搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快光纤激光器中可控脉冲产生与湮灭动力学

周瑞 李阳 朱润徽 张祖兴

引用本文:
Citation:

超快光纤激光器中可控脉冲产生与湮灭动力学

周瑞, 李阳, 朱润徽, 张祖兴

Controlled pulse generation and annihilation dynamics in ultrafast fiber lasers

Zhou Rui, Li Yang, Zhu Run-Hui, Zhang Zu-Xing
PDF
HTML
导出引用
  • 本文采用实时傅里叶变换光谱探测技术, 研究了基于泵浦强度调制的超快光纤激光器中锁模脉冲产生与湮灭动力学过程. 结果表明: 当泵浦调制电压处于高电平时, 激光器输出稳定的锁模脉冲. 随着调制电压跳变至低电平, 锁模脉冲的强度不断降低, 而后经历一段衰减振荡阶段后发生湮灭, 在~5 μs后孤子从噪声中重建, 这一过程伴随着调Q不稳定性的产生. 在低电平阶段, 激光腔内的湮灭过程连续发生, 其周期为~55 μs. 通过改变调制泵浦的占空比, 能够操控在低电平调制下孤子连续湮灭的次数. 进一步, 锁模与孤子湮灭的连续切换过程与泵浦调制频率有关, 调制频率的升高能够有效缩短两种状态的持续时间从而减少孤子湮灭的次数. 此外, 通过减小低电平的值, 能够降低激光腔内的增益, 使得孤子连续湮灭的周期缩短. 研究结果有利于深入了解孤子的形成与湮灭动力学, 并为超快激光器各种运行机制的发展提供了新的视角.
    In this paper, the mode-locked pulse generation and annihilation dynamics in ultrafast fiber lasers based on pump intensity modulation are investigated by using real-time Fourier transform spectral probing. The results show that the laser outputs stable mode-locked pulses when the pump modulation voltage is at a high level. As the modulation voltage jumps to a low level, the intensity of the mode-locked pulse decreases, and then undergoes a period of decaying oscillation before annihilation occurs, and after ~5 μs the soliton is reconstructed from the noise, accompanied by the generation of the Q-modulation instability. In the low-level phase, the annihilation process in the laser cavity occurs continuously with a period of ~55 μs. By changing the duty cycle of the modulation pump, it is possible to control the the number of times solitons continuously annihilate under low-level modulation. Further, the continuous switching process of mode-locking and soliton annihilation is related to the modulation frequency of the pump, and the increase of the modulation frequency can effectively shorten the duration of the two states, thus reducing the number of soliton annihilations. In addition, by reducing the value of the low level, the gain in the laser cavity can be reduced, resulting in a shorter period of successive soliton annihilation. The results of the study are conducive to an in-depth understanding of the formation and annihilation dynamics of solitons, and provide new perspectives for developing various operation mechanisms of ultrafast lasers.
      通信作者: 张祖兴, zxzhang@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62175116)资助的课题.
      Corresponding author: Zhang Zu-Xing, zxzhang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62175116).
    [1]

    Yun L, Qiu Y, Yang C H, Xing J, Yu K H, Xu X X, Wei W 2018 Photon. Res. 6 1028Google Scholar

    [2]

    Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, Juodkazis S 2016 Light Sci. Appl. 5 16133Google Scholar

    [3]

    Mao D, Zheng Y, Zeng C, Lu H, Wang C, Zhang H, Zhang W D, Mei T, Zhao J L 2021 Adv. Photon. 3 014002

    [4]

    Cao B, Gao C X, Liu K W, Xiao X S, Yang C X, Bao C Y 2023 Light Sci. Appl. 12 260Google Scholar

    [5]

    Wise F W, Chong A, Renninger W H 2008 Laser Photon. Rev. 2 58Google Scholar

    [6]

    Fermann M E, Hartl I 2013 Nat. Photon. 7 868Google Scholar

    [7]

    Huang L, Zhang Y S, Liu X M 2020 Nanophotonics 9 2731Google Scholar

    [8]

    Zhang Y S, Cui Y D, Huang L, Tong L M, Liu X M 2020 Opt. Lett. 45 6246Google Scholar

    [9]

    Kieu K, Renninger W H, Chong A, Wise F W 2009 Opt. Lett. 34 000593Google Scholar

    [10]

    Zhao L M, Tang D Y, Zhang H, Cheng T H, Tam H Y, Lu C 2007 Opt. Lett. 32 001806Google Scholar

    [11]

    Renninger W H, Chong A, Wise F W 2008 Phys. Rev. A 77 023814Google Scholar

    [12]

