E 72 046604Google Scholar

    [52]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111Google Scholar

  • 图 1  (a)三能级$ \Lambda $型相干原子系统; (b)耦合场$ {G_{\mathrm{c}}}(x) $随位置阶梯型变化, $ k = 5 $和$ k = 8 $分别对应红色虚线和蓝色实线, 恒定耦合场$ {G_{\mathrm{c}}} = 25{\text{ MHz}} $对应绿色虚点线; (c)耦合场和微波场竖直方向进入介质, 探测场沿水平方向传播的示意图, 介质长度$ L = 8{\text{ μm}} $

    Fig. 1.  (a) Three-level $ \Lambda $ model coherent atomic system; (b) the intensity of coupling field $ {G_{\mathrm{c}}}(x) $ varies with position by step, $ k = 5 $ and $ k = 8 $ corresponding to red dashed and blue solid respectively, the constant coupling field $ {G_{\mathrm{c}}} = 25{\text{ MHz}} $ corresponding to green dotted line; (c) diagram of the homogeneous atomic medium illuminated by coupling and microwave fields vertical $ x $ axis, and probe field travels along $ x $ direction, the medium length $ L = 8{\text{ μm}}$.

    图 2  (a) 恒定耦合场$ {G_{\mathrm{c}}} = 25 {\text{MHz}} $时, 各能级粒子数布居随失谐$ {\varDelta _{\text{p}}} $的变化; (b) 阶梯型耦合场$ (k = 8) $时, 各能级粒子数布居随位置的变化; (c), (d) $ \left| 1 \right\rangle $能级与$ \left| 3 \right\rangle $能级粒子数布居差$ {\rho _{11}} - {\rho _{33}} $随位置和失谐的变化以及随位置和相位的变化, 对应阶梯型耦合场$ (k = 8) $. 相关参数: $ \varPhi = {{3\pi } \mathord{\left/ {\vphantom {{3\pi } 2}} \right. } 2} $, $ {N_0} = 3 \times {10^{11}}{\text{ c}}{{\text{m}}^{ - 3}} $, $ {G_{\text{d}}} = 15{\text{ MHz}}, {\text{ }}{G_{\text{p}}} = 0.3{\text{ MHz}} $, $ {\varDelta _{\text{c}}} = 0, {\text{ }}{d_{13}} = 2.0 \times {10^{ - 29}}{\text{ }}{\mathrm{C}} \cdot {\mathrm{m}}, $$ {\text{ }}{\varGamma _{31}} = {\varGamma _{32}} = 6{\text{ MHz}} $

    Fig. 2.  (a) Population distribution of each level vs. $ {\varDelta _{\text{p}}} $ with the constant coupling field $ {G_{\mathrm{c}}} = 25{\text{ MHz}} $; (b) population distribution of each level varies with position with stepped coupling field $ (k = 8) $; (c), (d) the population difference $ {\rho _{11}} - {\rho _{33}} $ between level $ \left| 1 \right\rangle $ and level $ \left| 3 \right\rangle $ varies with position $ x $ and detuning $ {\varDelta _{\text{p}}} $ or position $ x $ and relative phase $ \varPhi $ with step coupling field $ (k = 8) $. Other parameters: $ \varPhi = 3\pi /2 $, $ {N_0} = 3 \times {10^{11}}{\text{ c}}{{\text{m}}^{ - 3}} $, $ {G_{\text{d}}} = 15{\text{ MHz}}, {\text{ }}{G_{\text{p}}} = 0.3{\text{ MHz}}, $$ {\varDelta _{\text{c}}} = 0, {\text{ }}{d_{13}} = 2.0 \times {10^{ - 29}}{\text{ }}{\mathrm{C}} \cdot {\mathrm{m}}, {\text{ }}{\varGamma _{31}} = $$ {\varGamma _{32}} = 6{\text{ MHz}} $.

    图 3  (a), (c), (e) 探测场的左右反射率随失谐$ {\varDelta _{\mathrm{p}}} $的变化, 分别对应恒定场$ {G_{\mathrm{c}}} = 25{\text{ MHz}} $, 阶梯型耦合场$ (k = 5) $和$ (k = 8) $; (b), (d), (f) 探测场左右反射率对比度随失谐$ {\varDelta _{\text{p}}} $的变化; 其他参数与图2相同

    Fig. 3.  (a), (c), (e) Left and right reflectivity of the probe field vs. detuning $ {\varDelta _{\text{p}}} $, corresponding to constant coupling field $ {G_{\mathrm{c}}} = 25{\text{ MHz}} $, stepped coupling field $ (k = 5) $ and $ (k = 8) $, respectively; (b), (d), (f) the corresponding contrast of left and right reflectivity vs. detuning $ {\varDelta _{\text{p}}} $. Other parameters are the same as in Fig 2.

