搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场对电子回旋共振中和器等离子体与电子引出影响的数值模拟

罗凌峰 杨涓 耿海 吴先明 牟浩

引用本文:
Citation:

磁场对电子回旋共振中和器等离子体与电子引出影响的数值模拟

罗凌峰, 杨涓, 耿海, 吴先明, 牟浩

Numerical simulation of magnetic field influence on plasma and electron extraction of electron cyclotron resonance neutralizer

Luo Ling-Feng, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao
PDF
HTML
导出引用
  • 10 cm电子回旋共振离子推力器(ECRIT)的ECR中和器是关键部件, 其内部磁场是影响中和器性能的重要因素. 磁场的均匀性和磁阱位置是磁场特征的重要表现, 制约等离子体与电势的分布规律、电子引出过程及中和器性能. 本文分别建立磁场均匀性低、磁阱位于电子引出孔上游和磁场均匀性高、磁阱位于电子引出孔下游的ECR中和器PIC/MCC模型, 在给定参数条件下, 开展等离子体和电势分布规律及电子引出过程的数值模拟研究并分析其对中和器性能的影响. 结果表明, 磁场均匀性高、磁阱位于电子引出孔下游时, 中和器内整体电势分布较均匀, 电子容易朝磁阱区迁移, 低引出电势引出高电子束流, 其性能高于磁场均匀性低、磁阱内置的中和器. 研究工作将为发展高性能的ECR中和器奠定重要基础.
    Electron cyclotron resonance (ECR) neutralizer is a key component of electron cyclotron resonance ion thruster (ECRIT) with a diameter of 10 cm, which plays an important role in maintaining the spacecraft potential balance and neutralizing the ions in the plume region. Optimizing magnetic field distribution is an important way to improve the performance of neutralizer. At the same time, the uniformity of the magnetic field and the position of the magnetic trap can affect the magnetic field characteristics, plasma performance, electron extraction process, and beam current. Previous experimental researches showed that the beam current extraction performances of the two ECR neutralizers with different magnetic field uniformity and different magnetic trap locations are significantly different. However, it is difficult to reveal the physical phenomena and causes only through experiments, so numerical simulation is needed. Therefore PIC/MCC codes for the ECR neutralizers with different uniformity of magnetic field and different positions of magnetic trap are established. Under the given electron extraction potential, numerical simulations are accomplished to study electron extraction procedure and analyze its influence on the performance of the neutralizer. The simulation results show that when the magnetic field uniformity is low and the magnetic trap is located upstream of extraction orifice, the migration of electrons from the magnetic trap to the outlet is limited by the magnetic field and the electric field, thus a higher potential energy is needed to extract the electrons. Otherwise, when the magnetic field uniformity is high and the magnetic trap is located at the downstream of extraction orifice, electrons will be more likely to migrate towards the magnet trap. After the electrons reach the magnetic trap, under the action of the anode potential, the external potential is higher, and the external weak magnetic field almost fails to hold these electrons. Therefore a large number of electrons can be extracted at low extraction potential. This research will lay an important foundation for the development of high-performance ECR neutralizer.
      通信作者: 杨涓, yangjuan@nwpu.edu.cn
      Corresponding author: Yang Juan, yangjuan@nwpu.edu.cn
    [1]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78Google Scholar

    Yang J, Mou H, Gen H, Wu X M 2023 J. Propuls. Tech. 44 78Google Scholar

    [2]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power 34 960Google Scholar

    [3]

    谈人玮, 杨涓, 耿海, 吴先明, 牟浩 2023 物理学报 72 045202Google Scholar

    Tan R W, Yang J, Gen H, Wu X M, Mou H 2023 Acta Phys. Sin. 72 045202Google Scholar

    [4]

    Tsuru T, Kondo S, Yamamoto N, Nakashima H 2009 T. Jpn. Soc. Aeronaut. S. 7 163Google Scholar

    [5]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544Google Scholar

    [6]

    Tsuda Y, Nakazawa S, Yoshikawa M, Saiki T, Terui F, Arakawa M, Abe M, Kitazato K, Sugita S, Tachibana S, Namiki N, Tanaka S, Okada T, Ikeda H, Watanabe S i, Hirabayashi M, Tsuda Y 2022 Hayabusa2 Asteroid Sample Return Mission (Elsevier) pp5–23

    [7]

    Kawaguchi J i, Fujiwara A, Uesugi T 2008 Acta Astronaut. 62 639Google Scholar

    [8]