    Liu X M 2010 Phys. Rev. A 81 023811Google Scholar

    [13]

    Li H, Ouzounov D G, Wise F W 2010 Opt. Lett. 35 002403Google Scholar

    [14]

    Goda K, Tsia K K, Jalali B 2009 Nature 458 1145Google Scholar

    [15]

    Mahjoubfar A, Churkin D V, Barland S, Broderick N, Turitsyn S K, Jalali B 2017 Nat. Photon. 11 341Google Scholar

    [16]

    Xu Y Q, Wei X M, Ren Z B, Wong K K Y, Tsia K K 2016 Sci. Rep. 6 27937Google Scholar

    [17]

    Lu M X, Wang X D, Li K X, Geng X, Pan J Y, Sun M Q, Li S W 2022 Laser Phys. 33 015101

    [18]

    Song Y G, Zou D F, Gat O, Hu M L, Grelu P 2023 Laser Photon. Rev. 17 2300066Google Scholar

    [19]

    Sheng C, Liu H, Chen H Y, Zhu S N 2018 Nat. Commun. 9 4271Google Scholar

    [20]

    Cui H, Liu X M 2019 Photon. Res. 7 000423Google Scholar

    [21]

    Zhou Y, Ren Y X, Shi J W, Mao H D, Wong K K Y 2020 Optica 7 965Google Scholar

    [22]

    Han D D, Wang Y J, Hui Z Q, Zhang Z X, Ren K, Zheng Y P, Zhao F, Zhu L P, Gong J M 2021 Infrared Phys. Techn. 116 103786Google Scholar

    [23]

    Korobko D A, Ribenek V A, Itrin P A, Fotiadi A A 2023 Opt. Fiber Technol. 75 103216Google Scholar

    [24]

    Jiang C, Zhou R, Fang Z, Wan Y, Sun B, Mou C B, Liu Y Q, Zhang Z X 2023 Opt. Lett. 48 5875Google Scholar

    [25]

    方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴 2023 物理学报 73 014202Google Scholar

    Fang Z, Yu Y, Zhao Q Y, Zhang Y D, Wang Z Q, Zhang Z X 2023 Acta Phys. Sin. 73 014202Google Scholar

    [26]

    Peng J S, Boscolo S, Zhao Z H, Zeng H P 2019 Sci. Adv. 5 1110

    [27]

    Gui L, Wang P, Ding Y H, Zhao K J, Bao C Y, Xiao X S, Yang C X 2018 Appl. Sci. 8 201Google Scholar

  • 图 1  实验装置图(SG-信号发生器; LD-半导体光源; WDM-波分复用器; PC-偏振控制器; OC-光耦合器; PDG-偏振相关光栅; PI-ISO-偏振无关隔离器; DCF-色散补偿光纤; PD-光电探测器; OSA-光谱仪; OSC-示波器)

    Fig. 1.  Diagram of experimental setup(SG-signal generator; LD-semiconductor light source; WDM-wavelength division multiplexer; PC-polarization controller; OC-90:10 optical coupler; PDG-polarization-dependent grating; PI-ISO-polarization-independent isolator; DCF-dispersion compensation fiber; PD-photodetector; OSA-optical spectrum analyzer; OSC-oscilloscope).

    图 2  调制泵浦的性能表征 (a) 2, 5和10 kHz调制频率下的输入泵浦脉冲波形和载波信号波形; (b)调制电平和泵浦功率关系图

    Fig. 2.  Performance characterization of modulated pump: (a) Input pump pulse waveform and carrier signal waveform at 2, 5, and 10 kHz modulation frequencies; (b) plot of modulation level versus pump power.

    图 3  DFT准确性验证及脉冲状态切换过程脉冲序列 (a)用OSA记录的光谱(虚线)和从DFT测量结果提取出的单次光谱(实线); (b)切换过程相应的脉冲序列; (c), (d)孤子湮灭前后的细节放大图

    Fig. 3.  DFT accuracy verification and pulse trains during pulse state switching process: (a) Spectra recorded with OSA (dashed line) and single spectra extracted from DFT measurements (solid line); (b) pulse sequence corresponding to the switching process; (c), (d) detailed enlargements of the soliton before and after its annihilation.

