搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用冷冻电镜研究蛋白质机器的非平衡统计物理

杨添 欧阳颀

引用本文:
Citation:

利用冷冻电镜研究蛋白质机器的非平衡统计物理

杨添, 欧阳颀

Study of non-equilibrium statistical physics of protein machine by cryogenic electron microscopy

Yang Tian, Ouyang Qi
PDF
HTML
导出引用
  • 对蛋白质机器的完整描述应包括其微观结构、热力学和动力学性质与工作机制. 最近兴起的冷冻电镜技术为蛋白质热力学与动力学的研究提供了全新的机遇. 目前已经有一些工作不仅利用冷冻电镜技术解析蛋白质的高分辨率结构, 还结合数据处理方法来分析蛋白质的构象分布并进一步推测其热力学性质. 然而, 利用冷冻电镜技术直接对蛋白质的动力学过程作观测与定量分析的方法还在发展的初级阶段. 本文选取了一个理想的蛋白质系统, 即蓝藻生物钟蛋白对冷冻电镜分析蛋白质非平衡过程的可能性进行探索. 基于已有的实验数据, 将蓝藻生物钟蛋白KaiC的平衡态统计物理模型推广至非平衡态, 对KaiC蛋白处于非平衡态时的动力学特征进行预测. 基于动力学预测结果, 本文揭示了冷冻电镜技术具有分析蓝藻生物钟蛋白的非平衡过程的可能, 为进一步的冷冻电镜实验提供了理论依据.
    A comprehensive description of the protein should include its structure, thermodynamics, and kinetic properties. The recent rise of cryogenic electron microscopy (cryo-EM) provides new opportunities for the thermodynamic and kinetic research of proteins. There have been some researches in which cryo-EM is used not only to resolve the high-resolution structure of proteins but also to analyze the conformational distribution of proteins to infer their thermodynamic properties based on data processing methods. However, whether cryo-EM can be used to directly quantify the kinetics of proteins is still unclear. In this work, an ideal protein system, cyanobacterial circadian clock protein, is selected to explore the potential of cryo-EM used to analyze the non-equilibrium process of proteins. Previous research has illustrated that cryoelectron microscope can be used to infer the thermodynamic information about the KaiC protein such as the inter-subunit interaction within the hexamers. Herein, we extend the equilibrium Ising model of KaiC hexamers to a non-equilibrium statistical physics model, revealing the properties of the non-equilibrium process of KaiC hexamers. According to the non-equilibrium model and previous biochemical research, we find that the intrinsic properties of KaiC protein allow its non-equilibrium conformational distribution to be measured by cryo-EM.
      通信作者: 欧阳颀, qi@pku.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12090054)资助的课题.
      Corresponding author: Ouyang Qi, qi@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12090054).
    [1]

    Henzler-Wildman K, Kern D 2007 Nature 450 964Google Scholar

    [2]

    Kern D 2021 Nat. Methods 18 435Google Scholar

    [3]

    Wei G, Xi W, Nussinov R, Ma B 2016 Chem. Rev. 116 6516Google Scholar

    [4]

    Motlagh H N, Wrabl J O, Li J, Hilser V J 2014 Nature 508 331Google Scholar

    [5]

    Dou Y, Dhatt-Gauthier K, Bishop K J M 2019 Curr. Opin. Solid State Mater. Sci. 23 28Google Scholar

    [6]

    Brown A I, Sivak D A 2020 Chem. Rev. 120 434Google Scholar

    [7]

    Fang X, Wang J 2020 Ann. Rev. Biophys. 49 227Google Scholar

    [8]

    Seifert U 2019 Annu. Rev. Condens. Matter Phys. 10 171Google Scholar

    [9]

    Fang X, Kruse K, Lu T, Wang J 2019 Rev. Mod. Phys. 91 045004Google Scholar

    [10]

    Ciliberto S 2017 Phys. Rev. X 7 021051Google Scholar

    [11]

    Bustamante C, Yan S 2022 Q. Rev. Biophys. 55 e9Google Scholar

    [12]

    Zhang D L, Ouyang Q 2021 Entropy 23 271Google Scholar

    [13]

    Frank J 2013 Biopolymers 99 832Google Scholar

    [14]

    Doerr A 2016 Nat. Methods 13 23Google Scholar

    [15]

    Sigworth F J 2007 Nat. Methods 4 20Google Scholar

    [16]

    Bonomi M, Vendruscolo M 2019 Curr. Opin. Struct. Biol. 56 37Google Scholar

    [17]