    图 4  极化率虚部随失谐和相对相位的变化 (a) $ {G_{\text{c}}} = 9{\text{ MHz}} $; (b) $ {G_{\text{c}}} = 16{\text{ MHz}} $; (c) $ {G_{\text{c}}} = 25{\text{ MHz}} $; (d) $ {G_{\text{c}}} = 36{\text{ MHz}} $; 其他参数与图2相同

    Fig. 4.  Changes of the imaginary part of the polarizability with the detuning and relative phase: (a) $ {G_{\text{c}}} = 9{\text{ MHz}} $; (b) $ {G_{\text{c}}} = $$ 16{\text{ MHz}} $; (c) $ {G_{\text{c}}} = 25{\text{ MHz}} $; (d) $ {G_{\text{c}}} = 36{\text{ MHz}} $. Other parameters are the same as in Fig. 2.

    图 5  探测场的左右反射率(a), (b)及其对比度(c), (d)随失谐$ {\varDelta _{\text{p}}} $的变化 (a), (c)阶梯型耦合场对应 $ k = 5 $; (b), (d) 阶梯型耦合场对应$ k = 8 $; 相对相位 $ \varPhi = 7\pi /4 $, 其他参数与图2相同

    Fig. 5.  (a), (b) Left and right reflectivity of the probe field and (c), (d) their contrast vs. detuning $ {\varDelta _{\text{p}}} $: (a), (c) The stepped coupling field corresponding to $ k = 5 $; (b), (d) the stepped coupling field corresponding to $ k = 8 $. The relative phases $ \varPhi = 7{\text{π }}/4 $, other parameters are the same as in Fig. 2.

  • [1]

    Hu Y Q, Zhang S C, Qi Y H, Lin G W, Niu Y P, Gong S Q 2019 Phys. Rev. Appl. 12 054004Google Scholar

    [2]

    Shi Y, Yu Z F, Fan S H 2015 Nat. Photonics 9 388Google Scholar

    [3]

    Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q, Xiao Y F 2017 Phys. Rev. Lett. 118 033901Google Scholar

    [4]

    Shen Z, Zhang Y L, Chen Y, Sun F W, Guo X B, Dong C H 2018 Nat. Commun. 9 1797Google Scholar

    [5]

    Shen H Z, Wang Q, Wang J, Yi X X 2020 Phys. Rev. A 101 013826Google Scholar

    [6]

    Markelov V A, Novikov M, Turkin A A 1977 JETP Lett. 25 9

    [7]

    Yu Z, Fan S 2009 Nat. Photonics 3 91Google Scholar

    [8]

    Lira H, Yu Z, Fan S, Lipson M 2012 Phys. Rev. Lett. 109 033901Google Scholar

    [9]

    Kang M S, Butsch A, Russell P S J 2011 Nat. Photonics 5 549Google Scholar

    [10]

    Estep N A, Sounas D L, Soric J, Alu A 2014 Nat. Phys. 10 923Google Scholar

    [11]

    Kittlaus E A, Otterstrom N T, Kharel P, Gertler S, Rakich P T 2018 Nat. Photonics 12 613Google Scholar

    [12]

    Sohn D B, Kim S, Bahl G 2018 Nat. Photonics 12 91Google Scholar

    [13]

    盖云冉, 郑康, 丁春玲 2024 物理学报 73 014201Google Scholar

    Gai Y R, Zheng K, Ding C L 2024 Acta Phys. Sin. 73 014201Google Scholar

    [14]

    刘妮, 马硕, 梁九卿 2023 物理学报 72 060702Google Scholar

    Liu N, Ma S, Liang J Q 2023 Acta Phys. Sin. 72 060702Google Scholar

    [15]

    Xu X W, Li Y, Chen A X, Liu Y X 2016 Phys. Rev. A 93 023827Google Scholar

    [16]

    Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, Painter O 2017 Nat. Phys. 13 465Google Scholar

    [17]

    Yang P F, Xia X W, He H, Li S K, Han X, Zhang P, Li G, Zhang P F, Xu J P, Yang Y P, Zhang T C 2019 Phys. Rev. Lett. 123 233604Google Scholar

    [18]

    Huang R, Miranowicz A, Liao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [19]

