搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场作用下纳米结构表面的固-液界面传热特性

齐凯 朱星光 王军 夏国栋

引用本文:
Citation:

外电场作用下纳米结构表面的固-液界面传热特性

齐凯, 朱星光, 王军, 夏国栋

Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field

Qi Kai, Zhu Xing-Guang, Wang Jun, Xia Guo-Dong
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在固体表面布置纳米结构是一种强化固-液界面传热的简单有效的方法. 但是, 当固-液界面相互作用较弱时, 由于纳米结构并不能被液体浸润, 纳米结构的存在反而会弱化固-液界面之间的传热, 而外电场的施加则可以解决这一问题. 本文基于分子动力学模拟的方法, 研究了纳米结构固-液界面在外电场作用下的传热特性. 通过在2块平行金属板布置数量相同的正负电荷, 产生垂直于板面的均匀电场, 并在下层金属板上布置了不同尺寸的纳米结构. 结果表明: 在外电场作用下, 纳米结构处会产生电润湿现象, 固-液界面的润湿状态能够从Cassie态变为Wenzel态, 界面处的Kapitza热阻长度明显减小, 因而热流密度显著增大; 当电荷量增至发生电冻结的临界值, 液态水会产生电冻结现象, 其热导率骤增至1.2 W/(m·K), 热流密度也随之发生骤增; 继续增加电场强度, 由于电冻结现象的发生, 固-液界面热阻则基本保持不变.
    With the size of high-performance electronic device decreasing (down to nanoscale), and the accompanying heat dissipation becomes a big problem due to its extremely high heat generation density. To tackle the ever-demanding heat dissipation requirement, intensive work has been done to develop techniques for chip-level cooling. Among the techniques reported in the literature, liquid cooling appears to be a good candidate for cooling high-performance electronic devices. However, when the device size is reduced to the sub-micro or nanometer level, the thermal resistance on the solid-liquid interface cannot be ignored in the heat transfer process. Usually, the interfacial thermal transport can be enhanced by using nanostructures on the solid surface because of the confinement effect of the fluid molecules filling up the nano-grooves and the increase of the solid-liquid interfacial contact area. However, in the case of weak interfacial couplings, the fluid molecules cannot enter into the nano-grooves and the interfacial thermal transport is suppressed. In the present work, the heat transfer system between two parallel metal plates filled with deionized water is investigated by molecular dynamics simulation. Electronic charges are applied to the upper plate and lower plate to create a uniform electric field that is perpendicular to the surface, and three types of nanostructures with varying size are arranged on the lower plate. It is found that the wetting state at the solid-liquid interface can change from Cassie state into Wenzel state with strength of the electric field increasing. Owing to the transition from the dewetting state to wetting state (from Wenzel to Cassie wetting state), the Kapitza length can be degraded and the solid-liquid interfacial heat transfer can be enhanced. The mechanism of the enhancing hart transfer is discussed based on the calculation of the number density distribution of the water molecules between the two plates. When the charge is further increased, electrofreezing appears, and a solid hydrogen bonding network is formed in the system, resulting in the thermal conductivity increasing to 1.2 W/(m·K) while the thermal conductivity remains almost constant when the electric charge continues to increase.
      通信作者: 王军, jwang@bjut.edu.cn
      Corresponding author: Wang Jun, jwang@bjut.edu.cn
    [1]

    Razeeb K M, Dalton E, Cross G L W, Robinson A J 2018 Int. Mater. 63 1Google Scholar

    [2]

    Pop E 2010 Nano Res. 3 147Google Scholar

    [3]

    Kapitza P L 1971 J. Phys. U.S.S.R. 4 181Google Scholar

    [4]

    Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101Google Scholar

    [5]

    Harikrishna H, Ducker W A, Huxtable S T 2013 Appl. Phys. Lett. 102 251606Google Scholar

    [6]

    Park S C, Cho H R, Kim D, Choi S H, Choi C, Yu D I 2024 Int. J. Heat Fluid Flow 107 109388Google Scholar

    [7]

    Song G, Min C 2013 Mol. Phys. 111 903Google Scholar

    [8]