    Wu Z L, Chen E B, Zhang S W, Ma Y P, Mao Y D 2022 Int. J. Mol. Sci. 23 8872Google Scholar

    [18]

    Scheres S H 2016 Methods Enzymol. 579 125Google Scholar

    [19]

    Zhong E D, Bepler T, Berger B, Davis J H 2021 Nat. Methods 18 176Google Scholar

    [20]

    Huang R, Ripstein Z A, Rubinstein J L, Kay L E 2020 Angew. Chem. Int. Ed. Engl. 59 22423Google Scholar

    [21]

    Roh S H, Hryc C F, Jeong H H, Fei X, Jakana J, Lorimer G H, Chiu W 2017 Proc. Natl. Acad. Sci. U. S. A. 114 8259Google Scholar

    [22]

    Zhao Y Y, Schmid M F, Frydman J, Chiu W 2021 Nat. Commun. 12 4754Google Scholar

    [23]

    Amann S J, Keihsler D, Bodrug T, Brown N G, Haselbach D 2023 Structure 31 4Google Scholar

    [24]

    Bhattacharjee S, Feng X, Maji S, Dadhwal P, Zhang Z, Brown Z P, Frank J 2024 Cell 187 782Google Scholar

    [25]

    Zhang S W, Zou S T, Yin D Y, Zhao L H, Finley D, Wu Z L, Mao Y D 2022 Nature 605 567Google Scholar

    [26]

    Loveland A B, Demo G, Korostelev A A 2020 Nature 584 640Google Scholar

    [27]

    Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T 2005 Science 308 414Google Scholar

    [28]

    Chavan A G, Swan J A, Heisler J, Sancar C, Ernst D C, Fang M, Palacios J G, Spangler R K, Bagshaw C R, Tripathi S, Crosby P, Golden S S, Partch C L, LiWang A 2021 Science 374 eabd4453Google Scholar

    [29]

    Partch C L 2020 J. Mol. Biol. 432 3426Google Scholar

    [30]

    Swan J A, Golden S S, LiWang A, Partch C L 2018 J. Biol. Chem. 293 5026Google Scholar

    [31]

    Rust M J, Markson J S, Lane W S, Fisher D S, O’Shea E K 2007 Science 318 809Google Scholar

    [32]

    Zhang D L, Cao Y S, Ouyang Q, Tu Y H 2020 Nat. Phys. 16 95Google Scholar

    [33]

    Paijmans J, Lubensky D K, Ten Wolde P R 2017 PLoS Comp. Biol. 13 e1005415Google Scholar

    [34]

    van Zon J S, Lubensky D K, Altena P R, ten Wolde P R 2007 Proc. Natl. Acad. Sci. U. S. A. 104 7420Google Scholar

    [35]

    Kim Y I, Dong G, Carruthers C W, Jr., Golden S S, LiWang A 2008 Proc. Natl. Acad. Sci. U.S.A. 105 12825Google Scholar

    [36]

    Tseng R, Chang Y G, Bravo I, Latham R, Chaudhary A, Kuo N W, Liwang A 2014 J. Mol. Biol. 426 389Google Scholar

    [37]

    Furuike Y, Mukaiyama A, Ouyang D, Ito-Miwa K, Simon D, Yamashita E, Kondo T, Akiyama S 2022 Sci Adv 8 eabm8990Google Scholar

    [38]

    Han X, Zhang D L, Hong L, Yu D Q, Wu Z L, Yang T, Rust M, Tu Y H, Ouyang Q 2023 Nat. Commun. 14 5907Google Scholar

    [39]

    Swan J A, Sandate C R, Chavan A G, Freeberg A M, Etwaru D, Ernst D C, Palacios J G, Golden S S, Liwang A, Lander G C, Partch C L 2022 Nat. Struct. Mol. Biol. 29 759Google Scholar

    [40]

    Han X, Wu Z L, Yang T, Ouyang Q 2022 Chin. Phys. Lett. 39 070501Google Scholar

    [41]

    Glauber R J 1963 J. Math. Phys. 4 294Google Scholar

    [42]

    Gillespie D T 2007 Annu. Rev. Phys. Chem. 58 35Google Scholar

    [43]

    Terauchi K, Kitayama Y, Nishiwaki T, Miwa K, Murayama Y, Oyama T, Kondo T 2007 Proc. Natl. Acad. Sci. U. S. A. 104 16377Google Scholar

    [44]

    Abe J, Hiyama T B, Mukaiyama A, Son S, Mori T, Saito S, Osako M, Wolanin J, Yamashita E, Kondo T, Akiyama S 2015 Science 349 312Google Scholar