    Mou H, Jin Y Z, Yang J, Xia X, Fu Y L 2022 Chin. Phys. B 31 075202Google Scholar

    [9]

    Zheng P, Wu J, Zhang Y, Che B, Li J 2021 Acta Astronaut. 187 236Google Scholar

    [10]

    罗立涛, 杨涓, 金逸舟, 孙俊, 韩飞 2016 中国空间科学技术 36 35Google Scholar

    Luo L T, Yang J, Jin Y Z, Sun J, Han F 2016 Chin. Space Sci. Tech. 36 35Google Scholar

    [11]

    罗立涛, 杨涓, 金逸舟, 冯冰冰, 汤明杰 2015 西北工业大学学报 33 395Google Scholar

    Luo L T, Yang J, Jin Y Z, Feng B B, Tang J M 2015 J. Northwest. Polytech. Univ. 33 395Google Scholar

    [12]

    孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 40 1478Google Scholar

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 40 1478Google Scholar

    [13]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 T. Jpn. Soc. Aeronaut. S. 49 87Google Scholar

    [14]

    Fu Y L, Yang J, Geng H, Wu X, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [15]

    高振业 2022 硕士学位论文(西安: 西北工业大学)

    Gao Z Y 2022 M. S. Thesis (Xi’an: Northwestern Polytechnical University

    [16]

    Nishiyama K, Kuninaka H 2008 Surf. Coat. Tech. 202 5262Google Scholar

    [17]

    Fu Y L, Yang J, Jin Y, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar

    [18]

    付瑜亮 2022 博士学位论文 (西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertationn (Xi’an: Northwestern Polytechnical University

    [19]

    杨涓, 石峰, 杨铁链, 孟志强 2010 物理学报 59 8701Google Scholar

    Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701Google Scholar

    [20]

    金逸舟 2018 博士学位论文(西安: 西北工业大学)

    Jin Y Z 2018 Ph. D. Dissertationn (Xi’an: Northwestern Polytechnical University

    [21]

    Ikkoh Funaki I F, Hitoshi Kuninaka H K 2001 Japanese Journal of Applied Physics 40 2495Google Scholar

    [22]

    夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮 2022 物理学报 71 045201Google Scholar

    Xia X, Yang J, Gen H, Wu X M, Fu Y L, Mou H, Tan R W 2022 Acta Phys. Sin. 71 045201Google Scholar

    [23]

    Chen F F 1974 Introduction to Plasma Physics (New York: Springer Science Business Media) pp139–180

  • 图 1  国内外ECR中和器束流引出实验伏安特性曲线

    Fig. 1.  Characteristic curve of current beam extracted from ECR neutralizer.

    图 2  ECR中和器结构 (a) 磁阱内置; (b) 磁阱外置

    Fig. 2.  ECR neutralizer structures: (a) Internal magnetic trap; (b) external magnetic trap.

    图 3  ECR中和器电子束流引出实验系统

    Fig. 3.  ECR neutralizer electron beam extraction experiment system.

    图 4  数值模拟计算域和边界条件 (a) 磁阱内置; (b) 磁阱外置

    Fig. 4.  Numerical simulation calculation domain and boundary: (a) Internal magnetic trap; (b) external magnetic trap.

    图 5  数值模拟流程

    Fig. 5.  Numerical simulation procedure.

    图 6  不同阳极电势中和器电子密度分布 (a) 磁阱内置φa = 20 V; (b) 磁阱外置φa = 20 V; (c) 磁阱内置φa = 50 V; (d) 磁阱外置φa = 40 V

    Fig. 6.  Electron density distribution inside of neutralizer at different anode potential: (a) Internal magnetic trap at φa = 20 V; (b) external magnetic trap at φa = 20 V; (c) internal magnetic trap at φa = 50 V; (d) external magnetic trap at φa = 40 V.

    图 7  不同阳极电势中和器离子密度分布 (a) 磁阱内置φa = 20 V; (b) 磁阱外置φa = 20 V; (c) 磁阱内置φa = 50 V; (d) 磁阱外置φa=40 V

    Fig. 7.  Ion density distribution inside of neutralizer at different anode potential: (a) Internal magnetic trap at φa = 20 V; (b) external magnetic trap at φa = 20 V; (c) internal magnetic trap at φa = 50 V; (d) external magnetic trap at φa = 40 V.