    Rashidi M M, Ghahremanian S, Toghraie D, Roy P 2020 Int. Commun. Heat Mass 117 140741Google Scholar

    [9]

    张程宾, 许兆林, 陈永平 2014 物理学报 63 214706Google Scholar

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706Google Scholar

    [10]

    Chakraborty P, Ma T, Cao L, Wang Y 2019 Int. J. Heat Mass. Tran. 136 702Google Scholar

    [11]

    Yao S T, Wang J S, Jin S F, Tan F G, Chen S P 2024 Int. J. Therm. Sci. 203 109161Google Scholar

    [12]

    Qin S Y, Chen Z X, Wang Q, Li W G, Xing H W 2024 Int. Commun. Heat Mass 151 107257Google Scholar

    [13]

    Cassie A B D 1948 Disscussions of the Faraday Society 3 11Google Scholar

    [14]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988Google Scholar

    [15]

    Bormashenko E 2015 Adv. Colloid Interface Sci. 222 92Google Scholar

    [16]

    Bormashenko E, Pogreb R, Stein T, Whyman G, Erlich M, Musin A, Machavariani V, Aurbach D 2008 Phys. Chem. Chem. Phys 10 4056Google Scholar

    [17]

    李文, 马骁婧, 徐进良, 王艳, 雷骏鹏 2015 物理学报 70 126101Google Scholar

    Li W, Ma X J, Xu J L, Wang Y, Lei J P 2015 Acta Phys. Sin. 70 126101Google Scholar

    [18]

    Sur A, Lu Y, Pascente C, Ruchhoeft P, Liu D 2018 Int. J. Heat Mass Tran. 120 202Google Scholar

    [19]

    Lippmann G 1875 Ann. de Chim. et de Phys. 5 494 (in Chinese)

    [20]

    Orejon D, Sefiane K, Shanahan M E 2013 Appl. Phys. Lett. 102 201601Google Scholar

    [21]

    Daub C D, Bratko D, Leung K, Luzar A 2007 J. Phys. Chem. C 111 505Google Scholar

    [22]

    Song F H, Li B Q, Liu C 2013 Langmuir 29 4266Google Scholar

    [23]

    Lee M W, Latthe S S, Yarin A L, Yoon S S 2013 Langmuir 29 7758Google Scholar

    [24]

    Zhang B X, Wang S L, He X, Yang Y R, Wang X D, Lee D J 2021 J. Mol. Liq. 342 117468Google Scholar

    [25]

    Luedtke W D, Gao J P, Landman U 2011 J. Phys. Chem. C 115 20343Google Scholar

    [26]

    Zhu X Y, Yuan Q Z, Zhao Y P 2014 Nanoscale 6 5432Google Scholar

    [27]

    Sun W, Xu X B, Zhang H, Xu C X 2008 Cryobiology 56 93Google Scholar

    [28]

    Zangi R, Mark A E 2004 J. Chem. Phys. 120 7123Google Scholar

    [29]

    Jinesh K B, Frenken J W M 2008 Phys. Rev. Lett. 101 036101Google Scholar

    [30]

    Ahmad I, Ranjan A, Pathak M, Khan M K 2023 Int. J. Therm. Sci. 192 108440Google Scholar

    [31]

    Lu Y, Liu D 2023 Int J Heat Mass Tran. 208 124055Google Scholar

    [32]

    胡剑, 张森, 娄钦 2023 物理学报 72 176401Google Scholar

    Hu J, Zhang S, Lou Q 2023 Acta Phys. Sin. 72 176401Google Scholar

    [33]

    Mugele F, Baret J C 2005 J. Phys.: Condens. Matter 17 R705Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Yenigun O, Barisik M 2019 Nanoscale Microscale Thermophys. Eng 4 304Google Scholar

  • 图 1  纳米结构界面的固-液传热系统模型

    Fig. 1.  Heat transfer system at nanostructured interface.

