搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zr-2.5Sn合金高温腐蚀过程的相场模拟

刘续希 高士森 喇永孝 玉栋梁 柳文波

引用本文:
Citation:

Zr-2.5Sn合金高温腐蚀过程的相场模拟

刘续希, 高士森, 喇永孝, 玉栋梁, 柳文波

Phase-field simulation of high-temperature corrosion of binary Zr-2.5Sn alloy

Liu Xu-Xi, Gao Shi-Sen, La Yong-Xiao, Yu Dong-Liang, Liu Wen-Bo
PDF
HTML
导出引用
  • 本工作利用腐蚀电化学计算腐蚀界面能, 构建了锆合金腐蚀过程的相场模型. 首先, 利用所建立的模型模拟了Zr-2.5Sn合金均匀腐蚀过程, 模拟结果显示该合金的腐蚀动力学曲线符合立方规律, 与实验结果一致. 分析发现, 在氧化层生成的初期, 氧化层生长速率很高, 但是受温度的影响不明显; 随着氧化层厚度的增长, 温度对氧化层生长曲线的影响变大, 温度越高腐蚀速率越快. 多晶Zr-2.5Sn合金腐蚀行为的模拟结果表明, 在锆合金基体晶界处由于具有更大的氧扩散速率, 氧化速率加快, 并在金属-氧化层界面朝向金属基体一侧形成了沿晶界的具有更高浓度的O2–带, 且对氧化腐蚀速率的影响主要表现在氧化初期, 相场模拟获得的腐蚀动力学曲线与实验结果符合非常好.
    Due to the small neutron absorption cross section and excellent thermal creep performance, zirconium alloy is one of the most important cladding materials for fuel rods in commercial fission reactors. However, quantitative analysis of the effects of temperature and grain boundaries on the corrosion microstructure evolution of zirconium alloys is still needed. The establishing of a phase field simulation for the corrosion process of polycrystalline zirconium alloy and the systematical investigating of the thermodynamic influence are both very important. In this study, the phase field model of the corrosion process in zirconium alloys is developed by combining corrosion electrochemistry through calculating the interfacial energy at the metal-oxide and oxide-fluid boundaries. Then the model is used to investigate the uniform corrosion behavior on the surface of Zr-2.5Sn alloy, which demonstrates that the corrosion kinetic curve follows a cubic rule. Subsequently, the influence of temperature on the corrosion thickening curve of zirconium alloy is examined, and good agreement between simulation and experimental results is achieved. It is observed that during early stage of oxide layer formation, there is a high growth rate with minimal temperature dependence; however, as the oxide layer thickness increases, temperature becomes a significant factor affecting its growth rate, with higher temperatures resulting in faster corrosion rates. Furthermore, the effect of polycrystalline zirconium alloy matrices on corrosion rate is investigated, revealing that the grain boundaries accelerate oxide layer thickening due to enhanced oxygen diffusion rates. At metal-oxide interface, O2– bands are formed in areas with higher O2– concentration along these grain boundaries towards the metal matrix, which mainly influences oxidation-corrosion rate during the initial oxidation stage.
      通信作者: 柳文波, liuwenbo@xjtu.edu.cn
    • 基金项目: 国家自然科学基金委员会-中国工程物理研究院联合基金(NSAF联合基金)(批准号: U2130105)和中国核工业集团有限公司领创科研项目资助的课题.
      Corresponding author: Liu Wen-Bo, liuwenbo@xjtu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U2130105) and the China National Nuclear Corporation Limited Leading Innovation Research Project, China.
    [1]

    Kai J J, Huang W I, Chou H Y 1990 J. Nucl. Mater. 170 193Google Scholar

    [2]

    Zhao W Z, Quan Q W, Zhang S M, Yang X Y, Wen H Y, Wu Y C, Liu X B, Cao X Z, Wang B Y 2023 Radiat. Phys. Chem. 209 110986Google Scholar

    [3]

    Jones R H, Simonen E P 1994 Mater. Sci. Eng. 176 211Google Scholar

    [4]