    Tang L, Tang J S, Chen M Y, Nori F, Xiao M, Xia K Y 2022 Phys. Rev. Lett. 128 083604Google Scholar

    [20]

    Hafezi M, Rabl P 2012 Opt. Express 20 7672Google Scholar

    [21]

    Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, Dong C H 2016 Nat. Photonics 10 657Google Scholar

    [22]

    Peng B, Ozdemir S K, Lei F C, Monifi F 2014 Nat. Phys. 10 394Google Scholar

    [23]

    Xia K, Lu G, Lin G, Cheng Y, Niu Y, Gong S, Twamley J 2014 Phys. Rev. A 90 043802Google Scholar

    [24]

    Sayrin C, Junge C, Mitsch R, Albrecht B, O’Shea D, Schneeweiss P, Rauschenbeutel A 2015 Phys. Rev. X 5 041036Google Scholar

    [25]

    Scheucher M, Hilico A, Will E, Volz J, Rauschenbeutel A 2016 Science 354 1577Google Scholar

    [26]

    Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Zoller P 2017 Nature 541 473Google Scholar

    [27]

    Wu J H, Artoni M, La Rocca G C 2015 Phys. Rev. A 91 033811Google Scholar

    [28]

    Chaung Y L, Shamsi A, Abbas M 2020 Opt. Express 28 1701Google Scholar

    [29]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859Google Scholar

    [30]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901Google Scholar

    [31]

    Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, Gong S 2018 Nat. Photonics 12 744Google Scholar

    [32]

    Lin G, Zhang S, Hu Y, Niu Y, Gong J, Gong S 2019 Phys. Rev. Lett. 123 033902Google Scholar

    [33]

    Hu Y, Qi Y, You Y, Zhang S, Lin G, Li X, Niu Y 2021 Phys. Rev. Appl. 16 014046Google Scholar

    [34]

    李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东 2022 物理学报 71 184202Google Scholar

    Li X, Xie S Y, Li L F, Zhou H T, Wang D, Yang B D 2022 Acta Phys. Sin. 71 184202Google Scholar

    [35]

    Heras de las A M, Carusotto I 2021 Phys. Rev. A 104 043501Google Scholar

    [36]

    Otterstrom N T, Kittlaus E A, Gertler S, Behunin R O, Lentine A L, Rakich P T 2019 Optica 6 1117Google Scholar

    [37]

    Song L N, Wang Z H, Li Y 2018 Opt. Commun. 415 39Google Scholar

    [38]

    Abdo B, Sliwa K, Shankar S, Hatridge M, Frunzio L, Schoelkopf R, Devoret M 2014 Phys. Rev. Lett. 112 167701Google Scholar

    [39]

    Metelmann A, Clerk A A 2015 Phys. Rev. X 5 021025Google Scholar

    [40]

    Koutserimpas T T, Fleury R 2018 Phys. Rev. Lett. 120 087401Google Scholar

    [41]

    Sliwa K M, Hatridge M, Narla A, Shankar S, Frunzio L, Schoelkopf R J, Devoret M H 2015 Phys. Rev. X 5 041020Google Scholar

    [42]

    Lecocq F, Ranzani L, Peterson G A, Cicak K, Simmonds R W, Teufel J D, Aumentado J 2017 Phys. Rev. Appl. 7 024028Google Scholar

    [43]

    Li Y, Huang Y Y, Zhang X Z, Tian L 2017 Opt. Express 25 18907Google Scholar

    [44]

    Jiang C, Song L N, Li Y 2018 Phys. Rev. A. 97 053812Google Scholar

    [45]

    Ruesink F, Miri M A, Alù A, Verhagen E 2016 Nat. Commun. 7 13662Google Scholar

    [46]

    Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J, Nunnenkamp A 2018 Phys. Rev. Lett. 120 023601Google Scholar

    [47]

    Jiang W, Ma Y, Yuan J, Yin G, Wu W, He S 2017 Laser Photonics Rev. 11 1600253Google Scholar

    [48]

    Liu D J, Huang Y, Hu H, Liu L L, Gao D L, Ran L X, Ye D X, Luo Y 2019 IEEE Trans. Antennas Propag. 68 2945Google Scholar

    [49]

    Zhang Y, Wu J H, Artoni M, La Rocca G C 2021 Opt. Express 29 5890Google Scholar

    [50]

    Geng Y, Pei X, Li G, Lin X, Zhang H, Yan D, Yang H 2023 Opt. Express 31 38228Google Scholar

    [51]

    Artoni M, La Rocca G, Bassani F 2005 Phys. Rev. E 72 046604Google Scholar

    [52]

