-
热光伏器件是一种利用光伏效应将热源的热辐射转化为电能的器件. 高效热光伏器件在电网规模的热能存储、全光谱太阳能转换、分布式联合发电、废热回收等方面有着广阔的应用前景. 然而, 大多数热辐射处于低能量波长范围, 无法有效激发光伏电池半导体的电子跃迁从而产生电能. 因此, 对热辐射光谱发射的选择性调控是实现高效热光伏器件的关键. 近年来, 伴随着纳米光子学、材料科学与人工智能赋能科学的发展, 热光伏器件中的光谱调控也取得了极大进展. 本文首先回顾了热光伏器件的发展历史, 继而围绕热光伏器件中热端和冷端的光谱调控, 详细讨论了超结构选择性发射器、本征选择性发射器、光滤波器以及背表面反射器的热辐射光谱调控物理机制与调控手段, 并梳理和总结了近场热光伏的相关研究, 最后对热光伏器件的未来发展进行了展望.Thermophotovoltaic (TPV) device converts thermal radiation into electricity output through photovoltaic effect. High-efficiency TPV devices have extensive applications in grid-scale thermal storage, full-spectrum solar utilization, distributed thermal-electricity cogeneration, and waste heat recovery. The key to high-efficiency TPV devices lies in spectral regulation to achieve band-matching between thermal radiation of the emitters and electron transition of the photovoltaic cells. The latest advances in nanophotonics, materials science, and artificial intelligence have made milestone progress in spectral regulation and recording power conversion efficiency of up to 40% of TPV devices. Here we systematically review spectral regulation in TPV devices at the emitter end as well as the photovoltaic cell end. At the emitter end, spectral regulation is realized through thermal metamaterials and rare-earth intrinsic emitters to selectively enhance the in-band radiation and suppress the sub-bandgap radiation. At the photovoltaic cell end, spectral regulation mainly focuses on recycling the sub-bandgap thermal radiation through optical filters and back surface reflectors located at the front and back of the photovoltaic cells, respectively. We emphasize the light-matter interaction mechanisms and material systems of different spectral regulation strategies. We also discuss the spectral regulation strategies in near-field TPV devices. Finally, we look forward to potential development paths and prospects of spectral regulation to achieve scalable deployment of future TPV devices.
-
Keywords:
- thermophotovoltaic /
- thermal radiation /
- spectral regulation /
- thermal photonics
[1] Datas A, Lopez-Ceballos A, Lopez E, Ramos A, del Canizo C 2022 Joule 6 418Google Scholar
[2] Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H, Jensen K F, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Proc. Natl. Acad. Sci. U.S.A. 110 5309Google Scholar
[3] Chan W R, Stelmakh V, Ghebrebrhan M, Soljacic M, Joannopoulos J D, Celanovic I 2017 Energy Environ. Sci. 10 1367Google Scholar
[4] Coutts T J 1999 Renew. Sust. Energ. Rev. 3 77Google Scholar
[5] Nelson R E 2003 Semicond. Sci. Technol. 18 141Google Scholar
[6] Wedlock B D 1963 Proc. IEEE 51 694Google Scholar
[7] Guazzoni G, Kittl E, Shapiro S 1969 IEEE Trans. Electron Dev. 16 256
[8] Swanson R M 1978 1978 International Electron Devices Meeting Washington, DC, USA, December 4–6, 1978 p70
[9] Swanson R M 1980 International Electron Devices Meeting Washington, DC, USA, December 8–10, 1980 p186
[10] Woolf L D, Bass J C, Elsner N B 1986 Proceedings of the 32nd International Power Sources Symposium Cherry Hill, NJ, USA, June 9–12, 1986 p101
[11] Lowe R A, Chubb D L, Farmer S C, Good B S 1994 Appl. Phys. Lett. 64 3551Google Scholar