    Hu J, Liu J L, Lozano P S, Grovenor C R M, Christensen M, Wolf W, Wimmer E, Mader E V 2019 Acta Mater. 180 105Google Scholar

    [5]

    Cann C D, So C B, Styles R C, Coleman C E 1993 J. Nucl. Mater. 205 267Google Scholar

    [6]

    Wei T G, Dai X, Long C S, Sun C, Long S J, Zheng J Y, Wang P F, Jia Y Z, Zhang J S 2021 Corros. Sci. 192 109808Google Scholar

    [7]

    Tian Z, Peng J C, Lin X D, Hu Y Y, Yao M Y, Xie Y P, Liang X, Zhou B X 2024 Corros. Sci. 202 111937Google Scholar

    [8]

    Ferreirós P A, Polack E C S, Lanzani L A, Alonso P R, Quirós P D, Mieza J I, Rubiolo G H 2021 J. Nucl. Mater. 553 153039Google Scholar

    [9]

    Jiang G Y, Xu D H, Yang W P, Liu L, Zhi Y W, Yang J Q 2022 Prog. Nucl. Energy 154 104490Google Scholar

    [10]

    Yuan R, Xie Y P, Li T, Xu C H, Yao M Y, Xu J X, Guo H B, Zhou B X 2021 Acta Mater. 209 116804Google Scholar

    [11]

    Mcdeavitt S M, Billings G W, Indacochea J E 2002 J. Mater. Sci. 37 3765Google Scholar

    [12]

    Jerlerud P R, Toffolon M C, Joubert J M, Sundman B 2008 CALPHAD 32 593Google Scholar

    [13]

    Asle Zaeem M, El Kadiri H 2014 Comput. Mater. Sci. 89 122Google Scholar

    [14]

    张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐 2020 物理学报 69 226401Google Scholar

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin 69 226401Google Scholar

    [15]

    Chen L Q, Zhao Y 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [16]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [17]

    刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪 2022 金属学报 58 943

    Liu X X, Liu W B, Li B Y, He X F, Yang Z X, Yun D 2022 Acta Metal. Sin 58 943

    [18]

    Mai W, Soghrati S 2017 Corros. Sci. 125 87Google Scholar

    [19]

    Fang X R, Pan Z C, Ma R J, Chen A R 2023 Comuput. Methods Appl. Mech. Engrg. 414 116196Google Scholar

    [20]

    冯力, 王智平, 路阳, 朱昌盛 2008 物理学报 57 1084Google Scholar

    Feng L, Wang Z P, Lu Y, Zhu C S 2008 Acta Phys. Sin 57 1084Google Scholar

    [21]

    Yang C, Huang H B, Liu W B, Wang J S, Wang J, Jafri H M, Liu Y, Han G M, Song H F, Chen L Q 2021 Adv. Theor. Simul. 4 2000162Google Scholar

    [22]

    Zhou F Y, Qiu K J, Bian D, Zheng Y F, Lin J P 2014 J. Mater. Sci. Technol. 30 299Google Scholar

    [23]

    Dinsdale A T 1991 CALPHAD 15 317Google Scholar

    [24]

    Aricó S F, Gribaudo L M, 1999 Scripta Mater. 41 159Google Scholar

    [25]

    Wang C, Zinkevich M, Aldinger F 2004 CALPHAD 28 281Google Scholar

    [26]

    Yin T, Lee J, Moosavi K E, Jung I H 2021 Ceram. Int. 47 29267Google Scholar

    [27]

    Isomäki I, Hämäläinen M, Gierlotka W, Onderka B, Fitzner K 2006 J. Alloys Compd. 422 173Google Scholar

    [28]

    Fang X R, Pan Z C, Chen A R, Tian H, Ma R J 2023 Eng. Fract. Mech. 281 109131Google Scholar

    [29]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085Google Scholar

    [30]

    Larché F C, Cahn J W 1985 Acta Metall. 33 331Google Scholar

    [31]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [32]