    图 8  ECR中和器磁场分布 (a) 磁阱内置; (b) 磁阱外置

    Fig. 8.  ECR neutralizer magnetic field distribution: (a) Internal magnetic trap; (b) external magnetic trap.

    图 9  不同阳极板电势下中和器电势分布 (a) 磁阱内置φa = 20 V; (b) 磁阱外置φa = 20 V; (c) 磁阱内置φa = 50 V; (d) 磁阱外置φa = 40 V

    Fig. 9.  Potential distribution inside of neutralizer at different anode potential: (a) Internal magnetic trap at φa = 20 V; (b) external magnetic trap at φa = 20 V; (c) internal magnetic trap at φa = 50 V; (d) external magnetic trap at φa = 40 V.

    图 10  两类ECR中和器束流引出实验和模拟统计结果

    Fig. 10.  Experiment and calculation results of electron current from different neutralizer.

    图 11  不同阳极电势下电子引出路径电势分布 (a) 磁阱内置; (b) 磁阱外置

    Fig. 11.  Potential distribution on electron extraction path at different anode potential: (a) Internal magnetic trap; (b) external magnetic trap.

  • [1]

    杨涓, 牟浩, 耿海, 吴先明 2023 推进技术 44 78Google Scholar

    Yang J, Mou H, Gen H, Wu X M 2023 J. Propuls. Tech. 44 78Google Scholar

    [2]

    Koizumi H, Komurasaki K, Aoyama J, Yamaguchi K 2018 J. Propuls. Power 34 960Google Scholar

    [3]

    谈人玮, 杨涓, 耿海, 吴先明, 牟浩 2023 物理学报 72 045202Google Scholar

    Tan R W, Yang J, Gen H, Wu X M, Mou H 2023 Acta Phys. Sin. 72 045202Google Scholar

    [4]

    Tsuru T, Kondo S, Yamamoto N, Nakashima H 2009 T. Jpn. Soc. Aeronaut. S. 7 163Google Scholar

    [5]

    Kuninaka H, Nishiyama K, Funaki I, Yamada T, Shimizu Y, Kawaguchi J 2007 J. Propul. Power 23 544Google Scholar

    [6]

    Tsuda Y, Nakazawa S, Yoshikawa M, Saiki T, Terui F, Arakawa M, Abe M, Kitazato K, Sugita S, Tachibana S, Namiki N, Tanaka S, Okada T, Ikeda H, Watanabe S i, Hirabayashi M, Tsuda Y 2022 Hayabusa2 Asteroid Sample Return Mission (Elsevier) pp5–23

    [7]

    Kawaguchi J i, Fujiwara A, Uesugi T 2008 Acta Astronaut. 62 639Google Scholar

    [8]

    Mou H, Jin Y Z, Yang J, Xia X, Fu Y L 2022 Chin. Phys. B 31 075202Google Scholar

    [9]

    Zheng P, Wu J, Zhang Y, Che B, Li J 2021 Acta Astronaut. 187 236Google Scholar

    [10]

    罗立涛, 杨涓, 金逸舟, 孙俊, 韩飞 2016 中国空间科学技术 36 35Google Scholar

    Luo L T, Yang J, Jin Y Z, Sun J, Han F 2016 Chin. Space Sci. Tech. 36 35Google Scholar

    [11]

    罗立涛, 杨涓, 金逸舟, 冯冰冰, 汤明杰 2015 西北工业大学学报 33 395Google Scholar

    Luo L T, Yang J, Jin Y Z, Feng B B, Tang J M 2015 J. Northwest. Polytech. Univ. 33 395Google Scholar

    [12]

    孟海波, 杨涓, 黄文斌, 夏旭, 付瑜亮, 胡展 2019 宇航学报 40 1478Google Scholar

    Meng H B, Yang J, Huang W B, Xia X, Fu Y L, Hu Z 2019 J. Astronaut. 40 1478Google Scholar

    [13]

    Masui H, Tashiro Y, Yamamoto N, Nakashima H, Funaki I 2006 T. Jpn. Soc. Aeronaut. S. 49 87Google Scholar

    [14]

    Fu Y L, Yang J, Geng H, Wu X, Hu Z, Xia X 2021 Vacuum 184 109932Google Scholar

    [15]

    高振业 2022 硕士学位论文(西安: 西北工业大学)

    Gao Z Y 2022 M. S. Thesis (Xi’an: Northwestern Polytechnical University

    [16]