[12] John S 1987 Phys. Rev. Lett. 58 2486Google Scholar
[13] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar
[14] Narayanaswamy A, Chen G 2004 Phys. Rev. B 70 125101Google Scholar
[15] Pralle M U, Moelders N, McNeal M P, Puscasu I, Greenwald A C, Daly J T, Johnson E A, George T, Choi D S, El-Kady I, Biswas R 2002 Appl. Phys. Lett. 81 4685Google Scholar
[16] Lin S Y, Moreno J, Fleming J G 2003 Appl. Phys. Lett. 83 380Google Scholar
[17] Wernsman B, Siergiej R R, Link S D, Mahorter R G, Palmisiano M N, Wehrer R J, Schultz R W, Schmuck G P, Messham R L, Murray S, Murray C S, Newman F, Taylor D, DePoy D M, Rahmlow T 2004 IEEE Trans. Electron Dev. 51 512Google Scholar
[18] Fan D, Burger T, McSherry S, Lee B, Lenert A, Forrest S R 2020 Nature 586 237Google Scholar
[19] LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A 2022 Nature 604 287Google Scholar
[20] Catrysse P B, Fan S 2010 Nano Lett. 10 2944Google Scholar
[21] Wang X, Chan W R, Stelmakh V, Soljacic M, Joannopoulos J D, Celanovic I, Fisher P H 2015 J. Phys. : Conf. Ser. 660 012034Google Scholar
[22] Rinnerbauer V, Lenert A, Bierman D M, Yeng Y X, Chan W R, Geil R D, Senkevich J J, Joannopoulos J D, Wang E N, Soljacic M, Celanovic I 2014 Adv. Energy Mater. 4 1400334Google Scholar
[23] Fleming J G, Lin S Y, El-Kady I, Biswas R, Ho K M 2002 Nature 417 52Google Scholar
[24] Fleming J G 2005 Appl. Phys. Lett. 86 249902Google Scholar
[25] Trupke T, Würfel P, Green M A 2004 Appl. Phys. Lett. 84 1997Google Scholar
[26] Arpin K A, Losego M D, Braun P V 2011 Chem. Mater. 23 4783Google Scholar
[27] Arpin K A, Losego M D, Cloud A N, Ning H, Mallek J, Sergeant N P, Zhu L, Yu Z, Kalanyan B, Parsons G N, Girolami G S, Abelson J R, Fan S, Braun P V 2013 Nat. Commun. 4 2630Google Scholar
[28] Ghebrebrhan M, Bermel P, Yeng Y X, Celanovic I, Soljacic M, Joannopoulos J D 2011 Phys. Rev. A 83 033810Google Scholar
[29] Jovanovic N, Celanovic I, Kassakian J 2007 7th World Conference on Thermophotovoltaic Generation of Electricity Madrid, Spain, September 25–27, 2006 p47
[30] Rinnerbauer V, Yeng Y X, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Opt. Express 21 11482Google Scholar
[31] Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403Google Scholar
[32] Kinsey N, DeVault C, Boltasseva A, Shalaev V M 2019 Nat. Rev. Mater. 4 742Google Scholar
[33] Vassant S, Hugonin J P, Marquier F, Greffet J J 2012 Opt. Express 20 23971Google Scholar
[34] Molesky S, Dewalt C J, Jacob Z 2013 Opt. Express 21 96Google Scholar
[35] Dyachenko P N, Molesky S, Petrov A Y, Stoermer M, Krekeler T, Lang S, Ritter M, Jacob Z, Eich M 2016 Nat. Commun. 7 11809Google Scholar
[36] Kar C, Jena S, Udupa D V, Rao K D 2023 Opt. Laser Technol. 159 108928Google Scholar
[37] Jeon N, Hernandez J J, Rosenmann D, Gray S K, Martinson A B F, Foley J J 2018 Adv. Energy Mater. 8 1801035Google Scholar
[38] Hu R, Song J L, Liu Y D, Xi W, Zhao Y T, Yu X J, Cheng Q, Tao G M, Luo X B 2020 Nano Energy 72 104687Google Scholar
[39] Wang Q X, Huang Z Q, Li J Z, Huang G Y, Wang D W, Zhang H, Guo J, Ding M, Chen J T, Zhang Z H, Rui Z H, Shang W, Xu J Y, Zhang J, Shiomi J, Fu T R, Deng T, Johnson S G, Xu H X, Cui K H 2023 Nano Lett. 23 1144Google Scholar