    Cox B, Pemsler J P 1968 J. Nucl. Mater. 28 73Google Scholar

    [33]

    Ritchie I G, Atrens A 1977 J. Nucl. Mater. 67 254Google Scholar

    [34]

    Keneshea F J, Douglass D L 1971 Oxid. Met. 3 1Google Scholar

    [35]

    姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪 2022 物理学报 71 026103Google Scholar

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin 71 026103Google Scholar

    [36]

    Qiu K, Wang R, Peng C, Lu X, Wang N 2015 CALPHAD 48 175Google Scholar

    [37]

    Fisher E, Renken C 1964 Phys. Rev. 135 A482Google Scholar

    [38]

    Fogaing E Y, Lorgouilloux Y, Huger M, Gault C P 2006 J. Mater. Sci. 41 7663Google Scholar

    [39]

    Mirgorodsky A, Smirnov M, Quintard P 1997 Phys. Rev. B 55 19Google Scholar

    [40]

    刘建章 2007 核结构材料 (北京: 化学工业出版社) 第89页

    Liu J Z 2007 Nuclear Structure Material (Beijing: Chemical Industry Press) p89

    [41]

    Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar

    [42]

    Bi Y B, Zhang X L, Lu L, Xu Z F, Xie Z G, Chen B B, Liang Z X, Sun Z Q, Luo Z 2023 J. Mater. Res. Technol. 26 5888Google Scholar

    [43]

    Gwinner B, Bataillon C, Chelagemdib R, Gruet N, Lorentz V, Puga B 2023 Electrochim. Acta 470 143334Google Scholar

    [44]

    Zhang M H, Liu S D, Jiang J Y, Wei W C 2023 T Nonferr Metal. Soc. 33 1963Google Scholar

    [45]

    Liu J L, Yu H B, Karamched P, Hu J, He G Z, Goran D, Hughes G M, Wilkinson A J, Sergio L P, Grovenor C R 2019 Acta Mater. 179 328Google Scholar

  • 图 1  (a) 金属表面腐蚀过程及组织分布示意图; (b) 腐蚀过程相场序参量η及界面分布示意图

    Fig. 1.  (a) Schematic diagram of metal surface corrosion process and microstructure distribution; (b) schematic diagram of phase field parameter η and interface distribution during metal surface corrosion.

    图 2  均匀腐蚀形貌演变的相场模拟结果

    Fig. 2.  Microstructure evolution of uniform corrosion obtained by phase-field simulation.

    图 3  Zr合金均匀腐蚀氧化层增厚曲线及拟合结果

    Fig. 3.  Kinetic curves of uniform corrosion.

    图 4  不同温度下Zr合金均匀腐蚀氧化层增长模拟结果

    Fig. 4.  Simulated results of uniform corrosion at different temperatures.

    图 5  不同温度下Zr-2.5Sn合金表面氧化层增厚曲线

    Fig. 5.  The corrosion kinetic curves of Zr-2.5Sn at different temperatures.

    图 6  不同温度下沿试样深度方向的O2–分布

    Fig. 6.  The distribution of O2– at different temperatures.

    图 7  相场模型采用的多晶Zr-2.5Sn合金初始组织

    Fig. 7.  The initial microstructure used by phase-field simulation.

    图 8  Zr-2.5Sn在673 K腐蚀不同时间后的相场模拟结果 (a) 腐蚀形貌; (b) O2–分布

    Fig. 8.  Corrosion of Zr-2.5Sn at 673 K with different times obtained by phase-field simulation: (a) Morphology of the crystalline after corrosion; (b) distribution of the O2– concentration.

    图 9  不同温度下Zr-2.5Sn腐蚀25 d后的相场模拟结果 (a) 腐蚀形貌; (b) O2–分布

    Fig. 9.  Corrosion of Zr-2.5Sn after 25 days with different temperatures obtained by phase-field simulation: (a) Morphology of the crystalline; (b) distribution of the O2– concentration.

