搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

感性耦合Ar/O2等离子体放电特性的数值模拟

张雨涵 赵欣茜 梁英爽 郭媛媛

引用本文:
Citation:

感性耦合Ar/O2等离子体放电特性的数值模拟

张雨涵, 赵欣茜, 梁英爽, 郭媛媛

Numerical simulation of inductively coupled Ar/O2 plasma

Zhang Yu-Han, Zhao Xin-Qian, Liang Ying-Shuang, Guo Yuan-Yuan
PDF
HTML
导出引用
  • 本文采用流体力学模型对不同腔室材质下的感性耦合Ar/O2等离子体放电特性进行研究. 结果表明, 由于中性粒子在不同材质表面的黏附系数不同, 因而腔室材质对各活性粒子的密度和空间分布产生了显著的影响. 依次采用不锈钢、阳极Al2O3和Cu腔室进行放电, 发现电子、O+、Ar+、O、O(1D)和Arm的密度逐渐增大, $ {\text{O}}_2^ + $, O, O2$ {{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right) $的密度变化趋势相反, 各粒子的空间分布特点也有明显差异. 在不同腔室中, 电子在腔室中心区域的分布是均匀的; O和$ {{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right) $的密度最大值位于腔室中心, 并沿径向逐渐降低; 而Ar+和Arm的密度峰值出现在线圈下方; O+, $ {\text{O}}_2^ + $和O(1D)的密度最大值却随着腔室的变化从线圈下方逐渐向腔室中心方向移动; O离子则被局域在线圈和极板之间一个非常小的区域. 最后, 讨论了表面反应O → 1/2O2的黏附系数对O和O2的影响, 发现随着黏附系数的增大, O密度逐渐降低, O2密度变化趋势相反, 而且当黏附系数增大到0.5以上时, 二者的密度几乎不再受黏附系数的影响.
    In the inductively coupled plasma (ICP) discharge, surface processes, such as reflection, de-excitation, and recombination, can occur when active species arrive at material surfaces, which accordingly influences the plasma properties. In this work, a fluid model is used to study the Ar/O2 plasma generated by ICP reactors made of different materials. In simulation, sticking coefficient is employed to estimate the surface reactions on different materials. As the reactor material changes from stainless steel to anodized aluminum to Cu, the sticking coefficient of surface reaction O→1/2O2 decreases accordingly. It is found that the reactor material has a great effect on species density. In the stainless steel reactor, the density of O atoms at grounded state and excited state are much lower because more O2 molecules are generated from the surface reaction, yielding a much higher density of $ {\text{O}}_2^ + $ molecular ions which are mainly created from the ionization process of O2 molecules. Similarly, the high density of O2 molecules also enhances the production of ${{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right)$ molecules through the excitation process and O ions through the dissociation attachment reaction. On the contrary, more electrons are consumed via the collisions between electrons and O2 molecules or $ {\text{O}}_2^ + $ molecular ions. Therefore, the electron density obtained in the Cu reactor is highest. The density of Ar+ ions and Arm atoms also increase with sticking coefficient decreasing. The density of O+ ions and $ {\text{O}}_2^ + $ molecular ions peak below the coil in the stainless steel reactor, whereas the radial uniformities are improved in the Cu reactor. In the three reactors, the electrons distribute evenly at the reactor center region. The O density and ${{{\mathrm{O}}} _2}\left( {{{\mathrm{a}}^1}{\Delta _{\mathrm{g}}}} \right)$ density significantly peak at the reactor center, while the maximum value of Ar+ density and Arm density are below the coil. As for O(1D), the maximum density below the coil region moves toward the reactor center as the reactor material changes from stainless steel to Cu. Finally, the effect of sticking coefficient of O→1/2O2 is studied. The results show that the O atom density decreases with the sticking coefficient increasing, but the opposite trend is observed in O2 molecular density. It is noticed that the sticking coefficient has little effect on species density when it is higher than 0.5.
      通信作者: 梁英爽, ysliang@ustl.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11805089)、辽宁省教育厅基本科研项目(批准号: LJKMZ20220657)和辽宁科技大学大学生创新创业训练计划资助的课题.
      Corresponding author: Liang Ying-Shuang, ysliang@ustl.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11805089), the Fundamental Research of the Education Department of Liaoning Province, China (Grant No. LJKMZ20220657), and the College Students’ Innovative Entrepreneurial Training Plan Program of University of Science and Technology Liaoning, China.
    [1]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [2]

    Tiyyagura H R, Puliyalil H, Filipič G, et al. 2020 Surf. Coat. Technol. 385 125434Google Scholar