[40] Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263Google Scholar
[41] Lee H J, Smyth K, Bathurst S, Chou J, Ghebrebrhan M, Joannopoulos J, Saka N, Kim S G 2013 Appl. Phys. Lett. 102 241904Google Scholar
[42] Sai H, Kanamori Y, Yugami H 2003 Appl. Phys. Lett. 82 1685Google Scholar
[43] Peykov D, Yeng Y X, Celanovic I, Joannopoulos J D, Schuh C A 2015 Opt. Express 23 9979Google Scholar
[44] Rudisill S G, Wang Z, Stein A 2012 Langmuir 28 7310Google Scholar
[45] Chirumamilla M, Krishnamurthy G V, Rout S S, Ritter M, Stoermer M, Petrov A Y, Eich M 2020 Sci. Rep. 10 3605Google Scholar
[46] Nagpal P, Josephson D P, Denny N R, DeWilde J, Norris D J, Stein A 2011 J. Mater. Chem. 21 10836Google Scholar
[47] Stelmakh V, Peykov D, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I, Castillo R, Coulter K, Wei R 2015 J. Vac. Sci. Technol. A 33 061204
[48] Chirumamilla M, Krishnamurthy G V, Knopp K, Krekeler T, Graf M, Jalas D, Ritter M, Stoermer M, Petrov A Y, Eich M 2019 Sci. Rep. 9 7241Google Scholar
[49] Cui K H, Lemaire P, Zhao H, Savas T, Parsons G, Hart A J 2018 Adv. Energy Mater. 8 1801471Google Scholar
[50] McSherry S, Webb M, Kaufman J, Deng Z, Davoodabadi A, Ma T, Kioupakis E, Esfarjani K, Heron J T, Lenert A 2022 Nat. Nanotechnol. 17 1104Google Scholar
[51] Dias M R S, Gong T, Duncan M A, Ness S C, McCormack S J, Leite M S, Munday J N 2023 Joule 7 2209Google Scholar
[52] Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S, Mazzer M 2004 Nat. Mater. 3 632Google Scholar
[53] Bitnar B, Durisch W, Mayor J C, Sigg H, Tschudi H R 2002 Sol. Energy Mater Sol. Cells 73 221Google Scholar
[54] Bitnar S, Durisch W, Palfinger G, von Roth F, Vogt U, Brönstrup A, Seiler D 2004 Semiconductors 38 941Google Scholar
[55] Nakagawa N, Ohtsubo H, Waku Y, Yugami H 2005 J. Eur. Ceram. Soc. 25 1285Google Scholar
[56] Yugami H, Sai H, Nakamura K, Nakagawa N, Ohtsubo H 2000 28th IEEE Photovoltaic Specialists Conference Anchorage, AK, USA, September 15–22, 2000 p1214
[57] Shimizu M, Kohiyama A, Yugami H 2015 J. Photonics Energy 5 053099Google Scholar
[58] Ferguson L G, Dogan F 2001 Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 83 35Google Scholar
[59] van de Groep J, Spinelli P, Polman A 2012 Nano Lett. 12 3138Google Scholar
[60] Shemelya C, Demeo D F, Vandervelde T E 2014 Appl. Phys. Lett. 104 021115Google Scholar
[61] Zhang S H, Huang B H, Bian Y B, Han C Z, Tian D, Chen X M, Qiu J W, Zhu A W, Yang A X, Shao J X 2023 Opt. Express 31 9186Google Scholar
[62] Rahmlow T D, DePoy DM, Fourspring P M, Ehsani H, Lazo-Waseml J E, Gratrix E J 2007 AIP Conf. Proc. 890 59Google Scholar
[63] Fourspring P M, DePoy D M, Rahmlow T D, Lazo-Wasem J E, Gratrix E J 2006 Appl. Opt. 45 1356Google Scholar
[64] Bierman D M, Lenert A, Chan W R, Bhatia B, Celanovic I, Soljacic M, Wang E N 2016 Nat. Energy 1 16068Google Scholar
[65] Varner J F, Wert D, Matari A, Nofal R, Foley J J 2020 Phys. Rev. Res. 2 013018Google Scholar
[66] Jiang J, Fan J A 2021 Nanophotonics 10 361
[67] Wang H Z, Zheng Z Y, Ji C G, Jay Guo L 2021 Mach. Learn-Sci. Techn. 2 025013Google Scholar