    Nishiyama K, Kuninaka H 2008 Surf. Coat. Tech. 202 5262Google Scholar

    [17]

    Fu Y L, Yang J, Jin Y, Xia X, Meng H B 2019 Acta Astronaut. 164 387Google Scholar

    [18]

    付瑜亮 2022 博士学位论文 (西安: 西北工业大学)

    Fu Y L 2022 Ph. D. Dissertationn (Xi’an: Northwestern Polytechnical University

    [19]

    杨涓, 石峰, 杨铁链, 孟志强 2010 物理学报 59 8701Google Scholar

    Yang J, Shi F, Yang T L, Meng Z Q 2010 Acta Phys. Sin. 59 8701Google Scholar

    [20]

    金逸舟 2018 博士学位论文(西安: 西北工业大学)

    Jin Y Z 2018 Ph. D. Dissertationn (Xi’an: Northwestern Polytechnical University

    [21]

    Ikkoh Funaki I F, Hitoshi Kuninaka H K 2001 Japanese Journal of Applied Physics 40 2495Google Scholar

    [22]

    夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮 2022 物理学报 71 045201Google Scholar

    Xia X, Yang J, Gen H, Wu X M, Fu Y L, Mou H, Tan R W 2022 Acta Phys. Sin. 71 045201Google Scholar

    [23]

    Chen F F 1974 Introduction to Plasma Physics (New York: Springer Science Business Media) pp139–180

  • [1] 付瑜亮, 张思远, 孙安邦, 马祖福, 王亚楠. 磁阵列微波放电中和器的电子引出机制. 物理学报, 2024, 73(11): 115203. doi: 10.7498/aps.73.20240273
    [2] 付瑜亮, 杨涓, 夏旭, 孙安邦. 放电室长度对电子回旋共振离子推力器性能的影响机理. 物理学报, 2023, 72(17): 175204. doi: 10.7498/aps.72.20230719
    [3] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩. 2 cm电子回旋共振离子源猝灭现象模拟. 物理学报, 2022, 71(8): 085203. doi: 10.7498/aps.71.20212151
    [4] 夏旭, 杨涓, 耿海, 吴先明, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, 2022, 71(4): 045201. doi: 10.7498/aps.71.20211519
    [5] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟. 物理学报, 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [6] 夏旭, 杨涓, 耿海, WU Xian-Ming, 付瑜亮, 牟浩, 谈人玮. 不同磁路下微型ECR中和器电子引出的模拟研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211519
    [7] 左春彦, 高飞, 戴忠玲, 王友年. 高功率微波输出窗内侧击穿动力学的PIC/MCC模拟研究. 物理学报, 2018, 67(22): 225201. doi: 10.7498/aps.67.20181260
    [8] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [9] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究. 物理学报, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [10] 杨超, 刘大刚, 王辉辉, 杨宇鹏, 廖方燕, 彭凯, 刘腊群. 表面产生负氢离子引出MCC算法设计. 物理学报, 2013, 62(2): 025206. doi: 10.7498/aps.62.025206
    [11] 杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲. 基于负氢离子源的全三维PIC/MCC模拟算法研究. 物理学报, 2012, 61(4): 045204. doi: 10.7498/aps.61.045204
    [12] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [13] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [14] 李小泽, 王建国, 童长江, 张 海. 充填不同气体相对论返波管特性的PIC-MCC模拟. 物理学报, 2008, 57(7): 4613-4622. doi: 10.7498/aps.57.4613
    [15] 郑飞腾, 杨中海, 金晓林. 空心阴极类火花放电初始电离过程的PIC/MCC模拟. 物理学报, 2008, 57(2): 990-995. doi: 10.7498/aps.57.990
    [16] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [17] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅱ)——数值模拟与结果讨论. 物理学报, 2006, 55(11): 5935-5941. doi: 10.7498/aps.55.5935
    [18] 吴衍青, 韩申生. 电子-离子碰撞对超热电子影响的PIC模拟计算. 物理学报, 2000, 49(5): 915-921. doi: 10.7498/aps.49.915
    [19] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [20] 熊家贵, 王德武. 离子引出的二维PIC-MCC模拟. 物理学报, 2000, 49(12): 2420-2426. doi: 10.7498/aps.49.2420
计量
  • 文章访问数:  1171
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-02
  • 修回日期:  2024-06-26
  • 上网日期:  2024-07-16
  • 刊出日期:  2024-08-20

/

返回文章
返回