    [3]

    Zhang Z Y, Ye Z B, Wang Z J, et al. 2019 Appl. Surf. Sci. 475 143Google Scholar

    [4]

    Farias C E, Bianchi J C, Oliveira P R, et al. 2014 Mater. Res. 17 1251Google Scholar

    [5]

    Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231Google Scholar

    [6]

    Ono T, Akagi T, Ichiki T 2009 J. Appl. Phys. 105 013314Google Scholar

    [7]

    范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶 2017 真空科学与技术学报 37 286Google Scholar

    Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar

    [8]

    Hoffman A, Gu Y, Tokash J, Tokash J, Woodward J, Rack P D 2020 ACS Appl. Mater. Interfaces 12 7345Google Scholar

    [9]

    Chung T H, Kang H R, Bae M K 2012 Phys. Plasmas 19 113502Google Scholar

    [10]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [11]

    Du P C, Gao F, Wang X K, Liu Y X, Wang Y N 2021 Chin. Phys. B 30 035202Google Scholar

    [12]

    Han X, Wei X, Xu H, Zhang W, Li Y, Li Y, Yang Z 2019 Vacuum 168 108821Google Scholar

    [13]

    王彦洁 2018 硕士学位论文(大连: 大连理工大学)

    Wang Y J 2018 M. S. Dissertation (Dalian: Dalian University of Technology

    [14]

    Chen J L, Xu H J, Wei X L, Lü H Y, Song Z S, Chen Z H 2017 Vacuum 145 77Google Scholar

    [15]

    Wan Y H, Liu W, Zhang Y R, Wang Y N 2015 Chin. Phys. B 24 095203Google Scholar

    [16]

    Wen D Q, Zhang Y R, Lieberman M A, Wang Y N 2017 Plasma Process. Polym. 14 e1600100Google Scholar

    [17]

    佟磊, 赵明亮, 张钰如, 宋远红, 王友年 2024 物理学报 73 045201Google Scholar

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2024 Acta Phys. Sin. 73 045201Google Scholar

    [18]

    Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar

    [19]

    Liu W, Xue C, Gao F, Liu Y X, Wang Y N, Zhao Y T 2021 Chin. Phys. B 30 065202Google Scholar

    [20]

    孙晓艳 2017 博士学位论文(大连: 大连理工大学)

    Sun X Y 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [21]

    Shibata M, Nakano N, Makabe T 1996 J. Appl. Phys. 80 6142Google Scholar

    [22]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 495203Google Scholar

    [23]

    Zhao X Q, Liang Y S, Guo Y Y 2022 Phys. Plasmas 29 113511Google Scholar

    [24]

    Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol. A 33 061303Google Scholar

    [25]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Source Sci. Technol. 27 055003Google Scholar

    [26]

    Sun X Y, Zhang Y R, Li X C, Wang Y N 2017 Chin. Phys. B 26 015201Google Scholar

    [27]

    Liang Y S, Liu Y X, Zhang Y R, Wang Y N 2020 J Appl. Phys. 127 133301Google Scholar

    [28]

    Liang Y S, Xue C, Zhang Y R, Wang Y N 2021 Phys. Plasmas 28 013510Google Scholar

    [29]

    Bogaerts A 2009 Spectrochim. Acta B 64 126Google Scholar

    [30]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [31]

    Gomez S, Stern P G, Graham W G 2002 Appl. Phys. Lett. 81 19Google Scholar

    [32]

    Singh H, Coburn J W, Graves D B 2000 J. Appl. Phys. 88 3748Google Scholar

    [33]

    Matsushita J, Sasaki K, Kadota K 1997 Jpn. J. Appl. Phys. 36 4747Google Scholar

    [34]

    Mozetič M, Zalar A 2000 Appl. Surf. Sci. 158 263Google Scholar

    [35]

    Booth J P, Sadeghi N 1991 J. Appl. Phys. 70 611Google Scholar

    [36]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368Google Scholar

    [37]

    Guha J, Kurunczi P, Stafford L, Donnelly V M, Pu Y K 2008 J. Phys. Chem. C 112 8963Google Scholar

    [38]

    Kitajima T, Nakano T, Makabe T 2006 Appl. Phys. Lett. 88 091501Google Scholar

    [39]

    Sharpless R L, Slanger T G 1989 J. Chem. Phys. 91 7947Google Scholar

    [40]

    O'Brien Jr R J, Myers G H 1970 J. Chem. Phys. 53 3832Google Scholar

    [41]

    Vidaud P H, Wayne R P, Yaron M 1976 Chem. Phys. Lett. 38 306Google Scholar

    [42]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar

    [43]

    Gudmundsson J, Kimura T, Lieberman M 1999 Plasma Sources Sci. Technol. 8 22Google Scholar

    [44]

    Kiehlbauch M W, Graves D B 2003 J. Vacuum Sci. Technol. A 21 660Google Scholar

    [45]

    Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar

    [46]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar

  • 图 1  (a)电子密度和(b)电子温度随Ar含量变化

    Fig. 1.  (a) Electron density and (b) electron temperature as a function of Ar fraction.