[68] Omair Z, Scranton G, Pazos-Outon L M, Xiao T P, Steiner M A, Ganapati V, Peterson P F, Holzrichter J, Atwater H, Yablonovitch E 2019 Proc. Natl. Acad. Sci. U. S. A. 116 15356Google Scholar
[69] Burger T, Fan D, Lee K, Forrest S R, Lenert A 2018 ACS Photonics 5 2748Google Scholar
[70] Lee B, Lentz R, Burger T, Roy-Layinde B, Lim J, Zhu R M, Fan D, Lenert A, Forrest S R 2022 ACS Energy Lett. 7 2388Google Scholar
[71] Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291Google Scholar
[72] DiMatteo R S, Greiff P, Finberg S L, Young-Waithe K A, Choy H K H, Masaki M M, Fonstad C G 2001 Appl. Phys. Lett. 79 1894Google Scholar
[73] Pan J L, Choy H K H, Fonstad C G 2000 IEEE Trans. Electron Dev. 47 241Google Scholar
[74] Narayanaswamy A, Chen G 2003 Appl. Phys. Lett. 82 3544Google Scholar
[75] Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M, Fan S 2017 Nano Energy 41 344Google Scholar
[76] Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotechnol. 13 806Google Scholar
[77] Inoue T, Koyama T, Kang D D, Ikeda K, Asano T, Noda S 2019 Nano Lett. 19 3948Google Scholar
[78] Lucchesi C, Cakiroglu D, Perez J P, Taliercio T, Tournie E, Chapuis P-O, Vaillon R 2021 Nano Lett. 21 4524Google Scholar
[79] Bright T J, Wang L P, Zhang Z M 2014 J. Heat Transfer 136 062701Google Scholar
[80] Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661Google Scholar
[81] Mittapally R, Lee B, Zhu L, Reihani A, Lim J W, Fan D, Forrest S R, Reddy P, Meyhofer E 2021 Nat. Commun. 12 4364Google Scholar
[82] Inoue T, Ikeda K, Song B, Suzuki T, Ishino K, Asano T, Noda S 2021 ACS Photonics 8 2466Google Scholar
-
图 4 一维超结构选择性热发射器的光谱调控 (a), (b) 100 nm厚的ENZ与ENP薄膜在完美反射器上的吸收率[34]; (c) W/HfO2一维结构的吸收特性及示意图[35]; (d) W-SiO2/Si一维超结构选择性热发射器的结构示意图及其光谱发射率[39]; (e) W-SiO2/Si一维超结构选择性热发射器中两个DBR的透光率[39]; (f) W-SiO2/Si一维超结构选择性热发射器在TM和TE极化下的能带分布图[39]
Fig. 4. Spectral regulation in one-dimensional metamaterial thermal emitter: (a), (b) Absorptivity of 100 nm-thick ENZ and ENP films on a perfect reflector[34]; (c) the spectral absorption and the structure of the one-dimensional W/HfO2 thermal emitter[35]; (d) the spectral emissivity and the structure of the one-dimensional W-SiO2/Si thermal emitter [39]; (e) the spectral transmittance of two DBRs in the one-dimensional W-SiO2/Si thermal emitter [39]; (f) the photonic band diagram of the W-SiO2/Si thermal emitter under TM and TE polarization[39].
图 5 选择性热发射器在高温下的热稳定性 (a)—(c) Ta空腔光子晶体在1200 K高温工况下的结构变化仿真 (a) 2D截面图[43]; (b) 3D投影图[43]; (c) 200 h退火后的3D投影图[43]; (d), (e) W/HfO2热发射器制造完成时和1400 ℃真空退火6 h后的SEM横截面图[45]; (f), (g) W-CNT二维光子晶体热发射器在1273 K下退火12 h和168 h后的SEM图像[49]
Fig. 5. Thermal stability of selective thermal emitters at high temperatures: (a)–(c) Simulation results of structural change of the Ta PhC at 1200 K, (a) 2D cross-section image, (b) 3D projection image after 0 hours, and (c) after 200 h annealing[43]; (d), (e) cross-sectional SEM images of the W/HfO2 selective thermal emitter (d) before and (e) after annealing at 1400 ℃ for 6 h under vacuum pressure [45]; (f), (g) SEM images of the W-CNT PhC selective thermal emitter after 12 h and 168 h annealing at 1273 K[49].
