搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电场作用下纳米结构表面的固-液界面传热特性研究

齐凯 朱星光 王军 夏国栋

引用本文:
Citation:

外电场作用下纳米结构表面的固-液界面传热特性研究

齐凯, 朱星光, 王军, 夏国栋

Enchanced heat transfer between liquid and a nanostructured surface under external electric field

Qi Kai, Zhu Xing-Guang, Wang Jun, Xia Guo-Dong
PDF
导出引用
  • 在固体表面布置纳米结构是一种强化固-液界面传热的简单有效的方法。但是,当固-液界面相互作用较弱时,由于纳米结构并不能被液体浸润,纳米结构的存在反而会弱化固-液界面之间的传热,而外电场的施加则可以解决这一问题。本文基于分子动力学模拟的方法,研究了纳米结构固-液界面在外电场作用下的传热特性。通过在两块平行金属板布置数量相同的正负电荷,产生垂直于板面的均匀电场,并在下层金属板上布置了不同尺寸的纳米结构。结果表明,在外电场作用下,纳米结构处会产生电润湿现象,固-液界面的润湿状态能够从Cassie态变为Wenzel态,界面处的Kapitza热阻长度的明显减小,因而热流密度显著增大;当电荷量增加至发生电冻结的临界值,液态水会产生电冻结现象,其热导率骤增至1.2 W/(m·K),热流密度也随之发生骤增;继续增加电场强度,由于电冻结现象的发生,固-液界面热阻则基本保持不变。
    With decreasing size of high-performance electronic devices (down to nanoscale), and the accompanying problem of heat dissipation becomes a big issue owing to its extremely high heat generation density. To tackle the ever-demanding heat dissipation requirement, intensive work has being carried out to develop techniques for chip-level cooling. Among the techniques reported in open literatures, liquid cooling appears to be a good candidate for cooling high-performance electronic devices. However, the solid-liquid interfacial thermal resistance cannot be ignored in the heat transfer process as the device size shrinks to the sub-microscale or nanoscale. Usually, the interfacial thermal transport can be enhanced by using nanostructures on the solid surface because of the confinement effect of the fluid molecules filling up the nano-grooves and the increase of the solid-liquid interfacial contact area. However, in the case of weak interfacial couplings, the fluid molecules cannot get into the nano-grooves and the interfacial thermal transport is suppressed. In the present paper, the heat transfer system between two parallel metal plates filled with deionized water is investigated by molecular dynamics simulation. Electronic charges are inflicted in the upper and lower plates to generate a uniform electric field which is perpendicular to the surface, and three types of nanostructures with varying size are constructed to the lower plate. It is found that the wetting state at the solid-liquid interface changes from Cassie to Wenzel states with increasing strength of the electric field. Owing to the transition from the dewetting to wetting state (from Wenzel to Cassie wetting state), the Kapitza length can be degraded and the solid-liquid interfacial heat transfer can be enhanced. The mechanism of the enhanced hart transfer is discussed based on the calculation of the number density distribution of the water molecules in between the two plates. As the charge is further increased, electrofreezing appears, and a solid hydrogen bonding network is formed in the system, resulting in an increase in thermal conductivity to 1.2 W/(m·K) while the thermal conductivity remains almost constant as the electric charge continues to increase.
  • [1]

    Razeeb K M, Dalton E, et al. 2018 Int. Mater. 63 1

    [2]

    Pop E 2010 Nano Res. 3 147

    [3]

    Kapitza P L 1971 Helium 4 4 81

    [4]

    Shenogina N, Godawat R, Keblinski P, Garde S 2009 Phys. Rev. Lett. 102 156101

    [5]

    Harikrishna H, Ducker W A, Huxtable S T 2013 Appl. Phys. Lett. 102 251606

    [6]

    Park S C, Cho H R, Kim D, et al. 2024 Int. J. Heat Fluid Flow 107 109388

    [7]

    Song, Min C 2013 Mo.l Phys. 111 903

    [8]

    Rashidi M M, Ghahremanian S, Toghraie D, Roy P 2020 Int Commun Heat Mass 117 140741

    [9]

    Zhang C B, Xu Z L, Chen Y P 2014 Acta Phys. Sin. 63 214706 (in Chinese)[张程宾,许兆林,陈永平 2014 物理学报 63 214706]

    [10]

    Chakraborty P, Ma T, Cao L, Wang Y 2019 Int J Heat Mass Tran. 136 702

    [11]

    Yao S T, Wang J S, Jin S F, Tan F G, Chen S P 2024 Int. J. Therm. Sci. 203 109161

    [12]

    Qin S Y, Chen Z X, Wang Q, Li W G, Xing H W 2024 Int Commun Heat Mass 151 107257

    [13]

    Cassie A B D 1948 Disscussions of the Faraday Society 3 11

    [14]

    Wenzel R N 1936 Ind. Eng. Chem. 28 988

    [15]

    Bormashenko E 2015 Adv. Colloid Interface Sci. 222 92

    [16]

    Bormashenko E, Pogreb R, Stein T, et al. 2008 Phys. Chem. Chem. Phys 10 4056

    [17]

    Li W, Ma X J, Xu J L, Wang Y, Lei J P 2015 Acta Phys. Sin. 70 126101 (in Chinese)[李文,马骁婧,徐进良,王艳,雷骏鹏 2021 物理学报 70 126101]

    [18]

    Sur. A, Lu. Y, et al. 2018 Int. J. Therm. Sci. 120 202

    [19]

    Orejon D, Sefiane K, Shanahan M E 2013 Appl. Phys. Let.t 102 201601.