    图 2  纳米结构界面的结构示意图

    Fig. 2.  Structure diagram of nanostructured interface

    图 3  Case1, Case 2, Case 3和Case 4 在不同电荷量下的系统快照图

    Fig. 3.  Snapshots of Case 1, Case 2, Case 3 and Case 4 at different electrode charges.

    图 4  Case 1和Case 3在不同电荷量下的密度分布 (a), (b) Case 1; (c), (d) Case 3

    Fig. 4.  Density distribution of Case 1 and Case 3 at different electrode charges: (a), (b) Case 1; (c), (d) Case 3.

    图 5  Case 1和Case 3在不同电荷量下的温度分布

    Fig. 5.  Temperature distribution of Case 1 and Case 3 at different electrode charges.

    图 6  Case1, Case 2, Case 3和 Case 4 在不同电荷量下的LK  (a)高温端; (b)低温端

    Fig. 6.  Kapitza length of Case 1, Case 2, Case 3 and Case 4 at different electrode charges: (a) High-temperature end; (b) low-temperature end.

    图 7  在不同电荷量下Case 1, Case 2, Case 3和 Case 4中水的热导率

    Fig. 7.  Thermal conductivity of waters of Case 1, Case 2, Case 3 and Case 4 at different electrode charges.

    图 8  在不同电荷量下Case 1, Case 2, Case 3和 Case 4中水的热流密度

    Fig. 8.  Heat flux of waters of Case 1, Case 2, Case 3 and Case 4 at different electrode charges.

    表 1  4种纳米结构的参数

    Table 1.  Parameters of four nanogroove configurations.

    d/nmw/nms/nm
    Case 1
    Case 21.020.8160.816
    Case 31.021.021.02
    Case 41.022.042.04
    下载: 导出CSV

    表 2  L-J势函数的具体参数

    Table 2.  Parameters of L-J potential.

    原子类型 σ/nm ε/eV q
    O-O 0.3166 0.0068 –0.8476e
    H-H 0 0 +0.4238e
    Au-O 0.2867 0.0114
    Au-H 0 0
    下载: 导出CSV
  • [1]

    Razeeb K M, Dalton E, Cross G L W, Robinson A J 2018 Int. Mater. 63 1Google Scholar

    [2]

    Pop E 2010 Nano Res. 3 147Google Scholar

    [3]

    Kapitza P L 1971 J. Phys. U.S.S.R. 4 181Google Scholar

    [4]

    Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101Google Scholar

    [5]

    Harikrishna H, Ducker W A, Huxtable S T 2013 Appl. Phys. Lett. 102 251606Google Scholar

    [6]

    Park S C, Cho H R, Kim D, Choi S H, Choi C, Yu D I 2024 Int. J. Heat Fluid Flow 107 109388Google Scholar

    [7]

    Song G, Min C 2013 Mol. Phys. 111 903Google Scholar

    [8]

    Rashidi M M, Ghahremanian S, Toghraie D, Roy P 2020 Int. Commun. Heat Mass 117 140741Google Scholar

    [9]

    张程宾, 许兆林, 陈永平 2014 物理学报 63 214706Google Scholar

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706Google Scholar

    [10]

    Chakraborty P, Ma T, Cao L, Wang Y 2019 Int. J. Heat Mass. Tran. 136 702Google Scholar

    [11]

    Yao S T, Wang J S, Jin S F, Tan F G, Chen S P 2024 Int. J. Therm. Sci. 203 109161Google Scholar

    [12]

    Qin S Y, Chen Z X, Wang Q, Li W G, Xing H W 2024 Int. Commun. Heat Mass 151 107257Google Scholar

    [13]

    Cassie A B D 1948 Disscussions of the Faraday Society 3 11Google Scholar

    [14]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988Google Scholar

    [15]

    Bormashenko E 2015 Adv. Colloid Interface Sci. 222 92Google Scholar

    [16]

    Bormashenko E, Pogreb R, Stein T, Whyman G, Erlich M, Musin A, Machavariani V, Aurbach D 2008 Phys. Chem. Chem. Phys 10 4056Google Scholar

    [17]