图 6 双层薄膜结构发射器[51] 基于双层结构热发射器的 (a) InGaAsSb, (b) InGaAs, (c) Ge, (d) Si TPV性能; (e) 双层结构的热膨胀系数匹配度的评估标准
Fig. 6. Bi-layer thin film structure emitter[51]: (a) InGaAsSb, (b) InGaAs, (c) Ge, (d) Si TPV performance based on series of bi-layer thermal emitters; (e) design criteria of thermal expansion mismatch for bi-layer thermal emitters.
图 7 本征选择性发射器的光学性能 (a) Yb2O3选择性热发射器与1735 K黑体的辐射强度对比[53]; (b) Er2O3选择性热发射器与1735 K黑体的辐射强度对比[53]
Fig. 7. Optical properties of the intrinsic selective emitters: (a) Comparison of radiation intensity between Yb2O3 selective thermal emitter and 1735 K blackbody[53]; (b) comparison of radiation intensity between Er2O3 selective thermal emitter and 1735 K blackbody[53].
图 8 光滤波器的设计、优化与应用 (a) 使用梳齿型啁啾滤波器的TPV器件结构[64]; (b)—(e)基于ResNet生成神经网络的一维多层结构多目标全局优化[66], (b) ResNet全局优化示意图; (c) 优化所得到的45层滤波器的光谱反射率; (d) 优化所得到的45层滤波器的光谱反射率随入射角变化的函数; (e) 黑体白炽光源和优化所得到的45层滤波器后等效光源的发射功率
Fig. 8. Design, optimization and application of optical filter: (a) Structure of TPV devices using chirped mirror optical filter [64]; (b)–(e) multiobjective global optimization of photonic structures based on ResNet generative neural networks[66]; (b) schematic of the ResNet Global optimization; (c) reflection spectra of a 45-layer ResNet-optimized optical filter; (d) reflection spectra of the 45-layer ResNet-optimized optical filter as a function of the incident angle; (e) emissive power of a blackbody incandescent source and an equivalent source sandwiched by the filter featured in (c).
图 9 空气桥TPV中的光子利用[18] 带Au BSR的传统薄膜TPV (a)与带气桥反射器的薄膜TPV (b)的能量流示意图; (c) 在1500 K黑体热源下使用Au BSR的传统InGaAs薄膜电池的功率分布; (d) 在1500 K黑体热源下使用(b)所示空气桥TPV的功率分布
Fig. 9. Photon utilization in air-bridge thermophotovoltaics[18]: Schematics of energy flow in a conventional thin-film TPV with Au BSR (a) versus a thin-film TPV with air-bridge reflector (b); (c) power distribution of a conventional thin-film InGaAs cell with a Au BSR operated with a 1500 K blackbody source; (d) power distribution of the air-bridge TPV shown in (b) operated using a 1500 K blackbody emitter.
表 1 TPV热发射器的结构及其光谱性能汇总
Table 1. Summary of the structures and performance of TPV thermal emitters.
参考
文献材料与结构 测试波长
范围/μm设计
温度/K测试
温度光伏电池
带隙/eV光谱
效率/
%[2] 1D Si/SiO2 1.00—8.00 1293 工作温度 0.55 34.5 [39] 1D Si/SiO2/W 0.40—8.00 1473 室温 0.73 65.6 [37] 1D W+SiO2/TiO2+合金 0.80—6.00 1373 工作温度 0.55 46.8 [35] 1D W/HfO2 0.65—10.0 1273 室温 0.55 49.5 [45] 1D W/HfO2 0.50—4.00 1673 室温 0.72 50.2 [48] 1D W/HfO2 0.50—3.50 1673 室温 0.72 48.3 [57] 1D YSZ/W/YSZ 0.30—4.00 1640 室温 0.67 50.1 [38] W+Al2O3+SiO2/TiO2+W–Al2O3 0.50—5.00 1696 模拟 0.73 57.3 [3] 1D多晶Ta 1.00—3.00 1327 室温 0.62 60.0 [22] 2D Ta + HfO2涂覆 0.25—2.50 1000 室温 0.54 71.2 [49] 2D W + CNT 0.50—5.00 1273 室温 0.74 42.1 [27] 3D W反蛋白石结构 0.50—5.00 1673 室温 0.67 33.9 [54] Yb2O3 0.80—45.0 1735 工作温度 0.69 18.9 [55] Al2O3/EAG 1.00—9.00 1850 工作温度 0.72 36.0 [58] NiO掺杂MgO 1.00—5.00 1473 工作温度 0.69 45.9 -
[1] Datas A, Lopez-Ceballos A, Lopez E, Ramos A, del Canizo C 2022 Joule 6 418Google Scholar