    图 2  ICP腔室结构示意图

    Fig. 2.  Schematic diagram of the ICP reactor.

    图 3  不同材质腔室放电中电子密度径向分布(Z = 6 cm)

    Fig. 3.  Radial distributions of electron density at Z = 6 cm by different reactors.

    图 4  采用不锈钢腔室放电时, 不同方向的电子沉积功率密度空间分布 (a) R方向; (b) Z方向; (c) 角向

    Fig. 4.  Spatial distributions of electron deposition power density from different direction in a stainless steel reactor: (a) R-direction; (b) Z-direction; (c) azimuthal direction.

    图 5  不同材质腔室中$ {\text{O}}_2^ + $密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Fig. 5.  Spatial distributions of $ {\text{O}}_2^ + $ density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 6  不同材质腔室中O+密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Fig. 6.  Spatial distributions of O+ density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 7  不同材质腔室放电中Ar+密度径向分布(Z = 6 cm)

    Fig. 7.  Radial distributions of Ar+ density by different reactors at Z = 6 cm.

    图 8  不同材质腔室中O密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Fig. 8.  Spatial distributions of O density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 9  不同材质腔室中O密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Fig. 9.  Spatial distributions of O density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 10  不同材质腔室中O(D)密度空间分布 (a) 不锈钢; (b) 阳极Al2O3; (c) Cu

    Fig. 10.  Spatial distributions of O(D) density generated by different reactors: (a) Stainless steel; (b) anodized Al2O3; (c) Cu.

    图 11  不同材质腔室放电中, 中性粒子密度径向分布(Z = 6 cm) (a) O2; (b) O2(a)

    Fig. 11.  Radial distribution of neutral species density by different reactors at Z = 6 cm: (a) O2; (b) O2(a).

    图 12  不同材质腔室放电中Arm密度径向分布(Z = 6 cm)

    Fig. 12.  Radial distribution of Arm density by different reactors at Z = 6 cm.

    图 13  S4 O → 1/2O2任意黏附系数下不同粒子密度分布(a) O; (b) O2 (Z = 6 cm)

    Fig. 13.  Effect of sticking coefficient of reaction S4 O → 1/2O2 on neutral species density: (a) O; (b) O2 (Z = 6 cm)

    表 1  模型中考虑的表面反应

    Table 1.  Surface reactions considered in the model.

    序号 表面反应 黏附系数
    不锈钢 阳极Al2O3 Cu
    S1 Arr → Ar 1.0
    S2 Arm → Ar 1.0
    S3 Ar(4p) → Ar 1.0
    S4 O → 1/2O2 0.156 0.06 0.015
    S5 O(D) → 1/2O2
    S6 O2(a) → O2 0.007 0.007 0.014
    S7 O2(b) → O2 0.1
    下载: 导出CSV

    表 2  不同材质腔室下电子功率沉积密度最大值

    Table 2.  Maximum of electron deposition power density generated by different reactors.

    腔室材料电子沉积功率密度/(W·m–3)
    RZ角向
    不锈钢3.01×1041.95×1056.14×105
    阳极Al2O33.33×1042.06×1056.12×105
    Cu4.86×1042.52×1056.15×105
    下载: 导出CSV
  • [1]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [2]

    Tiyyagura H R, Puliyalil H, Filipič G, et al. 2020 Surf. Coat. Technol. 385 125434Google Scholar

    [3]

    Zhang Z Y, Ye Z B, Wang Z J, et al. 2019 Appl. Surf. Sci. 475 143Google Scholar

    [4]

    Farias C E, Bianchi J C, Oliveira P R, et al. 2014 Mater. Res. 17 1251Google Scholar

    [5]

    Cao F, Wang Y D, Li L, Guo B J, An Y P 2009 Scripta Mater. 61 231Google Scholar

    [6]

    Ono T, Akagi T, Ichiki T 2009 J. Appl. Phys. 105 013314Google Scholar

    [7]