    图 4  稳定锁模与孤子湮灭切换过程的实验实时数据 (a) DFT光谱演化图; (b)孤子湮灭前的细节放大; (c)相应的场自相关迹演化; (d)一个呼吸周期内最宽和最窄脉宽的光谱图; (e)孤子重建时的细节放大; (f)相应的场自相关迹演化; (g)调Q不稳定性状态下与稳定锁模状态下的光谱

    Fig. 4.  Experimental real-time data for stable mode-locking and soliton annihilation switching processes: (a) DFT spectral evolution diagram; (b) detailed enlargement of the soliton before its annihilation; (c) corresponding field autocorrelation trace evolution; (d) spectrograms of the widest and narrowest pulse widths in one breathing period; (e) detailed zoom in on the reconstruction of the soliton; (f) corresponding field autocorrelation trace evolution; (g) spectra of the Q-switched instability state versus the stable mode-locked state.

    图 5  不同占空比和调制频率下切换过程的脉冲序列和DFT光谱图 (a), (b)低电平调制占空比为30%; (c), (d)低电平调制占比为70%; (e), (f) 5 kHz调制频率; (g), (h) 10 kHz调制频率

    Fig. 5.  Pulse trains and DFT spectra of the switching process at different duty ratios and modulation frequencies: (a), (b) 30% duty ratio for low-level modulation; (c), (d) 70% duty ratio for low-level modulation; (e), (f) 5 kHz modulation frequency; (g), (h) 10 kHz modulation frequency.

    图 6  不同低电平下切换过程的脉冲序列、DFT光谱图及自相关迹演化 (a), (b), (c) 2.52 V; (d), (e), (f) 2.50 V; (g), (h), (i) 2.44 V

    Fig. 6.  Pulse sequence, DFT spectra, and autocorrelation trace evolution of switching process at different low levels: (a), (b), (c) 2.52 V; (d), (e), (f) 2.50 V; (h), (g), (i) 2.44 V.

  • [1]

    Yun L, Qiu Y, Yang C H, Xing J, Yu K H, Xu X X, Wei W 2018 Photon. Res. 6 1028Google Scholar

    [2]

    Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, Juodkazis S 2016 Light Sci. Appl. 5 16133Google Scholar

    [3]

    Mao D, Zheng Y, Zeng C, Lu H, Wang C, Zhang H, Zhang W D, Mei T, Zhao J L 2021 Adv. Photon. 3 014002

    [4]

    Cao B, Gao C X, Liu K W, Xiao X S, Yang C X, Bao C Y 2023 Light Sci. Appl. 12 260Google Scholar

    [5]

    Wise F W, Chong A, Renninger W H 2008 Laser Photon. Rev. 2 58Google Scholar

    [6]

    Fermann M E, Hartl I 2013 Nat. Photon. 7 868Google Scholar

    [7]

    Huang L, Zhang Y S, Liu X M 2020 Nanophotonics 9 2731Google Scholar

    [8]

    Zhang Y S, Cui Y D, Huang L, Tong L M, Liu X M 2020 Opt. Lett. 45 6246Google Scholar

    [9]

    Kieu K, Renninger W H, Chong A, Wise F W 2009 Opt. Lett. 34 000593Google Scholar

    [10]

    Zhao L M, Tang D Y, Zhang H, Cheng T H, Tam H Y, Lu C 2007 Opt. Lett. 32 001806Google Scholar

    [11]

    Renninger W H, Chong A, Wise F W 2008 Phys. Rev. A 77 023814Google Scholar

    [12]

    Liu X M 2010 Phys. Rev. A 81 023811Google Scholar

    [13]

    Li H, Ouzounov D G, Wise F W 2010 Opt. Lett. 35 002403Google Scholar

    [14]

    Goda K, Tsia K K, Jalali B 2009 Nature 458 1145Google Scholar

    [15]

    Mahjoubfar A, Churkin D V, Barland S, Broderick N, Turitsyn S K, Jalali B 2017 Nat. Photon. 11 341Google Scholar

    [16]

    Xu Y Q, Wei X M, Ren Z B, Wong K K Y, Tsia K K 2016 Sci. Rep. 6 27937Google Scholar

    [17]

    Lu M X, Wang X D, Li K X, Geng X, Pan J Y, Sun M Q, Li S W 2022 Laser Phys. 33 015101

    [18]

    Song Y G, Zou D F, Gat O, Hu M L, Grelu P 2023 Laser Photon. Rev. 17 2300066Google Scholar

    [19]

    Sheng C, Liu H, Chen H Y, Zhu S N 2018 Nat. Commun. 9 4271Google Scholar

    [20]

    Cui H, Liu X M 2019 Photon. Res. 7 000423Google Scholar

    [21]

    Zhou Y, Ren Y X, Shi J W, Mao H D, Wong K K Y 2020 Optica 7 965Google Scholar

    [22]