[2] Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H, Jensen K F, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Proc. Natl. Acad. Sci. U.S.A. 110 5309Google Scholar
[3] Chan W R, Stelmakh V, Ghebrebrhan M, Soljacic M, Joannopoulos J D, Celanovic I 2017 Energy Environ. Sci. 10 1367Google Scholar
[4] Coutts T J 1999 Renew. Sust. Energ. Rev. 3 77Google Scholar
[5] Nelson R E 2003 Semicond. Sci. Technol. 18 141Google Scholar
[6] Wedlock B D 1963 Proc. IEEE 51 694Google Scholar
[7] Guazzoni G, Kittl E, Shapiro S 1969 IEEE Trans. Electron Dev. 16 256
[8] Swanson R M 1978 1978 International Electron Devices Meeting Washington, DC, USA, December 4–6, 1978 p70
[9] Swanson R M 1980 International Electron Devices Meeting Washington, DC, USA, December 8–10, 1980 p186
[10] Woolf L D, Bass J C, Elsner N B 1986 Proceedings of the 32nd International Power Sources Symposium Cherry Hill, NJ, USA, June 9–12, 1986 p101
[11] Lowe R A, Chubb D L, Farmer S C, Good B S 1994 Appl. Phys. Lett. 64 3551Google Scholar
[12] John S 1987 Phys. Rev. Lett. 58 2486Google Scholar
[13] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059Google Scholar
[14] Narayanaswamy A, Chen G 2004 Phys. Rev. B 70 125101Google Scholar
[15] Pralle M U, Moelders N, McNeal M P, Puscasu I, Greenwald A C, Daly J T, Johnson E A, George T, Choi D S, El-Kady I, Biswas R 2002 Appl. Phys. Lett. 81 4685Google Scholar
[16] Lin S Y, Moreno J, Fleming J G 2003 Appl. Phys. Lett. 83 380Google Scholar
[17] Wernsman B, Siergiej R R, Link S D, Mahorter R G, Palmisiano M N, Wehrer R J, Schultz R W, Schmuck G P, Messham R L, Murray S, Murray C S, Newman F, Taylor D, DePoy D M, Rahmlow T 2004 IEEE Trans. Electron Dev. 51 512Google Scholar
[18] Fan D, Burger T, McSherry S, Lee B, Lenert A, Forrest S R 2020 Nature 586 237Google Scholar
[19] LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A 2022 Nature 604 287Google Scholar
[20] Catrysse P B, Fan S 2010 Nano Lett. 10 2944Google Scholar
[21] Wang X, Chan W R, Stelmakh V, Soljacic M, Joannopoulos J D, Celanovic I, Fisher P H 2015 J. Phys. : Conf. Ser. 660 012034Google Scholar
[22] Rinnerbauer V, Lenert A, Bierman D M, Yeng Y X, Chan W R, Geil R D, Senkevich J J, Joannopoulos J D, Wang E N, Soljacic M, Celanovic I 2014 Adv. Energy Mater. 4 1400334Google Scholar
[23] Fleming J G, Lin S Y, El-Kady I, Biswas R, Ho K M 2002 Nature 417 52Google Scholar
[24] Fleming J G 2005 Appl. Phys. Lett. 86 249902Google Scholar
[25] Trupke T, Würfel P, Green M A 2004 Appl. Phys. Lett. 84 1997Google Scholar
[26] Arpin K A, Losego M D, Braun P V 2011 Chem. Mater. 23 4783Google Scholar
[27] Arpin K A, Losego M D, Cloud A N, Ning H, Mallek J, Sergeant N P, Zhu L, Yu Z, Kalanyan B, Parsons G N, Girolami G S, Abelson J R, Fan S, Braun P V 2013 Nat. Commun. 4 2630Google Scholar
[28] Ghebrebrhan M, Bermel P, Yeng Y X, Celanovic I, Soljacic M, Joannopoulos J D 2011 Phys. Rev. A 83 033810Google Scholar
[29] Jovanovic N, Celanovic I, Kassakian J 2007 7th World Conference on Thermophotovoltaic Generation of Electricity Madrid, Spain, September 25–27, 2006 p47