    范惠泽, 刘凯, 黄永清, 蔡世伟, 任晓敏, 段晓峰, 王琦, 刘昊, 吴瑶 2017 真空科学与技术学报 37 286Google Scholar

    Fan H Z, Liu K, Huang Y Q, Cai S W, Ren X M, Duan X F, Wang Q, Liu H, Wu Y 2017 Chin. J. Vac. Sci. Technol. 37 286Google Scholar

    [8]

    Hoffman A, Gu Y, Tokash J, Tokash J, Woodward J, Rack P D 2020 ACS Appl. Mater. Interfaces 12 7345Google Scholar

    [9]

    Chung T H, Kang H R, Bae M K 2012 Phys. Plasmas 19 113502Google Scholar

    [10]

    Hsu C C, Nierode M A, Coburn J W, Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272Google Scholar

    [11]

    Du P C, Gao F, Wang X K, Liu Y X, Wang Y N 2021 Chin. Phys. B 30 035202Google Scholar

    [12]

    Han X, Wei X, Xu H, Zhang W, Li Y, Li Y, Yang Z 2019 Vacuum 168 108821Google Scholar

    [13]

    王彦洁 2018 硕士学位论文(大连: 大连理工大学)

    Wang Y J 2018 M. S. Dissertation (Dalian: Dalian University of Technology

    [14]

    Chen J L, Xu H J, Wei X L, Lü H Y, Song Z S, Chen Z H 2017 Vacuum 145 77Google Scholar

    [15]

    Wan Y H, Liu W, Zhang Y R, Wang Y N 2015 Chin. Phys. B 24 095203Google Scholar

    [16]

    Wen D Q, Zhang Y R, Lieberman M A, Wang Y N 2017 Plasma Process. Polym. 14 e1600100Google Scholar

    [17]

    佟磊, 赵明亮, 张钰如, 宋远红, 王友年 2024 物理学报 73 045201Google Scholar

    Tong L, Zhao M L, Zhang Y R, Song Y H, Wang Y N 2024 Acta Phys. Sin. 73 045201Google Scholar

    [18]

    Xue C, Gao F, Wen D Q, Wang Y N 2019 J. Appl. Phys. 125 023303Google Scholar

    [19]

    Liu W, Xue C, Gao F, Liu Y X, Wang Y N, Zhao Y T 2021 Chin. Phys. B 30 065202Google Scholar

    [20]

    孙晓艳 2017 博士学位论文(大连: 大连理工大学)

    Sun X Y 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [21]

    Shibata M, Nakano N, Makabe T 1996 J. Appl. Phys. 80 6142Google Scholar

    [22]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 495203Google Scholar

    [23]

    Zhao X Q, Liang Y S, Guo Y Y 2022 Phys. Plasmas 29 113511Google Scholar

    [24]

    Zhang Y R, Gao F, Li X C, Bogaerts A, Wang Y N 2015 J. Vac. Sci. Technol. A 33 061303Google Scholar

    [25]

    Zhang Y R, Hu Y T, Gao F, Song Y H, Wang Y N 2018 Plasma Source Sci. Technol. 27 055003Google Scholar

    [26]

    Sun X Y, Zhang Y R, Li X C, Wang Y N 2017 Chin. Phys. B 26 015201Google Scholar

    [27]

    Liang Y S, Liu Y X, Zhang Y R, Wang Y N 2020 J Appl. Phys. 127 133301Google Scholar

    [28]

    Liang Y S, Xue C, Zhang Y R, Wang Y N 2021 Phys. Plasmas 28 013510Google Scholar

    [29]

    Bogaerts A 2009 Spectrochim. Acta B 64 126Google Scholar

    [30]

    Gudmundsson J T, Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [31]

    Gomez S, Stern P G, Graham W G 2002 Appl. Phys. Lett. 81 19Google Scholar

    [32]

    Singh H, Coburn J W, Graves D B 2000 J. Appl. Phys. 88 3748Google Scholar

    [33]

    Matsushita J, Sasaki K, Kadota K 1997 Jpn. J. Appl. Phys. 36 4747Google Scholar

    [34]

    Mozetič M, Zalar A 2000 Appl. Surf. Sci. 158 263Google Scholar

    [35]

    Booth J P, Sadeghi N 1991 J. Appl. Phys. 70 611Google Scholar

    [36]

    Lee C, Lieberman M A 1995 J. Vac. Sci. Technol. A 13 368Google Scholar

    [37]

    Guha J, Kurunczi P, Stafford L, Donnelly V M, Pu Y K 2008 J. Phys. Chem. C 112 8963Google Scholar

    [38]

    Kitajima T, Nakano T, Makabe T 2006 Appl. Phys. Lett. 88 091501Google Scholar

    [39]