  • 图 1  蓝藻生物钟蛋白 (a) 蓝藻生物钟核心蛋白的工作过程示意图[29,30]; (b) KaiC-CⅡ结构域的冷冻电镜结构的表面示意图, KaiC-AA六聚体中心孔径比KaiC-EE大[38]; (c) A-loop(氨基酸486-497)的两个构象, 暴露态(exposed state)和埋藏态(buried state)

    Fig. 1.  Overview of cyanobacterial oscillator: (a) A carton illustration of cyanobacterial oscillator[29,30]; (b) space-filling depictions of structures of KaiC viewed from the CⅡ side, the central pore diameter of KaiC-AA is larger than that of KaiC-EE[38]; (c) two conformations of A-loop region, exposed state and buried state.

    图 2  冷冻电镜解析的蓝藻生物钟蛋白KaiC的A-loop分布[38](a) KaiC-AA的A-loop的构象分布, 横坐标代表六聚体的13种构型, 空白圆圈表示暴露态, 蓝色填充圆圈表示埋藏态; (b) KaiC-EE的A-loop的构象分布

    Fig. 2.  A-loop conformational distribution of KaiC hexamers[38]: (a) Conformational distribution of KaiC-AA hexamer, where 13 configurations are drawn within the x axis, un-filled circle represents exposed state and blue-filled circle represents buried state; (b) conformational distribution of KaiC-EE hexamer.

    图 3  非平衡态Ising模型数值模拟结果 (a) J = 0.3时, 不同α条件下构象均值的演化(左), 均值m与外场B的关系(右); (b) J = 1.0时, 不同α条件下构象均值的演化(左), 均值m与外场B的关系(右)

    Fig. 3.  Typical numerical simulation results of non-equilibrium Ising model: (a) evolution of m(t) when J = 0.3 in various α (left), relation between expectation value m and external filed B (right); (b) evolution of m(t) when J = 1.0 in various α (left), same as panel (a) (right).

    图 4  (10)式对六聚体系统的适用性验证 (a) 外场振幅Bamp = 0.3时数值结果与(10)式的拟合, 图中实线为理论结果, 十字叉为数值模拟结果; (b) 不同参数范围时(10)式与数值模拟结果的拟合程度

    Fig. 4.  Validation of applicability of Eq. (10) for the hexamer system: (a) Fitting the Eq. (10) with numerical results when the amplitude of external field Bamp is 0.3, here solid curve represents results of the theoretical equation whereas the cross represents numerical results; (b) fitting of the theoretical equation and numerical result in a wide range of parameters.

    图 5  KaiC蛋白A-loop分布模拟结果 (a) KaiC蛋白A-loop构象分布模拟, 其中序号1—13与图2中六聚体构型依次对应, 红色虚线为p12的极大值对应的位置; (b) 非平衡态分布与平衡态分布的决定系数R2, 蓝色阴影部分为KaiC蛋白的参数范围

    Fig. 5.  Simulation results of A-loop distribution for KaiC hexamers: (a) Evolution of A-loop distribution, where 13 states correspond to the markers drawn in Fig. 2 and red dash represents peak of distribution p12; (b) R2 between the non-equilibrium distribution and the corresponding equilibrium distribution, where blue shadow covers the parameter range of KaiC.

  • [1]

    Henzler-Wildman K, Kern D 2007 Nature 450 964Google Scholar

    [2]

    Kern D 2021 Nat. Methods 18 435Google Scholar

    [3]

    Wei G, Xi W, Nussinov R, Ma B 2016 Chem. Rev. 116 6516Google Scholar

    [4]

    Motlagh H N, Wrabl J O, Li J, Hilser V J 2014 Nature 508 331Google Scholar

    [5]

    Dou Y, Dhatt-Gauthier K, Bishop K J M 2019 Curr. Opin. Solid State Mater. Sci. 23 28Google Scholar

    [6]

    Brown A I, Sivak D A 2020 Chem. Rev. 120 434Google Scholar

    [7]

    Fang X, Wang J 2020 Ann. Rev. Biophys. 49 227Google Scholar

    [8]

    Seifert U 2019 Annu. Rev. Condens. Matter Phys. 10 171Google Scholar

    [9]

    Fang X, Kruse K, Lu T, Wang J 2019 Rev. Mod. Phys. 91 045004Google Scholar

    [10]

    Ciliberto S 2017 Phys. Rev. X 7 021051Google Scholar

    [11]