    Han D D, Wang Y J, Hui Z Q, Zhang Z X, Ren K, Zheng Y P, Zhao F, Zhu L P, Gong J M 2021 Infrared Phys. Techn. 116 103786Google Scholar

    [23]

    Korobko D A, Ribenek V A, Itrin P A, Fotiadi A A 2023 Opt. Fiber Technol. 75 103216Google Scholar

    [24]

    Jiang C, Zhou R, Fang Z, Wan Y, Sun B, Mou C B, Liu Y Q, Zhang Z X 2023 Opt. Lett. 48 5875Google Scholar

    [25]

    方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴 2023 物理学报 73 014202Google Scholar

    Fang Z, Yu Y, Zhao Q Y, Zhang Y D, Wang Z Q, Zhang Z X 2023 Acta Phys. Sin. 73 014202Google Scholar

    [26]

    Peng J S, Boscolo S, Zhao Z H, Zeng H P 2019 Sci. Adv. 5 1110

    [27]

    Gui L, Wang P, Ding Y H, Zhao K J, Bao C Y, Xiao X S, Yang C X 2018 Appl. Sci. 8 201Google Scholar

  • [1] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计. 物理学报, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] 方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴. 基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究. 物理学报, 2024, 73(1): 014202. doi: 10.7498/aps.73.20231030
    [3] 李纲, 郭仪, 曾小明, 谢娜, 邵忠喜, 黄征, 孙立, 蒋东镔, 卢峰, 朱斌, 周凯南, 粟敬钦. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究. 物理学报, 2022, 71(7): 074203. doi: 10.7498/aps.71.20211961
    [4] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器. 物理学报, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [5] 孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永. 自拉曼混频黄绿波段三波长可切换激光. 物理学报, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [6] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, 69(8): 084202. doi: 10.7498/aps.69.20191989
    [7] 于慧, 张瑞, 李克武, 薛锐, 王志斌. 双强度调制静态傅里叶变换偏振成像光谱系统测量原理及仿真. 物理学报, 2017, 66(5): 054201. doi: 10.7498/aps.66.054201
    [8] 张耀利, 吴保卫, 王月娥, 韩晓霞. 切换奇异系统的有限时间稳定. 物理学报, 2014, 63(17): 170205. doi: 10.7498/aps.63.170205
    [9] 马新东, 毕勤胜. 切换电路系统的复杂行为及其机理. 物理学报, 2012, 61(24): 240506. doi: 10.7498/aps.61.240506
    [10] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [11] 刘扬正, 林长圣, 李心朝. 切换统一混沌系统族. 物理学报, 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [12] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法. 物理学报, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [13] 刘扬正, 姜长生. 关联可切换超混沌系统的构建与特性分析. 物理学报, 2009, 58(2): 771-778. doi: 10.7498/aps.58.771
    [14] 董军, 彭翰生, 魏晓峰, 胡东霞, 周维, 赵军普, 张颖, 程文雍, 刘兰琴. 基于傅里叶变换模式的啁啾脉冲频域—时域相移转换的研究. 物理学报, 2009, 58(1): 315-320. doi: 10.7498/aps.58.315
    [15] 刘扬正, 姜长生, 林长圣. 一类关联混沌系统的分时切换混沌同步. 物理学报, 2008, 57(2): 709-713. doi: 10.7498/aps.57.709
    [16] 刘扬正, 姜长生, 林长圣. 一类四维混沌系统切换混沌同步. 物理学报, 2007, 56(2): 707-712. doi: 10.7498/aps.56.707
    [17] 刘扬正, 姜长生, 林长圣, 孙 晗. 四维切换超混沌系统. 物理学报, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [18] 刘扬正, 姜长生, 林长圣, 熊 星, 石 磊. 一类切换混沌系统的实现. 物理学报, 2007, 56(6): 3107-3112. doi: 10.7498/aps.56.3107
    [19] 佘卫龙, 余振新, 李荣基. 光折变“波导”诱失锁模ps激光脉冲自泵浦相位共轭. 物理学报, 1996, 45(12): 2010-2015. doi: 10.7498/aps.45.2010
    [20] 赵阳, 杨淑雯. Er3+掺杂光纤孤子放大器(Ⅱ)——最佳泵浦. 物理学报, 1994, 43(8): 1281-1288. doi: 10.7498/aps.43.1281
计量
  • 文章访问数:  1263
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-11
  • 修回日期:  2024-08-01
  • 上网日期:  2024-08-05
  • 刊出日期:  2024-09-05

/

返回文章
返回