    李文, 马骁婧, 徐进良, 王艳, 雷骏鹏 2015 物理学报 70 126101Google Scholar

    Li W, Ma X J, Xu J L, Wang Y, Lei J P 2015 Acta Phys. Sin. 70 126101Google Scholar

    [18]

    Sur A, Lu Y, Pascente C, Ruchhoeft P, Liu D 2018 Int. J. Heat Mass Tran. 120 202Google Scholar

    [19]

    Lippmann G 1875 Ann. de Chim. et de Phys. 5 494 (in Chinese)

    [20]

    Orejon D, Sefiane K, Shanahan M E 2013 Appl. Phys. Lett. 102 201601Google Scholar

    [21]

    Daub C D, Bratko D, Leung K, Luzar A 2007 J. Phys. Chem. C 111 505Google Scholar

    [22]

    Song F H, Li B Q, Liu C 2013 Langmuir 29 4266Google Scholar

    [23]

    Lee M W, Latthe S S, Yarin A L, Yoon S S 2013 Langmuir 29 7758Google Scholar

    [24]

    Zhang B X, Wang S L, He X, Yang Y R, Wang X D, Lee D J 2021 J. Mol. Liq. 342 117468Google Scholar

    [25]

    Luedtke W D, Gao J P, Landman U 2011 J. Phys. Chem. C 115 20343Google Scholar

    [26]

    Zhu X Y, Yuan Q Z, Zhao Y P 2014 Nanoscale 6 5432Google Scholar

    [27]

    Sun W, Xu X B, Zhang H, Xu C X 2008 Cryobiology 56 93Google Scholar

    [28]

    Zangi R, Mark A E 2004 J. Chem. Phys. 120 7123Google Scholar

    [29]

    Jinesh K B, Frenken J W M 2008 Phys. Rev. Lett. 101 036101Google Scholar

    [30]

    Ahmad I, Ranjan A, Pathak M, Khan M K 2023 Int. J. Therm. Sci. 192 108440Google Scholar

    [31]

    Lu Y, Liu D 2023 Int J Heat Mass Tran. 208 124055Google Scholar

    [32]

    胡剑, 张森, 娄钦 2023 物理学报 72 176401Google Scholar

    Hu J, Zhang S, Lou Q 2023 Acta Phys. Sin. 72 176401Google Scholar

    [33]

    Mugele F, Baret J C 2005 J. Phys.: Condens. Matter 17 R705Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Yenigun O, Barisik M 2019 Nanoscale Microscale Thermophys. Eng 4 304Google Scholar

  • [1] 白璞, 王登甲, 刘艳峰. 润湿性影响薄液膜沸腾传热的分子动力学研究. 物理学报, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] 刘小娟, 李占琪, 金志刚, 黄智, 魏加争, 赵存陆, 王战涛. 电驱动引发液滴弹跳过程中的能量转换. 物理学报, 2022, 71(11): 114702. doi: 10.7498/aps.71.20212133
    [3] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响. 物理学报, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [4] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [5] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [6] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [7] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [8] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性. 物理学报, 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [9] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性. 物理学报, 2016, 65(5): 053101. doi: 10.7498/aps.65.053101
    [10] 刘天庆, 孙玮, 李香琴, 孙相彧, 艾宏儒. 纳米结构表面上部分润湿液滴合并诱导弹跳的理论研究. 物理学报, 2014, 63(8): 086801. doi: 10.7498/aps.63.086801
    [11] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [12] 邱丰, 王猛, 周化光, 郑璇, 林鑫, 黄卫东. Pb液滴在Ni基底润湿铺展行为的分子动力学模拟. 物理学报, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [13] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [14] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究. 物理学报, 2013, 62(7): 073103. doi: 10.7498/aps.62.073103
    [15] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究. 物理学报, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [16] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究. 物理学报, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [17] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [18] 何建勇, 隆正文, 龙超云, 蔡绍洪. 电场作用下CaS的分子结构和电子光谱. 物理学报, 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [19] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究. 物理学报, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  2197
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-17
  • 修回日期:  2024-06-15
  • 上网日期:  2024-06-26
  • 刊出日期:  2024-08-05

/

返回文章
返回