[30] Rinnerbauer V, Yeng Y X, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Opt. Express 21 11482Google Scholar
[31] Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403Google Scholar
[32] Kinsey N, DeVault C, Boltasseva A, Shalaev V M 2019 Nat. Rev. Mater. 4 742Google Scholar
[33] Vassant S, Hugonin J P, Marquier F, Greffet J J 2012 Opt. Express 20 23971Google Scholar
[34] Molesky S, Dewalt C J, Jacob Z 2013 Opt. Express 21 96Google Scholar
[35] Dyachenko P N, Molesky S, Petrov A Y, Stoermer M, Krekeler T, Lang S, Ritter M, Jacob Z, Eich M 2016 Nat. Commun. 7 11809Google Scholar
[36] Kar C, Jena S, Udupa D V, Rao K D 2023 Opt. Laser Technol. 159 108928Google Scholar
[37] Jeon N, Hernandez J J, Rosenmann D, Gray S K, Martinson A B F, Foley J J 2018 Adv. Energy Mater. 8 1801035Google Scholar
[38] Hu R, Song J L, Liu Y D, Xi W, Zhao Y T, Yu X J, Cheng Q, Tao G M, Luo X B 2020 Nano Energy 72 104687Google Scholar
[39] Wang Q X, Huang Z Q, Li J Z, Huang G Y, Wang D W, Zhang H, Guo J, Ding M, Chen J T, Zhang Z H, Rui Z H, Shang W, Xu J Y, Zhang J, Shiomi J, Fu T R, Deng T, Johnson S G, Xu H X, Cui K H 2023 Nano Lett. 23 1144Google Scholar
[40] Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263Google Scholar
[41] Lee H J, Smyth K, Bathurst S, Chou J, Ghebrebrhan M, Joannopoulos J, Saka N, Kim S G 2013 Appl. Phys. Lett. 102 241904Google Scholar
[42] Sai H, Kanamori Y, Yugami H 2003 Appl. Phys. Lett. 82 1685Google Scholar
[43] Peykov D, Yeng Y X, Celanovic I, Joannopoulos J D, Schuh C A 2015 Opt. Express 23 9979Google Scholar
[44] Rudisill S G, Wang Z, Stein A 2012 Langmuir 28 7310Google Scholar
[45] Chirumamilla M, Krishnamurthy G V, Rout S S, Ritter M, Stoermer M, Petrov A Y, Eich M 2020 Sci. Rep. 10 3605Google Scholar
[46] Nagpal P, Josephson D P, Denny N R, DeWilde J, Norris D J, Stein A 2011 J. Mater. Chem. 21 10836Google Scholar
[47] Stelmakh V, Peykov D, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I, Castillo R, Coulter K, Wei R 2015 J. Vac. Sci. Technol. A 33 061204
[48] Chirumamilla M, Krishnamurthy G V, Knopp K, Krekeler T, Graf M, Jalas D, Ritter M, Stoermer M, Petrov A Y, Eich M 2019 Sci. Rep. 9 7241Google Scholar
[49] Cui K H, Lemaire P, Zhao H, Savas T, Parsons G, Hart A J 2018 Adv. Energy Mater. 8 1801471Google Scholar
[50] McSherry S, Webb M, Kaufman J, Deng Z, Davoodabadi A, Ma T, Kioupakis E, Esfarjani K, Heron J T, Lenert A 2022 Nat. Nanotechnol. 17 1104Google Scholar
[51] Dias M R S, Gong T, Duncan M A, Ness S C, McCormack S J, Leite M S, Munday J N 2023 Joule 7 2209Google Scholar
[52] Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S, Mazzer M 2004 Nat. Mater. 3 632Google Scholar
[53] Bitnar B, Durisch W, Mayor J C, Sigg H, Tschudi H R 2002 Sol. Energy Mater Sol. Cells 73 221Google Scholar
[54] Bitnar S, Durisch W, Palfinger G, von Roth F, Vogt U, Brönstrup A, Seiler D 2004 Semiconductors 38 941Google Scholar