    [20]

    Daub C D, Bratko D, et al. 2007 J. Phys. Chem. C 111 505

    [21]

    Song F H, Li B Q, Liu C 2013 Langmuir 29 4266

    [22]

    Lee M W, Latthe S S, et al. 2013 Langmuir 29 7758

    [23]

    Zhang B X, Wang S L, et al. 2021 J. Mol. Liq. 342 117468.

    [24]

    Luedtke W D, Gao. J P, Landman U 2011 J. Phys. Chem. C 115 20343

    [25]

    Zhu X Y, Yuan Q Z, Zhao Y P 2014 Nanoscale 6 5432

    [26]

    Sun W, Xu X B, Zhang H, Xu C X 2008 Cryobiology 56 93

    [27]

    Zangi R, Mark A E 2004 J. Chem. Phys. 120 7123

    [28]

    Jinesh K B, Frenken J W M 2008 Phys. Rev. Lett. 101 036101

    [29]

    Sur A, Lu Y, Pascente C, Ruchhoeft P, Liu D 2018 Int J Heat Mass Tran. 120 202

    [30]

    Ahmad I, Ranjan A, Pathak M, Khan M K 2023 Int. J. Therm. Sci. 192 108440

    [31]

    Lu Y, Liu D 2023 Int J Heat Mass Tran. 208 124055

    [32]

    Hu J, Zhang S, Lou Q 2023 Acta Phys. Sin. 72 176401 (in Chinese)[胡剑,张森,娄钦 2023 物理学报 72 176401]

    [33]

    Mugele F, Baret. J C 2005 J Phys-Condens. Ma. 17 R705.

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [35]

    Yenigun O, Barisik M 2019 Nanoscale Microscale Thermophys. Eng 4 304

  • [1] 赵建宁, 魏东, 吕国正, 王子成, 刘冬欢. 一维异质结构的瞬态热整流效应. 物理学报, doi: 10.7498/aps.72.20222085
    [2] 李文, 马骁婧, 徐进良, 王艳, 雷俊鹏. 纳米结构及浸润性对液滴润湿行为的影响. 物理学报, doi: 10.7498/aps.70.20201584
    [3] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, doi: 10.7498/aps.69.20200491
    [4] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, doi: 10.7498/aps.68.20181876
    [5] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, doi: 10.7498/aps.68.20190781
    [6] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, doi: 10.7498/aps.67.20180182
    [7] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.67.20180958
    [8] 李亚莎, 谢云龙, 黄太焕, 徐程, 刘国成. 基于密度泛函理论的外电场下盐交联聚乙烯分子的结构及其特性. 物理学报, doi: 10.7498/aps.67.20180808
    [9] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性. 物理学报, doi: 10.7498/aps.65.163102
    [10] 杨涛, 刘代俊, 陈建钧. 外电场下二氧化硫的分子结构及其特性. 物理学报, doi: 10.7498/aps.65.053101
    [11] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, doi: 10.7498/aps.63.043101
    [12] 鞠生宏, 梁新刚. 带孔硅纳米薄膜热整流及声子散射特性研究. 物理学报, doi: 10.7498/aps.62.026101
    [13] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.110204
    [14] 李涛, 唐延林, 凌智钢, 李玉鹏, 隆正文. 外电场对对硝基氯苯分子结构与电子光谱影响的研究. 物理学报, doi: 10.7498/aps.62.103103
    [15] 安跃华, 熊必涛, 邢云, 申婧翔, 李培刚, 朱志艳, 唐为华. 外电场作用下ZnO分子的结构特性研究. 物理学报, doi: 10.7498/aps.62.073103
    [16] 杜建宾, 唐延林, 隆正文. 外电场作用下的五氯酚分子结构和电子光谱的研究. 物理学报, doi: 10.7498/aps.61.153101
    [17] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究. 物理学报, doi: 10.7498/aps.60.123101
    [18] 何建勇, 隆正文, 龙超云, 蔡绍洪. 电场作用下CaS的分子结构和电子光谱. 物理学报, doi: 10.7498/aps.59.1651
    [19] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究. 物理学报, doi: 10.7498/aps.58.3052
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  66
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-26

/

返回文章
返回