    Bustamante C, Yan S 2022 Q. Rev. Biophys. 55 e9Google Scholar

    [12]

    Zhang D L, Ouyang Q 2021 Entropy 23 271Google Scholar

    [13]

    Frank J 2013 Biopolymers 99 832Google Scholar

    [14]

    Doerr A 2016 Nat. Methods 13 23Google Scholar

    [15]

    Sigworth F J 2007 Nat. Methods 4 20Google Scholar

    [16]

    Bonomi M, Vendruscolo M 2019 Curr. Opin. Struct. Biol. 56 37Google Scholar

    [17]

    Wu Z L, Chen E B, Zhang S W, Ma Y P, Mao Y D 2022 Int. J. Mol. Sci. 23 8872Google Scholar

    [18]

    Scheres S H 2016 Methods Enzymol. 579 125Google Scholar

    [19]

    Zhong E D, Bepler T, Berger B, Davis J H 2021 Nat. Methods 18 176Google Scholar

    [20]

    Huang R, Ripstein Z A, Rubinstein J L, Kay L E 2020 Angew. Chem. Int. Ed. Engl. 59 22423Google Scholar

    [21]

    Roh S H, Hryc C F, Jeong H H, Fei X, Jakana J, Lorimer G H, Chiu W 2017 Proc. Natl. Acad. Sci. U. S. A. 114 8259Google Scholar

    [22]

    Zhao Y Y, Schmid M F, Frydman J, Chiu W 2021 Nat. Commun. 12 4754Google Scholar

    [23]

    Amann S J, Keihsler D, Bodrug T, Brown N G, Haselbach D 2023 Structure 31 4Google Scholar

    [24]

    Bhattacharjee S, Feng X, Maji S, Dadhwal P, Zhang Z, Brown Z P, Frank J 2024 Cell 187 782Google Scholar

    [25]

    Zhang S W, Zou S T, Yin D Y, Zhao L H, Finley D, Wu Z L, Mao Y D 2022 Nature 605 567Google Scholar

    [26]

    Loveland A B, Demo G, Korostelev A A 2020 Nature 584 640Google Scholar

    [27]

    Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T 2005 Science 308 414Google Scholar

    [28]

    Chavan A G, Swan J A, Heisler J, Sancar C, Ernst D C, Fang M, Palacios J G, Spangler R K, Bagshaw C R, Tripathi S, Crosby P, Golden S S, Partch C L, LiWang A 2021 Science 374 eabd4453Google Scholar

    [29]

    Partch C L 2020 J. Mol. Biol. 432 3426Google Scholar

    [30]

    Swan J A, Golden S S, LiWang A, Partch C L 2018 J. Biol. Chem. 293 5026Google Scholar

    [31]

    Rust M J, Markson J S, Lane W S, Fisher D S, O’Shea E K 2007 Science 318 809Google Scholar

    [32]

    Zhang D L, Cao Y S, Ouyang Q, Tu Y H 2020 Nat. Phys. 16 95Google Scholar

    [33]

    Paijmans J, Lubensky D K, Ten Wolde P R 2017 PLoS Comp. Biol. 13 e1005415Google Scholar

    [34]

    van Zon J S, Lubensky D K, Altena P R, ten Wolde P R 2007 Proc. Natl. Acad. Sci. U. S. A. 104 7420Google Scholar

    [35]

    Kim Y I, Dong G, Carruthers C W, Jr., Golden S S, LiWang A 2008 Proc. Natl. Acad. Sci. U.S.A. 105 12825Google Scholar

    [36]

    Tseng R, Chang Y G, Bravo I, Latham R, Chaudhary A, Kuo N W, Liwang A 2014 J. Mol. Biol. 426 389Google Scholar

    [37]

    Furuike Y, Mukaiyama A, Ouyang D, Ito-Miwa K, Simon D, Yamashita E, Kondo T, Akiyama S 2022 Sci Adv 8 eabm8990Google Scholar

    [38]

    Han X, Zhang D L, Hong L, Yu D Q, Wu Z L, Yang T, Rust M, Tu Y H, Ouyang Q 2023 Nat. Commun. 14 5907Google Scholar

    [39]

    Swan J A, Sandate C R, Chavan A G, Freeberg A M, Etwaru D, Ernst D C, Palacios J G, Golden S S, Liwang A, Lander G C, Partch C L 2022 Nat. Struct. Mol. Biol. 29 759Google Scholar

    [40]

    Han X, Wu Z L, Yang T, Ouyang Q 2022 Chin. Phys. Lett. 39 070501Google Scholar

    [41]