[55] Nakagawa N, Ohtsubo H, Waku Y, Yugami H 2005 J. Eur. Ceram. Soc. 25 1285Google Scholar
[56] Yugami H, Sai H, Nakamura K, Nakagawa N, Ohtsubo H 2000 28th IEEE Photovoltaic Specialists Conference Anchorage, AK, USA, September 15–22, 2000 p1214
[57] Shimizu M, Kohiyama A, Yugami H 2015 J. Photonics Energy 5 053099Google Scholar
[58] Ferguson L G, Dogan F 2001 Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 83 35Google Scholar
[59] van de Groep J, Spinelli P, Polman A 2012 Nano Lett. 12 3138Google Scholar
[60] Shemelya C, Demeo D F, Vandervelde T E 2014 Appl. Phys. Lett. 104 021115Google Scholar
[61] Zhang S H, Huang B H, Bian Y B, Han C Z, Tian D, Chen X M, Qiu J W, Zhu A W, Yang A X, Shao J X 2023 Opt. Express 31 9186Google Scholar
[62] Rahmlow T D, DePoy DM, Fourspring P M, Ehsani H, Lazo-Waseml J E, Gratrix E J 2007 AIP Conf. Proc. 890 59Google Scholar
[63] Fourspring P M, DePoy D M, Rahmlow T D, Lazo-Wasem J E, Gratrix E J 2006 Appl. Opt. 45 1356Google Scholar
[64] Bierman D M, Lenert A, Chan W R, Bhatia B, Celanovic I, Soljacic M, Wang E N 2016 Nat. Energy 1 16068Google Scholar
[65] Varner J F, Wert D, Matari A, Nofal R, Foley J J 2020 Phys. Rev. Res. 2 013018Google Scholar
[66] Jiang J, Fan J A 2021 Nanophotonics 10 361
[67] Wang H Z, Zheng Z Y, Ji C G, Jay Guo L 2021 Mach. Learn-Sci. Techn. 2 025013Google Scholar
[68] Omair Z, Scranton G, Pazos-Outon L M, Xiao T P, Steiner M A, Ganapati V, Peterson P F, Holzrichter J, Atwater H, Yablonovitch E 2019 Proc. Natl. Acad. Sci. U. S. A. 116 15356Google Scholar
[69] Burger T, Fan D, Lee K, Forrest S R, Lenert A 2018 ACS Photonics 5 2748Google Scholar
[70] Lee B, Lentz R, Burger T, Roy-Layinde B, Lim J, Zhu R M, Fan D, Lenert A, Forrest S R 2022 ACS Energy Lett. 7 2388Google Scholar
[71] Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291Google Scholar
[72] DiMatteo R S, Greiff P, Finberg S L, Young-Waithe K A, Choy H K H, Masaki M M, Fonstad C G 2001 Appl. Phys. Lett. 79 1894Google Scholar
[73] Pan J L, Choy H K H, Fonstad C G 2000 IEEE Trans. Electron Dev. 47 241Google Scholar
[74] Narayanaswamy A, Chen G 2003 Appl. Phys. Lett. 82 3544Google Scholar
[75] Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M, Fan S 2017 Nano Energy 41 344Google Scholar
[76] Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotechnol. 13 806Google Scholar
[77] Inoue T, Koyama T, Kang D D, Ikeda K, Asano T, Noda S 2019 Nano Lett. 19 3948Google Scholar
[78] Lucchesi C, Cakiroglu D, Perez J P, Taliercio T, Tournie E, Chapuis P-O, Vaillon R 2021 Nano Lett. 21 4524Google Scholar
[79] Bright T J, Wang L P, Zhang Z M 2014 J. Heat Transfer 136 062701Google Scholar
[80] Tong J K, Hsu W C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661Google Scholar
[81] Mittapally R, Lee B, Zhu L, Reihani A, Lim J W, Fan D, Forrest S R, Reddy P, Meyhofer E 2021 Nat. Commun. 12 4364Google Scholar
[82] Inoue T, Ikeda K, Song B, Suzuki T, Ishino K, Asano T, Noda S 2021 ACS Photonics 8 2466Google Scholar
计量
- 文章访问数: 1887
- PDF下载量: 91
- 被引次数: 0