    图 10  不同温度下多晶Zr-2.5Sn的腐蚀增厚曲线及与实验结果[9]的对比

    Fig. 10.  The corrosion kinetic curves of polycrystalline Zr-2.5Sn alloy and the experimental results [9].

    表 1  Zr-Sn合金自由能参数

    Table 1.  Free energy parameters of Zr-Sn alloys.

    Parameter Value Reference
    EZr/(J·m–3) $-7827.6 + 125.65T - 24.1618T\ln T - 4.38{\rm e}^{-3} T^3 + 34971T^{-1} $ [23]
    ESn/(J·m–3) $2524.7 + 4.00T - 8.26T \lnT - 16.81{\rm e}^{-3} T^2 + 2.62 {\rm e}^{-6}T^3 - 1.08{\rm e}^6 T^{-1} $ [23]
    EO/(J·m–3) $-3480.9 - 25.50T - 11.13T\ln T - 5.10 {\rm e}^{-3}T^2 + 0.66 {\rm e}^{-6}T^3 - 38365T^{-1} $ [23]
    AZrSn $-148022.5+19.41T+(173681.9-22T)(c_{\rm Zr}-c_{\rm Sn}) + 104271.96(c_{\rm Zr}-c_{Sn})^2 $ [24]
    AZrO $-37876.66+17.2915T - 4471.4(c_{\rm Zr}-c_{\rm O}) $ [25]
    ASnO 140878 – 23.9326T [26, 35]
    $g_2^0$ $-1117869+420.3T - 69.6T\ln T - 0.003766T^2 + 702910T^{-1} +4.59 {\rm e}^{-21}T^7 $ [25]
    $ g_3^0 $ 0
    k2/(J·m–3) 2.5 × 105 [13]
    k3/(J·m–3) 2.5 × 105 [13]
    下载: 导出CSV

    表 2  各温度下不同相中O2–扩散系数 [33,34]

    Table 2.  Diffusion coefficients of O2– in different phases at different temperatures [33,34].

    Temperature/K D1/(m2·s–1) D2/(m2·s–1) D3/(m2·s–1) DGB/(m2·s–1)
    633 3.99×10–17 1.61×10–17 2.98×10–17 1.46×10–16
    653 1.26×10–16 5.18×10–17 8.77×10–17 8.11×10–16
    673 3.09×10–16 1.11×10–16 2.25×10–16 3.76×10–15
    693 1.04×10–15 3.69×10–16 7.64×10–16 2.82×10–14
    下载: 导出CSV

    表 3  锆合金基体及氧化层的弹性模量分量

    Table 3.  Elastic modulus of Zr alloy and oxide layer.

    Parameter Value Ref. Parameter Value Ref.
    $ {C}_{11}^{1} $ 106.4 GPa [37] $ {C}_{11}^{2} $ 395 GPa [38, 39]
    $ {C}_{12}^{1} $ 84 GPa [37] $ {C}_{12}^{2} $ 26 GPa [38, 39]
    $ {C}_{13}^{1} $ 656 GPa [37] $ {C}_{13}^{2} $ 105 GPa [38, 39]
    $ {C}_{66}^{1} $ 10.5 GPa [37] $ {C}_{66}^{2} $ 56 GPa [38, 39]
    下载: 导出CSV
  • [1]

    Kai J J, Huang W I, Chou H Y 1990 J. Nucl. Mater. 170 193Google Scholar

    [2]

    Zhao W Z, Quan Q W, Zhang S M, Yang X Y, Wen H Y, Wu Y C, Liu X B, Cao X Z, Wang B Y 2023 Radiat. Phys. Chem. 209 110986Google Scholar

    [3]

    Jones R H, Simonen E P 1994 Mater. Sci. Eng. 176 211Google Scholar

    [4]

    Hu J, Liu J L, Lozano P S, Grovenor C R M, Christensen M, Wolf W, Wimmer E, Mader E V 2019 Acta Mater. 180 105Google Scholar

    [5]

    Cann C D, So C B, Styles R C, Coleman C E 1993 J. Nucl. Mater. 205 267Google Scholar

    [6]