    Zhang Y, Xue Y, Wang G, Cui C L, Wang R, Wu J H 2011 Opt. Express 19 2111Google Scholar

  • [1] 王子尧, 陈福家, 郗翔, 高振, 杨怡豪. 非互易拓扑光子学. 物理学报, 2024, 73(6): 064201. doi: 10.7498/aps.73.20231850
    [2] 刘妮, 马硕, 梁九卿. 双腔双光力系统中的光非互易传输特性. 物理学报, 2023, 72(6): 060702. doi: 10.7498/aps.72.20222246
    [3] 李鑫, 解舒云, 李林帆, 周海涛, 王丹, 杨保东. 基于光学非互易的双路多信道全光操控. 物理学报, 2022, 71(18): 184202. doi: 10.7498/aps.71.20220506
    [4] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉. 物理学报, 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [5] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性. 物理学报, 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [6] 王聪, 杨晶, 潘秀娟, 蔡高航, 赵巍, 张景园, 崔大复, 彭钦军, 许祖彦. 基于光参量放大相位共轭特性的图像修复与增强. 物理学报, 2017, 66(10): 104205. doi: 10.7498/aps.66.104205
    [7] 吴洋, 许州, 谢鸿全, 李正红, 马乔生. 高增益相对论速调管放大器相位特性的模拟与实验研究. 物理学报, 2015, 64(8): 084102. doi: 10.7498/aps.64.084102
    [8] 王杰, 贾新鸿, 饶云江, 吴慧娟. 基于双向拉曼放大的相位敏感光时域反射仪. 物理学报, 2013, 62(4): 044212. doi: 10.7498/aps.62.044212
    [9] 黄华, 郭焱华, 金晓, 何琥, 雷禄容, 罗雄, 常安碧, 李正红. 相对论速调管放大器的相位特性研究. 物理学报, 2011, 60(3): 035201. doi: 10.7498/aps.60.035201
    [10] 左方圆, 王阳, 吴谊群, 赖天树. Ge2Sb2Te5非晶薄膜中超快载流子动力学的飞秒分辨反射光谱研究. 物理学报, 2009, 58(10): 7250-7254. doi: 10.7498/aps.58.7250
    [11] 刘涛, 顾畹仪, 史培明, 喻松, 张华. 基于准相位匹配晶体的宽带可调谐光参量放大过程研究. 物理学报, 2009, 58(4): 2482-2487. doi: 10.7498/aps.58.2482
    [12] 杨若夫, 杨平, 沈锋. 基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究. 物理学报, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [13] 杨振萍, 边清泉. 相对论速调管放大器中微波的相位抖动研究. 物理学报, 2009, 58(9): 6141-6145. doi: 10.7498/aps.58.6141
    [14] 马 晶, 章若冰, 张伟力, 王清月. BBOⅠ类相位匹配光参量放大中群速失配的补偿. 物理学报, 2005, 54(6): 2745-2750. doi: 10.7498/aps.54.2745
    [15] 郭少锋, 陆启生, 程湘爱, 周 萍, 邓少永, 银 燕. 反射光中Stokes成分对受激布里渊散射过程的影响. 物理学报, 2004, 53(6): 1831-1835. doi: 10.7498/aps.53.1831
    [16] 袁先漳, 缪中林. Al/GaAs表面量子阱界面层的原位光调制反射光谱研究. 物理学报, 2004, 53(10): 3521-3524. doi: 10.7498/aps.53.3521
    [17] 缪中林, 陈平平, 陆卫, 徐文兰, 李志锋, 蔡玮颖. GaAs/Al1-xAs表面单量子阱原位光调制反射光谱研究. 物理学报, 2001, 50(1): 111-115. doi: 10.7498/aps.50.111
    [18] 王训春, 邱锡钧, 郑丽萍. 相对相位对双色激光场中线性多原子分子离子增强电离行为的影响. 物理学报, 2001, 50(11): 2155-2158. doi: 10.7498/aps.50.2155
    [19] 池坚刚, 赵文琴, 李爱珍. MBE GaAs1-xSbx/GaAs应变层量子阱的光调制反射光谱. 物理学报, 1989, 38(10): 1710-1716. doi: 10.7498/aps.38.1710
    [20] 方励之. 金属表面反射光中的谐波. 物理学报, 1964, 20(8): 817-818. doi: 10.7498/aps.20.817
计量
  • 文章访问数:  1573
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-11
  • 修回日期:  2024-04-15
  • 上网日期:  2024-04-23
  • 刊出日期:  2024-06-20

/

返回文章
返回