    Glauber R J 1963 J. Math. Phys. 4 294Google Scholar

    [42]

    Gillespie D T 2007 Annu. Rev. Phys. Chem. 58 35Google Scholar

    [43]

    Terauchi K, Kitayama Y, Nishiwaki T, Miwa K, Murayama Y, Oyama T, Kondo T 2007 Proc. Natl. Acad. Sci. U. S. A. 104 16377Google Scholar

    [44]

    Abe J, Hiyama T B, Mukaiyama A, Son S, Mori T, Saito S, Osako M, Wolanin J, Yamashita E, Kondo T, Akiyama S 2015 Science 349 312Google Scholar

  • [1] 汤天一, 熊翊名, 张睿格, 张建, 李文飞, 王骏, 王炜. 融合结构知识的蛋白质预训练模型进展. 物理学报, 2024, 73(18): 188701. doi: 10.7498/aps.73.20240811
    [2] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [3] 刘栋, 崔新月, 王浩东, 张贵军. 蛋白质结构模型质量评估方法综述. 物理学报, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [4] 罗方芳, 蔡志涛, 黄艳东. 蛋白质pKa预测模型研究进展. 物理学报, 2023, 72(24): 248704. doi: 10.7498/aps.72.20231356
    [5] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [6] 贺志, 余敏, 王琼. 多格点相互作用对横向磁场作用下XY型自旋链中非平衡态热力学性质的影响. 物理学报, 2019, 68(24): 240506. doi: 10.7498/aps.68.20190525
    [7] 邓海游, 贾亚, 张阳. 蛋白质结构预测. 物理学报, 2016, 65(17): 178701. doi: 10.7498/aps.65.178701
    [8] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究. 物理学报, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [9] 周恒为, 刘君, 雷婷, 黄以能. 液态簧振动力学谱在蛋白质水凝胶脱水变性过程的应用研究. 物理学报, 2013, 62(7): 076203. doi: 10.7498/aps.62.076203
    [10] 王伟宗, 吴翊, 荣命哲, 杨飞. 局域热力学平衡态空气电弧等离子体输运参数计算研究. 物理学报, 2012, 61(10): 105201. doi: 10.7498/aps.61.105201
    [11] 万茜, 周进, 刘曾荣. 蛋白质相互作用网络特征的理论再现. 物理学报, 2012, 61(1): 010203. doi: 10.7498/aps.61.010203
    [12] 蒋泽南, 房超, 孙立风. 朗之万方程及其在蛋白质折叠动力学中的应用. 物理学报, 2011, 60(6): 060502. doi: 10.7498/aps.60.060502
    [13] 唐先柱, 彭增辉, 刘永刚, 鲁兴海, 宣丽. 相变前的热力学平衡态对铁电液晶排列的影响. 物理学报, 2010, 59(9): 6261-6265. doi: 10.7498/aps.59.6261
    [14] 张开成. Sherrington-Kirkpatric自旋玻璃模型的非平衡态性质. 物理学报, 2009, 58(8): 5673-5678. doi: 10.7498/aps.58.5673
    [15] 沈惠川. 分析热力学的应用:平衡态热力学中温度的相对论变换. 物理学报, 2005, 54(6): 2482-2488. doi: 10.7498/aps.54.2482
    [16] 阎循领, 董瑞新, 王伯运, 胡海泉, 徐炳振. α螺旋蛋白质分子Raman光谱的选择定则. 物理学报, 1998, 47(12): 1963-1967. doi: 10.7498/aps.47.1963
    [17] 刘军民, 张进修. 关于热诱导一级相变过程的非平衡态理论. 物理学报, 1997, 46(2): 345-352. doi: 10.7498/aps.46.345
    [18] 陈式刚, 陈肖兰, 王友琴. 强准粒子注入下具有时间周期结构的超导非平衡态. 物理学报, 1984, 33(2): 281-284. doi: 10.7498/aps.33.281
    [19] 周光召, 郝柏林, 于渌. 非平衡统计场论与临界动力学(Ⅱ)——拉氏场论表述. 物理学报, 1980, 29(8): 969-977. doi: 10.7498/aps.29.969
    [20] 冯克安. 非平衡态相变的两例——光学参量振荡和激光. 物理学报, 1978, 27(3): 322-330. doi: 10.7498/aps.27.322
计量
  • 文章访问数:  2438
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-29
  • 修回日期:  2024-05-29
  • 上网日期:  2024-06-05
  • 刊出日期:  2024-07-05

/

返回文章
返回