    Wei T G, Dai X, Long C S, Sun C, Long S J, Zheng J Y, Wang P F, Jia Y Z, Zhang J S 2021 Corros. Sci. 192 109808Google Scholar

    [7]

    Tian Z, Peng J C, Lin X D, Hu Y Y, Yao M Y, Xie Y P, Liang X, Zhou B X 2024 Corros. Sci. 202 111937Google Scholar

    [8]

    Ferreirós P A, Polack E C S, Lanzani L A, Alonso P R, Quirós P D, Mieza J I, Rubiolo G H 2021 J. Nucl. Mater. 553 153039Google Scholar

    [9]

    Jiang G Y, Xu D H, Yang W P, Liu L, Zhi Y W, Yang J Q 2022 Prog. Nucl. Energy 154 104490Google Scholar

    [10]

    Yuan R, Xie Y P, Li T, Xu C H, Yao M Y, Xu J X, Guo H B, Zhou B X 2021 Acta Mater. 209 116804Google Scholar

    [11]

    Mcdeavitt S M, Billings G W, Indacochea J E 2002 J. Mater. Sci. 37 3765Google Scholar

    [12]

    Jerlerud P R, Toffolon M C, Joubert J M, Sundman B 2008 CALPHAD 32 593Google Scholar

    [13]

    Asle Zaeem M, El Kadiri H 2014 Comput. Mater. Sci. 89 122Google Scholar

    [14]

    张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐 2020 物理学报 69 226401Google Scholar

    Zhang G, Wang Q, Sha L T, Li Y J, Wang D, Shi S Q 2020 Acta Phys. Sin 69 226401Google Scholar

    [15]

    Chen L Q, Zhao Y 2022 Prog. Mater. Sci. 124 100868Google Scholar

    [16]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113Google Scholar

    [17]

    刘续希, 柳文波, 李博岩, 贺新福, 杨朝曦, 恽迪 2022 金属学报 58 943

    Liu X X, Liu W B, Li B Y, He X F, Yang Z X, Yun D 2022 Acta Metal. Sin 58 943

    [18]

    Mai W, Soghrati S 2017 Corros. Sci. 125 87Google Scholar

    [19]

    Fang X R, Pan Z C, Ma R J, Chen A R 2023 Comuput. Methods Appl. Mech. Engrg. 414 116196Google Scholar

    [20]

    冯力, 王智平, 路阳, 朱昌盛 2008 物理学报 57 1084Google Scholar

    Feng L, Wang Z P, Lu Y, Zhu C S 2008 Acta Phys. Sin 57 1084Google Scholar

    [21]

    Yang C, Huang H B, Liu W B, Wang J S, Wang J, Jafri H M, Liu Y, Han G M, Song H F, Chen L Q 2021 Adv. Theor. Simul. 4 2000162Google Scholar

    [22]

    Zhou F Y, Qiu K J, Bian D, Zheng Y F, Lin J P 2014 J. Mater. Sci. Technol. 30 299Google Scholar

    [23]

    Dinsdale A T 1991 CALPHAD 15 317Google Scholar

    [24]

    Aricó S F, Gribaudo L M, 1999 Scripta Mater. 41 159Google Scholar

    [25]

    Wang C, Zinkevich M, Aldinger F 2004 CALPHAD 28 281Google Scholar

    [26]

    Yin T, Lee J, Moosavi K E, Jung I H 2021 Ceram. Int. 47 29267Google Scholar

    [27]

    Isomäki I, Hämäläinen M, Gierlotka W, Onderka B, Fitzner K 2006 J. Alloys Compd. 422 173Google Scholar

    [28]

    Fang X R, Pan Z C, Chen A R, Tian H, Ma R J 2023 Eng. Fract. Mech. 281 109131Google Scholar

    [29]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085Google Scholar

    [30]

    Larché F C, Cahn J W 1985 Acta Metall. 33 331Google Scholar

    [31]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [32]

    Cox B, Pemsler J P 1968 J. Nucl. Mater. 28 73Google Scholar

    [33]