    Sharpless R L, Slanger T G 1989 J. Chem. Phys. 91 7947Google Scholar

    [40]

    O'Brien Jr R J, Myers G H 1970 J. Chem. Phys. 53 3832Google Scholar

    [41]

    Vidaud P H, Wayne R P, Yaron M 1976 Chem. Phys. Lett. 38 306Google Scholar

    [42]

    Thorsteinsson E G, Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008Google Scholar

    [43]

    Gudmundsson J, Kimura T, Lieberman M 1999 Plasma Sources Sci. Technol. 8 22Google Scholar

    [44]

    Kiehlbauch M W, Graves D B 2003 J. Vacuum Sci. Technol. A 21 660Google Scholar

    [45]

    Liu W, Wen D Q, Zhao S X, Gao F, Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035Google Scholar

    [46]

    Toneli D A, Pessoa R S, Roberto M, Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202Google Scholar

  • [1] 赵明亮, 邢思雨, 唐雯, 张钰如, 高飞, 王友年. 面向半导体工艺的平面线圈感性耦合氩等离子体源的三维流体模拟研究. 物理学报, 2024, 73(21): 215201. doi: 10.7498/aps.73.20240952
    [2] 佟磊, 赵明亮, 张钰如, 宋远红, 王友年. 带有射频偏压源的感性耦合Ar/O2/Cl2等离子体放电的混合模拟研究. 物理学报, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [3] 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红. 容性耦合硅烷等离子体尘埃颗粒空间分布的二维流体模拟. 物理学报, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [4] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [5] 张钰如, 高飞, 王友年. 低气压感性耦合等离子体源模拟研究进展. 物理学报, 2021, 70(9): 095206. doi: 10.7498/aps.70.20202247
    [6] 张改玲, 滑跃, 郝泽宇, 任春生. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究. 物理学报, 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [7] 黎航, 杨冬, 李三伟, 况龙钰, 李丽灵, 袁铮, 张海鹰, 于瑞珍, 杨志文, 陈韬, 曹柱荣, 蒲昱东, 缪文勇, 王峰, 杨家敏, 江少恩, 丁永坤, 胡广月, 郑坚. 黑腔中等离子体相互作用的流体力学现象观测. 物理学报, 2018, 67(23): 235201. doi: 10.7498/aps.67.20181391
    [8] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究. 物理学报, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [9] 原晓霞, 仲佳勇. 双等离子体团相互作用的磁流体力学模拟. 物理学报, 2017, 66(7): 075202. doi: 10.7498/aps.66.075202
    [10] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟. 物理学报, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [11] 魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏. 高气压空气环状感性耦合等离子体实验研究和参数诊断. 物理学报, 2015, 64(17): 175201. doi: 10.7498/aps.64.175201
    [12] 孙振月, 桑超峰, 胡万鹏, 王德真. 偏滤器等离子体中杂质对钨壁材料的侵蚀模拟研究. 物理学报, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [13] 文书堂, 张红卫, 张丽伟, 陈改荣, 卢景霄. SiH4/H2等离子体气相生长硅薄膜的动力学模型. 物理学报, 2010, 59(7): 4901-4910. doi: 10.7498/aps.59.4901
    [14] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [15] 孟立民, 滕爱萍, 李英骏, 程涛, 张杰. 基于自相似模型的二维X射线激光等离子体流体力学. 物理学报, 2009, 58(8): 5436-5442. doi: 10.7498/aps.58.5436
    [16] 洪小刚, 徐文东, 李小刚, 赵成强, 唐晓东. 数值模拟探针诱导表面等离子体共振耦合纳米光刻. 物理学报, 2008, 57(10): 6643-6648. doi: 10.7498/aps.57.6643
    [17] 丁振峰, 袁国玉, 高 巍, 孙景超. 柱面天线射频感性耦合等离子体放电模式特性的实验研究. 物理学报, 2008, 57(7): 4304-4315. doi: 10.7498/aps.57.4304
    [18] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [19] 苍 宇, 鲁 欣, 武慧春, 张 杰. 有质动力和静电分离场对激光等离子体流体力学状态的影响. 物理学报, 2005, 54(2): 812-817. doi: 10.7498/aps.54.812
    [20] 杨维纮, 胡希伟. 非均匀载流柱形等离子体中的磁流体力学波. 物理学报, 1996, 45(4): 595-600. doi: 10.7498/aps.45.595
计量
  • 文章访问数:  1645
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 修回日期:  2024-04-30
  • 上网日期:  2024-05-25
  • 刊出日期:  2024-07-05

/

返回文章
返回