    Ritchie I G, Atrens A 1977 J. Nucl. Mater. 67 254Google Scholar

    [34]

    Keneshea F J, Douglass D L 1971 Oxid. Met. 3 1Google Scholar

    [35]

    姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪 2022 物理学报 71 026103Google Scholar

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin 71 026103Google Scholar

    [36]

    Qiu K, Wang R, Peng C, Lu X, Wang N 2015 CALPHAD 48 175Google Scholar

    [37]

    Fisher E, Renken C 1964 Phys. Rev. 135 A482Google Scholar

    [38]

    Fogaing E Y, Lorgouilloux Y, Huger M, Gault C P 2006 J. Mater. Sci. 41 7663Google Scholar

    [39]

    Mirgorodsky A, Smirnov M, Quintard P 1997 Phys. Rev. B 55 19Google Scholar

    [40]

    刘建章 2007 核结构材料 (北京: 化学工业出版社) 第89页

    Liu J Z 2007 Nuclear Structure Material (Beijing: Chemical Industry Press) p89

    [41]

    Fan D, Chen L Q 1997 Acta Mater. 45 611Google Scholar

    [42]

    Bi Y B, Zhang X L, Lu L, Xu Z F, Xie Z G, Chen B B, Liang Z X, Sun Z Q, Luo Z 2023 J. Mater. Res. Technol. 26 5888Google Scholar

    [43]

    Gwinner B, Bataillon C, Chelagemdib R, Gruet N, Lorentz V, Puga B 2023 Electrochim. Acta 470 143334Google Scholar

    [44]

    Zhang M H, Liu S D, Jiang J Y, Wei W C 2023 T Nonferr Metal. Soc. 33 1963Google Scholar

    [45]

    Liu J L, Yu H B, Karamched P, Hu J, He G Z, Goran D, Hughes G M, Wilkinson A J, Sergio L P, Grovenor C R 2019 Acta Mater. 179 328Google Scholar

  • [1] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn, Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究. 物理学报, 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [2] 廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波. 陶瓷型复合燃料烧结过程的相场模拟研究. 物理学报, 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [3] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [4] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [5] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟. 物理学报, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [6] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [7] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [8] 邵宇飞, 孟凡顺, 李久会, 赵星. 分子动力学模拟研究孪晶界对单层二硫化钼拉伸行为的影响. 物理学报, 2019, 68(21): 216201. doi: 10.7498/aps.68.20182125
    [9] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [10] 危洪清, 龙志林, 许福, 张平, 唐翌. Cu45Zr55-xAlx (x=3, 7, 12)块体非晶合金的第一性原理分子动力学模拟研究. 物理学报, 2014, 63(11): 118101. doi: 10.7498/aps.63.118101
    [11] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟. 物理学报, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [12] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [13] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [14] 张辉, 吴迪, 张国英, 肖明珠. 铜基大块非晶合金添加微量元素对腐蚀行为的影响机理研究. 物理学报, 2010, 59(1): 488-493. doi: 10.7498/aps.59.488
    [15] 马颖, 陈尚达, 谢国锋. SiC晶界薄膜的变电荷分子动力学模拟. 物理学报, 2009, 58(11): 7792-7796. doi: 10.7498/aps.58.7792
    [16] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟. 物理学报, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [17] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [18] 柳 林, 孙 民, 谌 祺, 刘 兵, 邱春雷. Zr-Cu-Ni-Al-Nb大块非晶合金的晶化行为、力学性能及电化学腐蚀行为的研究. 物理学报, 2006, 55(4): 1930-1935. doi: 10.7498/aps.55.1930
    [19] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
    [20] 邬钦祟, 王元生, 吴自勤, 何怡贞. 急冷Al80Mn20合金准晶T相的晶化动力学. 物理学报, 1988, 37(5): 796-803. doi: 10.7498/aps.37.796
计量
  • 文章访问数:  1482
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 修回日期:  2024-05-28
  • 上网日期:  2024-05-31
  • 刊出日期:  2024-07-20

/

返回文章
返回